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Lower dimensional projections
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Linear projection and reconstruction

project into
1-dimension
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Principal component analysis —
_ basic idea
N

m Project n-dimensional data into k-dimensional
space while preserving information:
e.g., project space of 10000 words into 3-dimensions
. . \ \>
e.g., project 3-d into 2-d

O Choosgmie/d;jgn with minimum reconstruction

error
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Linear projections, a review
" J
m Project a point into a (lower dimensional) space:
point: X = (X,...,X;)
select a basis — set of basis vectors — (u,,...,u,)

m we consider orthonormal basis:
u-u=1, and u;-u;=0 for i=]

select a center — x, defines offset of space

best coordinates in lower dimensional space defined
by dot-products: (z,,...,2,), Z; = (X-X)-u,
= mMinimum squared error
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PCA finds projection that minimizes

reconstruction error
A

m Given m data points: x' = (x,,...,x.)"), i=1...m
m Will represent each point as a projection:

X'=%+ ) zju; where: x=—3Y x' and z; = (x'—X) u

1
j=1 m,—1

m PCA: X2
Given k-n, find (u,,..., u,)
minimizing reconstruction error:

™m
errory = Z (x' — %42 ° R
=1
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Understanding the reconstruction

error
"

m Note that x' can be represented
exactly by n-dimensional projection:

XZ =X —I— Z Z;’u]
=1

m Rewriting error:

i = i
X' =x-+ szu‘7
J=1

i (i = _
z; = (X' —X) - u;
Given k-n, find (uy,..., u,)

minimizing reconstruction error:

m
errory = Z (x! — %42
1=1
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Reconstruction error and
covariance matrix
JEE

|
m n 1 P i
errory — Z Z [uj . (Xi _ )_()]2 E Z (X — X) (X — X)T
i=1j=k+1 1=1
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Minimizing reconstruction error and

] eiﬂen vectors

m Minimizing reconstruction error equivalent to picking
orthonormal basis (uy,...,u,) minimizing:
n

errory, = Z ujTZuj
. j=k+1
m Eigen vector:

m Minimizing reconstruction error equivalent to picking
(u..q,-..,u,) to be eigen vectors with smallest eigen values
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Basic PCA algoritm
"

m Start from m by n data matrix X
m Recenter: subtract mean from each row of X

X, < X-X

m Compute covariance matrix:
< 1/m X_T X,

m Find eigen vectors and values of X

m Principal components: k eigen vectors with
highest eigen values
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PCA example

k
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PCA example — reconstruction
" S

=1 - Z 1 only used first principal component
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Eigenfaces [Turk, Pentland '91]

m Input images: m Principal components:

I - - oIt gt " -t o
! . - P .
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.
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Eigenfaces reconstruction

" A
m Each image corresponds to adding 8 principal

components:

©2005-2007 Carlos Guestrin

14



Relationship to Gaussians
" I i

m PCA assumes data is Gaussian

x ~ N(X;X)
m Equivalent to weighted sum of simple
Gaussians: o
x=X4 ) zjuj ZjNN(O;U?> o
=1

m  Selecting top k principal components
equivalent to lower dimensional Gaussian
approximation:

X%}_(—I—szuj'—ké‘; ZjNN(O;O?)
j=1

e~N(0;0%), where o? is defined by error,
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Scaling up
" J
m Covariance matrix can be really big!
2isnbyn
10000 features ! [Z]
finding eigenvectors is very slow...

m Use singular value decomposition (SVD)
finds to k eigenvectors
great implementations available, e.g., Matlab svd
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SVD
" S

m Write X=WSVT
X < data matrix, one row per datapoint
W < weight matrix, one row per datapoint — coordinate of x' in eigenspace

S < singular value matrix, diagonal matrix
= in our setting each entry is eigenvalue A,
VT < singular vector matrix
= in our setting each row is eigenvector v,

17
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PCA using SVD algoritm
"

m Start from m by n data matrix X
m Recenter: subtract mean from each row of X

X, < X=X
m Call SVD algorithm on X_ — ask for k singular vectors

m Principal components: k singular vectors with highest
singular values (rows of VT)
Coefficients become:
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Using PCA for dimensionality

reduction in classification
JEEm

m Want to learn f:XaY
X=<X,,.... X >
but some features are more important than others

m Approach: Use PCA on X to select a few
important features
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PCA for classification can lead to

] Eroblems. ..

m Direction of maximum variation may be unrelated to “discriminative”
directions:

m PCA often works very well, but sometimes must use more advanced
methods

e.g., Fisher linear discriminant

20
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What you need to know
" A
m Dimensionality reduction
why and when it's important
m Simple feature selection
m Principal component analysis

minimizing reconstruction error

relationship to covariance matrix and eigenvectors
using SVD
problems with PCA
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Announcements
I

m Homework 5:

Extension: Due Friday at 10:30am
Hand in to Monica, Wean 4619

m Project:
Poster session: Friday May 4t 2-5pm, NSH Atrium
m please arrive a 15mins early to set up
Paper: Thursday May 10t by 2pm
m electronic submission by email to instructors list

m maximum of 8 pages, NIPS format
= no late days allowed

m FCEs!l

Please, please, please, please, please, please give us your
feedback, it helps us improve the class! ©

m http://www.cmu.edu/fce
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Thus far this semester
" A
m Regression:

m Classification:

m Density estimation:
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Learning to act

"

m Reinforcement
learning

m An agent

1 Makes sensor
observations

1 Must select action

1 Receives rewards

m positive for “good”
states

[Ng et al. '05] = negative for “bad”
states

25
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Learning to play backgammon

_ ‘Tesauro ’95‘

m Combines reinforcement bisine woesen \ireten

learning with neural networks o iDL
= Played 300,000 games against E: iJi g |
itself IR At

m Achieved grandmaster level!

26
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Roadmap to learning about

reinforcement learning
S

m WWhen we learned about Bayes nets:

First talked about formal framework:
m representation
m inference

Then learning for BNs

m For reinforcement learning:

Formal framework
m Markov decision processes

Then learning

©2005-2007 Carlos Guestrin
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] Al e
el Real-time Strategy Game
) Peasants collect resources and build
=2 Footmen attack enemies

building Buildings train peasants and footmen
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States and actions
" S

m State space:

Joint state x of entire system

m Action space:

Joint action a= {a,,..., a,} for all agents

29
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States change over time
" J
m Like an HMM, state changes over
time
m Next state depends on current state
and action selected

e.g., action="puild castle” likely to lead
to a state where you have a castle

m [ransition model:

Dynamics of the entire system P(x’|x,a)

30
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Some states and actions are

better than others
" I

m Each state x is associated with a
reward

positive reward for successful attack

negative for loss

m Reward function:

Total reward R(x)

31
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Discounted Rewards
" I

An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

20 + 20 + 20 + 20 + 20 + ... = Infinity

P\

beee|

What's wrong with this argument?

©2005-2007 Carlos Guestrin
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Discounted Rewards
" I

“A reward (payment) in the future is not worth quite as
much as a reward now.”

Because of chance of obliteration

Because of inflation
Example:

Being promised $10,000 next year is worth only 90% as much as
receiving $10,000 right now.
Assuming payment n years in future is worth only (0.9)" of

payment now, what is the AP’s Future Discounted Sum of
Rewards ?

33
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Discount Factors
" B

People in economics and probabilistic decision-making do
this all the time.

The “Discounted sum of future rewards” using discount
factory” is

(reward now) +
vy (reward in 1 time step) +
vy 2 (reward in 2 time steps) +
vy 3 (reward in 3 time steps) +

(infinite sum)

©2005-2007 Carlos Guestrin
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: : r//—————’g-;;g&i({\

The Academic Life e
[
Assistant
Prof

0.7
T

Tendred
Prof
400

S.
On the
Street

0.2

V, = Expected discounted future rewards starting in state A
Vg = Expected discounted future rewards starting in state B

V — 11 11 11 11 11 11 11 T
T

V — 11 11 11 11 11 11 11 S
S

V — 11 11 11 11 11 11 11 D
D

How do we compute V,, Vg, V1, Vg, Vp ? .5
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Computing the Future Rewards of
an Academic

. Assume Discount
' Factory =0.9
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Joint Decision Space
" J
Markov Decision Process (MDP) Representation:

m State space:

Joint state x of entire system

m Action space:

Joint action a= {a,,..., a,} for all agents

m Reward function:

Total reward R(x,a)

m sometimes reward can depend on action

m T[ransition model;

Dynamics of the entire system P(x’|x,a)

37
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Policx
At state x,

Policy: n(x) = a action a for alll
agents

m(Xy) = both peasants get wood

rrrrrrrr

m(X4) = one peasant builds
barrack, other gets gold

m(X,) = peasants get gold,
footmen attack

OU/ Carlos Guestrin



Value of Policy
"

Expected long-
Value: V_(x) term reward

starting from x

Future rewards
discounted by y 2 [0,1)
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Computing the value of a policy

m Discounted value of a state:
value of starting from x, and continuing with policy st from then on

Vi(zo) = Er[R(xq) + vR(x1) + v2R(z2) + v R(x3) + - -]

xXO
= Ex[> 7'R(xp)]
m A recursion! =0

40
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Computing the value of a policy 1 —

the matrix inversion approach
Vi(x) = R(x)+ fyZP(:c’ | 2,0 = 7(x))Vx(z))

m Solve by simple matrix inversion:

41
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Computing the value of a policy 2 —

] iterativelx

Vi(x) = R(x)+ fyZP(m/ | 2,0 = 7(x))Vx(z))

m |f you have 1000,000 states, inverting a 1000,000x1000,000
matrix is hard!

m Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
Start with some guess V,
lteratively say:
s V,, =R+yP_V,
Stop when ||V, -Vl - €
= means that ||V _-V,,,||, - €/(1-y)

42
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But we want to learn a Policy
" J
= So far, told you how good a
policy is... »
m But how can we choose the S
best policy???

n(X,) = both peasants get wood

n(x,) = one peasant builds
barrack, other gets gold

m Suppose there was only one
time step:
world is about to end!!!

select action that maximizes
reward!

n(X,) = peasants get gold,
footmen attack

43
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Another recursion!

" J
m [wo time steps: address tradeoff
good reward now
better reward in the future

©2005-2007 Carlos Guestrin
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Unrolling the recursion
"

m Choose actions that lead to best value in the long run
Optimal value policy achieves optimal value V°

Vi(zo) = maxR(zo,ao) + vEao[max R(z1) +72Ea1[ngg><R(:vz) + -]

45
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Bellman equation
"
m Evaluating policy =
Vi(x) = R(x)+ *yz;P(ac’ | 2,0 = 7(x))Vz(z))

m Computing the optimal value V" - Bellman equation

V'(x) =max R(x,a) + Y E P(x'|x,a)l"(x'")

©2005-2007 Carlos Guestrin
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C)Etimal Long-term Plan
function V'(x) » Optimal Policy:

O'(x,a) = R(x,a)+y Y P(x'|x,a)l"(x')

Optimal policy:

a7 (x) = argmax Q7(x,a)

a

a7
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Interesting fact — Unique value
"
V'(x) =max R(x,a) + Y E P(x'|x,a)l"(x'")

m Slightly surprising fact. There is only one V" that solves
Bellman equation!
there may be many optimal policies that achieve V

m Surprising fact. optimal policies are good everywhere!!!

Vos(x) > Vi(x), Vo, Vr

©2005-2007 Carlos Guestrin
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Solving an MDP

o [ [

V*(x) = max R(x,a) +y E P(x'|x,a)l " (x")

Solve
Bellman
equation

Optimal
value V' (x)

Optlmal
policy mt*(X)

Bellman equation is non-linear!!!
Many algorithms solve the Bellman equations:

m Policy iteration [Howard ‘60, Bellman ‘57]
m Value iteration [Bellman ‘57]
m Linear programming [Manne ‘60]

[ | 49
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Value iteration (a.k.a. dynamic programming) —
the simplest of all

) V'(x) =max R(x,a) + Y E P(x'|x,a)l"(x'")

m Start with some guess V,,
m |teratively say:

* V0 (0) = max R(x,a) +7 3 P(X' x,2)/(x')

m Stop when [|[Vi,-Vi[; - €
means that ||V*-V,,,||, - &/(1-y)

50
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A simple example
"

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

Y =0.9
s
1
Poor & 1/2 Poor &
Unknown | A o Famous | A
+0 +0
1/ 12 |S
1/2 T 1/2 1
S A A
Rich & Rich &
Unknown 12 s | Famous
/2 +10

+10

51
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Let’'s compute V,(x) for our example

t | V,(PU) V,(PF) V(RU) V(RF)

OO gL, WOIN -

V() = max R(x,2) +7 3 P(xX| x,2)V(x')
! X' 52
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Let’'s compute V,(x) for our example

"t | V(PU) V{(PF) | V{(RU) V{(RF)

1] 0 0 10 | 10

2 0 | 45 145 | 19

& Rion & 3 | 203 | 653 2508 1855
10 4 | 3.852 | 12.20 | 29.63  19.26

5 | 7.22 | 15.07  32.00 | 20.40

6 | 10.03 | 17.65 33.58 | 22.43

V(%) = max R(x,2) +7 3 P(X'| x,2)V,(x')

©2005-2007 Carlos Guestrin
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Policy iteration — Another approach for
computing i
" A
m Start with some guess for a policy =,

m [teratively say:
= evaluate policy:

V.(x) = R(x,a =m,(x)) +7 Y P(X|x,a =7, (x))V,(x')

= improve policy:

7,0 (X) = max R(x,2) + 7 3 P(x'| x,)V(x')

m Stop when
policy stops changing
= usually happens in about 10 iterations
or |[Viuq-Villy - €
= means that ||V*-V4||4 - €/(1-y)

54
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Policy Iteration & Value Iteration:
Which is best ?77?
= B

It depends.
Lots of actions? Choose Policy Ilteration
Already got a fair policy? Policy lteration
Few actions, acyclic? Value lteration

Best of Both Worlds:

Modified Policy lteration [Puterman]
...a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

©2005-2007 Carlos Guestrin
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LP Solution to MDP

" J [Manne ‘60]
Value computed by linear programming:

minimize: E V(x)

V = R P V
subjcct to- { ()= R@x.2)+y 3 P x.a)V (x)
Vx,a
m One variable V (x) for each state
m One constraint for each state x and action a

m Polynomial time solution

56
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What you need to know
" A
m What's a Markov decision process
state, actions, transitions, rewards
a policy
value function for a policy
= computing V_
m Optimal value function and optimal policy
Bellman equation
m Solving Bellman equation

with value iteration, policy iteration and linear
programming

©2005-2007 Carlos Guestrin
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