Joint Decision Space

Markov Decision Process (MDP) Representation:

- **State space:**
 - Joint state x of entire system

- **Action space:**
 - Joint action $a = \{a_1, \ldots, a_n\}$ for all agents

- **Reward function:**
 - Total reward $R(x,a)$
 - sometimes reward can depend on action

- **Transition model:**
 - Dynamics of the entire system $P(x'|x,a)$
Policy

Policy: $\pi(x) = a$

At state x, action a for all agents

$\pi(x_0) = \text{both peasants get wood}$

$\pi(x_1) = \text{one peasant builds barrack, other gets gold}$

$\pi(x_2) = \text{peasants get gold, footmen attack}$
Computing the value of a policy

Discounted value of a state:
- value of starting from x_0 and continuing with policy π from then on

$$V_\pi(x_0) = E_\pi[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \gamma^4 R(x_4) + \ldots]$$

A recursion!

$$V_\pi(x_0) = E_\pi\left[\sum_{t=0}^{\infty} \gamma^t R(x_t) \right] = E_\pi\left[R(x_0) + \sum_{t=1}^{\infty} \gamma^{t-1} R(x_t) \right]$$

$$= E_\pi[R(x_0)] + \gamma E_\pi\left[\sum_{t=1}^{\infty} \gamma^{t-1} R(x_t) \right]$$

$$= R(x_0) + \gamma E_{x_1}\left[V_\pi(x_1) \right]$$

$$V_\pi \leq \text{simple matrix} \ \mathbb{Q}$$

©2005-2007 Carlos Guestrin
Solving an MDP

Solve Bellman equation

Optimal value \(V^*(x) \)

Optimal policy \(\pi^*(x) \)

\[
V^*(x) = \max_a R(x, a) + \gamma \sum_{x'} P(x'| x, a) V^*(x')
\]

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard ‘60, Bellman ‘57]
- Value iteration [Bellman ‘57]
- Linear programming [Manne ‘60]
- …
Value iteration (a.k.a. dynamic programming) – the simplest of all

\[V^*(x) = \max_a R(x, a) + \gamma \sum_{x'} P(x' | x, a)V^*(x') \]

- Start with some guess \(V_0 = R \)
- Iteratively say:
 \[V_{t+1}(x) = \max_a R(x, a) + \gamma \sum_{x'} P(x' | x, a)V_t(x') \]
- Stop when \(\|V_{t+1} - V_t\|_\infty \leq \varepsilon \)
 \(\square \) means that \(\|V^* - V_{t+1}\|_\infty \leq \varepsilon/(1-\gamma) \)

\[\square \] Greedy Policy \(\Pi_{t+1} \)

\[\|V^* - V_{\Pi_{t+1}}\|_\infty \leq \frac{\varepsilon \gamma}{(1-\gamma)^2} \]

Converges to \(V^* \)

Can get \(\Pi^* \)
Policy iteration – Another approach for computing π^*

- Start with some guess for a policy π_0.
- Iteratively say:
 - **evaluate policy:**
 $$V_t(x) = R(x, a = \pi_t(x)) + \gamma \sum_{x'} P(x' \mid x, a = \pi_t(x)) V_t(x')$$
 - **improve policy:**
 $$V_{t+1} = (I - \gamma P_\pi)^{-1} R$$
 $$\pi_{t+1}(x) = \max_{a} R(x, a) + \gamma \sum_{x'} P(x' \mid x, a) V_t(x')$$

- Stop when
 - **policy stops changing**
 - usually happens in about 10 iterations
 - or $\|V_{t+1} - V_t\|_\infty \leq \varepsilon$
 - means that $\|V^* - V_{t+1}\|_\infty \leq \varepsilon/(1-\gamma)$

Open problem: PI converges in polynomial time?
Policy Iteration & Value Iteration: Which is best ???

It depends.
- Lots of actions? Choose **Policy Iteration**
- Already got a fair policy? **Policy Iteration**
- Few actions, acyclic? **Value Iteration**

Best of Both Worlds:
- **Modified Policy Iteration** [Puterman]
 ...a simple mix of value iteration and policy iteration

3rd Approach
- **Linear Programming**
LP Solution to MDP

Value computed by linear programming:

\[
\text{minimize: } \sum_{x} V(x) \\
\text{subject to: } \begin{cases}
V(x) \geq R(x,a) + \gamma \sum_{x'} P(x'|x,a) V(x') \\
\forall x, a
\end{cases}
\]

- One variable \(V(x) \) for each state
- One constraint for each state \(x \) and action \(a \)
- Polynomial time solution

[Manne ‘60]
What you need to know

- What’s a Markov decision process
 - state, actions, transitions, rewards
 - a policy
 - value function for a policy
 - computing V_π
- Optimal value function and optimal policy
 - Bellman equation
- Solving Bellman equation
 - with value iteration, policy iteration and linear programming
The Reinforcement Learning task

\[\text{learn } \rightarrow P(x'|x,a) \]

World: You are in state 34.
Your immediate reward is 3. You have possible 3 actions.

\[(x_1 = 34, r_1 = 3, a_1 = 2, x_2 = 77) \]

Robot: I’ll take action 2.

World: You are in state 77.
Your immediate reward is -7. You have possible 2 actions.

Robot: I’ll take action 1.

World: You’re in state 34 (again).
Your immediate reward is 3. You have possible 3 actions.
Formalizing the (online) reinforcement learning problem

- Given a set of states X and actions A
 - in some versions of the problem size of X and A unknown

- Interact with world at each time step t
 - world gives state x_t and reward r_t
 - you give next action a_t
 - get next state x_{t+1}

- **Goal**: (quickly) learn policy that (approximately) maximizes long-term expected discounted reward
The “Credit Assignment” Problem

I’m in state 43,

reward = 0, action = 2

= 0, = 4

= 0, = 1

= 0, = 1

= 0, = 1

= 0, = 2

= 0, = 2

= 100,

Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there??

This is the Credit Assignment problem.
Exploration-Exploitation tradeoff

You have visited part of the state space and found a reward of 100
- is this the best I can hope for???

- **Exploitation**: should I stick with what I know and find a good policy w.r.t. this knowledge?
 - at the risk of missing out on some large reward somewhere

- **Exploration**: should I look for a region with more reward?
 - at the risk of wasting my time or collecting a lot of negative reward
Two main reinforcement learning approaches

- Model-based approaches:
 - explore environment → learn model \(P(x'|x,a) \) and \(R(x,a) \) (almost) everywhere
 - use model to plan policy, MDP-style
 - approach leads to strongest theoretical results
 - works quite well in practice when state space is manageable

- Model-free approach:
 - don’t learn a model → learn value function or policy directly
 - leads to weaker theoretical results
 - often works well when state space is large
Rmax – A model-based approach
Given a dataset – learn model

Given data, learn (MDP) Representation:

- Dataset: \(\langle x_1, a_1, r_1, x_2 \rangle \)
 \(\langle x_2, a_2, r_2, x_3 \rangle \)

- Learn reward function:
 - \(R(x,a) \)
 - if I visit state \(x_i, a_i \) and get \(r_i \)
 - \(R(x_i, a_i) \in r_i \)

- Learn transition model:
 - \(P(x'|x,a) \)
 - \(\frac{\text{Count}(x'=i, x=j, a=k)}{\text{Count}(x'=?, x=i, a=k)} \)
 - same as HMMs
Some challenges in model-based RL 1: Planning with insufficient information

- Model-based approach:
 - estimate \(R(x,a) \) & \(P(x'|x,a) \)
 - obtain policy by value or policy iteration, or linear programming
 - No credit assignment problem → learning model, planning algorithm takes care of “assigning” credit

- What do you plug in when you don’t have enough information about a state?
 - don’t reward at a particular state
 - plug in smallest reward (\(R_{\text{min}} \))?
 - plug in largest reward (\(R_{\text{max}} \))?
 - plug in average reward
 - don’t know a particular transition probability?
Some challenges in model-based RL 2: Exploration-Exploitation tradeoff

- A state may be very hard to reach
 - waste a lot of time trying to learn rewards and transitions for this state
 - after a much effort, state may be useless

- A strong advantage of a model-based approach:
 - you know which states estimate for rewards and transitions are bad
 - can (try) to plan to reach these states
 - have a good estimate of how long it takes to get there
A surprisingly simple approach for model based RL – The Rmax algorithm [Brafman & Tennenholtz]

- **Optimism in the face of uncertainty!!!**
 - heuristic shown to be useful long before theory was done (e.g., Kaelbling '90)

- If you don’t know reward for a particular state-action pair, set it to R_{max}!!

- If you don’t know the transition probabilities $P(x'|x,a)$ from some state-action pair x,a assume you go to a magic, fairytale new state x_0!!
 - $R(x_0,a) = R_{\text{max}}$
 - $P(x_0|x_0,a) = 1$
Understanding R_{max}

With R_{max} you either:

- **explore** – visit a state-action pair you don’t know much about
 - because it seems to have lots of potential
- **exploit** – spend all your time on known states
 - even if unknown states were amazingly good, it’s not worth it

Note: you never know if you are exploring or exploiting!!!
Implicit Exploration-Exploitation Lemma

- **Lemma**: every T time steps, either:
 - **Exploits**: achieves near-optimal reward for these T-steps, or
 - **Explores**: with high probability, the agent visits an unknown state-action pair
 - learns a little about an unknown state
 - T is related to mixing time of Markov chain defined by MDP
 - time it takes to (approximately) forget where you started
The Rmax algorithm

Initialization:
- Add state x_0 to MDP
- $R(x,a) = R_{\text{max}}, \forall x,a$
- $P(x_0|x,a) = 1, \forall x,a$
- all states (except for x_0) are unknown

Repeat
- obtain policy for current MDP and Execute policy
- for any visited state-action pair, set reward function to appropriate value
- if visited some state-action pair x,a enough times to estimate $P(x'|x,a)$
 - update transition probs. $P(x'|x,a)$ for x,a using MLE
 - recompute policy
Visit enough times to estimate $P(x'|x,a)$?

- How many times are enough?
 - use Chernoff Bound!

- Chernoff Bound:
 - X_1,\ldots,X_n are i.i.d. Bernoulli trials with prob. θ
 - $P(|1/n \sum_i X_i - \theta| > \varepsilon) \leq \exp\{-2n\varepsilon^2\}$
Putting it all together

Theorem: With prob. at least $1-\delta$, Rmax will reach an ε-optimal policy in time polynomial in: num. states, num. actions, T, $1/\varepsilon$, $1/\delta$

- Every T steps:
 - achieve near optimal reward (great!), or
 - visit an unknown state-action pair → num. states and actions is finite, so can’t take too long before all states are known
Problems with model-based approach

- If state space is large
 - transition matrix is very large!
 - requires many visits to declare a state as known

- Hard to do “approximate” learning with large state spaces
 - some options exist, though
TD-Learning and Q-learning — Model-free approaches
Value of Policy

Value: $V_\pi(x)$

Expected long-term reward starting from x

$$V_\pi(x_0) = E_\pi[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \gamma^4 R(x_4) + \ldots]$$

Future rewards discounted by $\gamma \in [0,1)$
A simple monte-carlo policy evaluation

- Estimate $V_\pi(x)$, start several trajectories from x
 $\rightarrow V_\pi(x)$ is average reward from these trajectories
 - Hoeffding’s inequality tells you how many you need
 - discounted reward \rightarrow don’t have to run each trajectory forever to get reward estimate
Problems with monte-carlo approach

- ** Resets**: assumes you can restart process from same state many times

- **Wasteful**: same trajectory can be used to estimate many states

 \[
 \text{also good to estimate } V(x_i) \]

\[V(x_1) \]
\[V(x_2) \]
Reusing trajectories

- Value determination:

\[
V_\pi(x) = R(x) + \gamma \sum_{x', a = \pi(x)} P(x' | x, a) V_\pi(x')
\]

- Expressed as an expectation over next states:

\[
V_\pi(x) = R(x) + \gamma E \left[V_\pi(x') \mid x, a = \pi(x) \right]
\]

- Initialize value function (zeros, at random, …)

- Idea 1: Observe a transition: \(x_t \rightarrow x_{t+1}, r_{t+1}\), approximate expec. with single sample:

\[
V_\pi(x_t) = r_{t+1} + \gamma V_\pi(x_{t+1})
\]

- unbiased!!
- but a very bad estimate!!
Simple fix: Temporal Difference (TD) Learning [Sutton '84]

\[V_\pi(x) = R(x) + \gamma E[V_\pi(x') | x, a = \pi(x)] \]

Idea 2: Observe a transition: \(x_t \rightarrow x_{t+1}, r_{t+1} \), approximate expectation by mixture of new sample with old estimate:

\[V_\pi(x_t) \leftarrow \alpha \left[r_{t+1} + \gamma V_\pi(x_{t+1}) \right] + (1 - \alpha) V_\pi(x_t) \]

\(\alpha > 0 \) is learning rate
TD converges (can take a long time!!!)

\[V_\pi(x) = R(x) + \gamma \sum_{x'} P(x' | x, a = \pi(x)) V_\pi(x') \]

Theorem: TD converges in the limit (with prob. 1), if:

- every state is visited infinitely often
- Learning rate decays just so:
 - \(\sum_{i=1}^{\infty} \alpha_i = \infty \)
 - \(\sum_{i=1}^{\infty} \alpha_i^2 < \infty \)
Using TD for Control

- TD converges to value of current policy π_t
 \[V_t(x) = R(x,a = \pi_t(x)) + \gamma \sum_{x'} P(x'|x,a = \pi_t(x))V_t(x') \]

- Policy improvement:
 \[\pi_{t+1}(x) = \max_a R(x,a) + \gamma \sum_{x'} P(x'|x,a)V_t(x') \]

- TD for control:
 - run T steps of TD
 - compute a policy improvement step
Problems with TD

- How can we do the policy improvement step if we don’t have the model?

\[\pi_{t+1}(x) = \max_{a} R(x, a) + \gamma \sum_{x'} P(x' | x, a)V_t(x') \]

- TD is an **on-policy** approach: execute policy \(\pi_t \) trying to learn \(V_t \)
 - must visit all states infinitely often
 - What if policy doesn’t visit some states???
Another model-free RL approach: Q-learning [Watkins & Dayan '92]

- Simple modification to TD

- Learns optimal value function (and policy), not just value of fixed policy

- Solution (almost) independent of policy you execute!
Recall Value Iteration

- Value iteration:
 \[V_{t+1}(x) = \max_{a} R(x, a) + \gamma \sum_{x'} P(x'|x, a)V_t(x') \]

- Or:
 \[Q_{t+1}(x, a) = R(x, a) + \gamma \sum_{x'} P(x'|x, a)V_t(x') \]

\[V_{t+1}(x) = \max_{a} Q_{t+1}(x, a) \]

If I have Q, \[\Pi_{t+1}(x) = \arg \max_{a} Q_{t+1}(x, a) \]

- Writing in terms of Q-function:
 \[Q_{t+1}(x, a) = R(x, a) + \gamma \sum_{x'} P(x'|x, a) \max_{a'} Q_t(x', a') \]
 Equivalent to V.I.
Q-learning

Q_{t+1}(x, a) = R(x, a) + \gamma \sum_{x'} P(x' | x, a) \max_{a'} Q_t(x', a')

- Observe a transition: x_t, a_t \rightarrow x_{t+1}, r_{t+1}, approximate expectation by mixture of new sample with old estimate:
 - transition now from state-action pair to next state and reward
 \[Q(x_t, a_t) \leftarrow (1-\alpha) \quad Q(x_t, a_t) + \alpha [r_{t+1} + \gamma \max_a Q(x_{t+1}, a)] \]
 - \(\alpha > 0 \) is learning rate

©2005-2007 Carlos Guestrin
Q-learning convergence

- Under same conditions as TD, Q-learning converges to optimal value function Q^*
- Can run any policy, as long as policy visits every state-action pair infinitely often
- Typical policies (non of these address Exploration-Exploitation tradeoff)
 - ϵ-greedy:
 - with prob. $(1-\epsilon)$ take greedy action:
 - with prob. ϵ take an action at (uniformly) random
 - Boltzmann (softmax) policy:
 - $a_t = \arg \max_a Q_t(x, a)$
 - K – “temperature” parameter, $K \to 0$, as $t \to \infty$
 - $P(a_t | x) \propto \exp\left\{ \frac{Q_t(x, a)}{K} \right\}$
The curse of dimensionality:
A significant challenge in MDPs and RL

- MDPs and RL are polynomial in number of states and actions
- Consider a game with n units (e.g., peasants, footmen, etc.)
 - How many states? k^n
 - How many actions? 3^n

- Complexity is exponential in the number of variables used to define state!!!
Addressing the curse!

Some solutions for the curse of dimensionality:

- **Learning the value function**: mapping from state-action pairs to values (real numbers)
 - A regression problem!
- **Learning a policy**: mapping from states to actions
 - A classification problem!

Use many of the ideas you learned this semester:

- linear regression, SVMs, decision trees, neural networks, Bayes nets, etc.!!!

TD gammon: TD + approx V.F. using neuralnet.
What you need to know about RL

A model-based approach:
- address exploration-exploitation tradeoff and credit assignment problem
- the R-max algorithm

A model-free approach:
- never needs to learn transition model and reward function
- TD-learning
- Q-learning
Closing…..

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

May 2nd, 2007
Announcements

- **Project:**
 - Poster session: Friday May 4th 2-5pm, NSH Atrium
 - please arrive a 15mins early to set up
 - Paper: Thursday May 10th by 2pm
 - electronic submission by email to instructors list
 - maximum of 8 pages, NIPS format
 - no late days allowed

- **FCEs!!!!**
 - Please, please, please, please, please, please, please give us your feedback, it helps us improve the class! 😊
 - http://www.cmu.edu/fce

Recitation tomorrow about RL

Next week review session TBS,
What you have learned this semester

- Learning is function approximation
- Point estimation
- Regression
- Discriminative v. Generative learning
- Naive Bayes
- Logistic regression
- Bias-Variance tradeoff
- Neural nets
- Decision trees
- Cross validation
- Boosting
- Instance-based learning
- SVMs
- Kernel trick
- PAC learning
- VC dimension
- Margin bounds
- Bayes nets
 - representation, inference, parameter and structure learning
- HMMs
 - representation, inference, learning
- K-means
- EM
- Semi-supervised learning
- Feature selection, dimensionality reduction, PCA
- MDPs
- Reinforcement learning
BIG PICTURE

- Improving the performance at some task though experience!!! 😊

 - before you start any learning task, remember the fundamental questions:

<table>
<thead>
<tr>
<th>What is the learning problem?</th>
<th>From what experience?</th>
<th>What model?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What loss function are you optimizing?</td>
<td>With what optimization algorithm?</td>
<td></td>
</tr>
<tr>
<td>Which learning algorithm?</td>
<td>With what guarantees?</td>
<td>How will you evaluate it?</td>
</tr>
</tbody>
</table>
What next?

- Intelligence Seminars: http://www.cs.cmu.edu/~iseminar/

- Journal:
 - JMLR – Journal of Machine Learning Research (free, on the web)

- Conferences:
 - ICML: International Conference on Machine Learning
 - NIPS: Neural Information Processing Systems
 - COLT: Computational Learning Theory
 - UAI: Uncertainty in AI
 - AIStats: intersection of Statistics and AI
 - Also AAAI, IJCAI and others

- Some MLe courses:
 - 10-708 Probabilistic Graphical Models (Fall)
 - 10-705 Intermediate Statistics (Fall)
 - 11-762 Language and Statistics II (Fall)
 - 10-702 Statistical Foundations of Machine Learning (Spring)
 - 10-70? Optimization (Spring)
 - ...