
©2005-2007 Carlos Guestrin
1

Dimensionality
reduction (cont.)
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 25th, 2007

2
©2005-2007 Carlos Guestrin

Lower dimensional projections

 Rather than picking a subset of the features, we
can new features that are combinations of
existing features

 Let’s see this in the unsupervised setting
 just X, but no Y

3
©2005-2007 Carlos Guestrin

Linear projection and reconstruction

x1

x2

project into
1-dimension z1

reconstruction:
only know z1,

what was (x1,x2)

4
©2005-2007 Carlos Guestrin

Principal component analysis –
basic idea
 Project n-dimensional data into k-dimensional

space while preserving information:
 e.g., project space of 10000 words into 3-dimensions
 e.g., project 3-d into 2-d

 Choose projection with minimum reconstruction
error

5
©2005-2007 Carlos Guestrin

Linear projections, a review

 Project a point into a (lower dimensional) space:
 point: x = (x1,…,xn)
 select a basis – set of basis vectors – (u1,…,uk)

 we consider orthonormal basis:
 ui·ui=1, and ui·uj=0 for i≠j

 select a center – x, defines offset of space
 best coordinates in lower dimensional space defined

by dot-products: (z1,…,zk), zi = (x-x)·ui
 minimum squared error

6
©2005-2007 Carlos Guestrin

PCA finds projection that minimizes
reconstruction error
 Given m data points: xi = (x1

i,…,xn
i), i=1…m

 Will represent each point as a projection:

 where: and

 PCA:
 Given k·n, find (u1,…,uk)
 minimizing reconstruction error:

x1

x2

7
©2005-2007 Carlos Guestrin

Understanding the reconstruction
error

 Note that xi can be represented
exactly by n-dimensional projection:

 Rewriting error:

Given k·n, find (u1,…,uk)
 minimizing reconstruction error:

8
©2005-2007 Carlos Guestrin

Reconstruction error and
covariance matrix

9
©2005-2007 Carlos Guestrin

Minimizing reconstruction error and
eigen vectors

 Minimizing reconstruction error equivalent to picking
orthonormal basis (u1,…,un) minimizing:

 Eigen vector:

 Minimizing reconstruction error equivalent to picking
(uk+1,…,un) to be eigen vectors with smallest eigen values

10
©2005-2007 Carlos Guestrin

Basic PCA algoritm

 Start from m by n data matrix X
 Recenter: subtract mean from each row of X

 Xc ← X – X
 Compute covariance matrix:

 Σ ← 1/m Xc
T Xc

 Find eigen vectors and values of Σ
 Principal components: k eigen vectors with

highest eigen values

11
©2005-2007 Carlos Guestrin

PCA example

12
©2005-2007 Carlos Guestrin

PCA example – reconstruction

only used first principal component

13
©2005-2007 Carlos Guestrin

Eigenfaces [Turk, Pentland ’91]

 Input images:  Principal components:

14
©2005-2007 Carlos Guestrin

Eigenfaces reconstruction

 Each image corresponds to adding 8 principal
components:

15
©2005-2007 Carlos Guestrin

Relationship to Gaussians

 PCA assumes data is Gaussian
 x ~ N(x;Σ)

 Equivalent to weighted sum of simple
Gaussians:

 Selecting top k principal components
equivalent to lower dimensional Gaussian
approximation:

 ε~N(0;σ2), where σ2 is defined by errork

x1

x2

16
©2005-2007 Carlos Guestrin

Scaling up

 Covariance matrix can be really big!
 Σ is n by n
 10000 features ! |Σ|
 finding eigenvectors is very slow…

 Use singular value decomposition (SVD)
 finds to k eigenvectors
 great implementations available, e.g., Matlab svd

17
©2005-2007 Carlos Guestrin

SVD

 Write X = W S VT

 X ← data matrix, one row per datapoint
 W ← weight matrix, one row per datapoint – coordinate of xi in eigenspace
 S ← singular value matrix, diagonal matrix

 in our setting each entry is eigenvalue λj

 VT ← singular vector matrix
 in our setting each row is eigenvector vj

18
©2005-2007 Carlos Guestrin

PCA using SVD algoritm

 Start from m by n data matrix X
 Recenter: subtract mean from each row of X

 Xc ← X – X
 Call SVD algorithm on Xc – ask for k singular vectors
 Principal components: k singular vectors with highest

singular values (rows of VT)
 Coefficients become:

19
©2005-2007 Carlos Guestrin

Using PCA for dimensionality
reduction in classification

 Want to learn f:XaY
 X=<X1,…,Xn>
 but some features are more important than others

 Approach: Use PCA on X to select a few
important features

20
©2005-2007 Carlos Guestrin

PCA for classification can lead to
problems…

 Direction of maximum variation may be unrelated to “discriminative”
directions:

 PCA often works very well, but sometimes must use more advanced
methods
 e.g., Fisher linear discriminant

21
©2005-2007 Carlos Guestrin

What you need to know

 Dimensionality reduction
 why and when it’s important

 Simple feature selection
 Principal component analysis

 minimizing reconstruction error
 relationship to covariance matrix and eigenvectors
 using SVD
 problems with PCA

22
©2005-2007 Carlos Guestrin

Announcements

 Homework 5:
 Extension: Due Friday at 10:30am
 Hand in to Monica, Wean 4619

 Project:
 Poster session: Friday May 4th 2-5pm, NSH Atrium

 please arrive a 15mins early to set up
 Paper: Thursday May 10th by 2pm

 electronic submission by email to instructors list
 maximum of 8 pages, NIPS format
 no late days allowed

 FCEs!!!!
 Please, please, please, please, please, please give us your

feedback, it helps us improve the class! 
 http://www.cmu.edu/fce

©2005-2007 Carlos Guestrin
23

Markov Decision
Processes (MDPs)
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 25th, 2006

24
©2005-2007 Carlos Guestrin

Thus far this semester

 Regression:

 Classification:

 Density estimation:

25
©2005-2007 Carlos Guestrin

Learning to act

 Reinforcement
learning

 An agent
 Makes sensor

observations
 Must select action
 Receives rewards

 positive for “good”
states

 negative for “bad”
states

[Ng et al. ’05]

26
©2005-2007 Carlos Guestrin

Learning to play backgammon
[Tesauro ’95]

 Combines reinforcement
learning with neural networks

 Played 300,000 games against
itself

 Achieved grandmaster level!

27
©2005-2007 Carlos Guestrin

Roadmap to learning about
reinforcement learning
 When we learned about Bayes nets:

 First talked about formal framework:
 representation
 inference

 Then learning for BNs

 For reinforcement learning:
 Formal framework

 Markov decision processes

 Then learning

28
©2005-2007 Carlos Guestrin

peasant

footman

building

Real-time Strategy Game
Peasants collect resources and build
Footmen attack enemies
Buildings train peasants and footmen

29
©2005-2007 Carlos Guestrin

States and actions

 State space:
 Joint state x of entire system

 Action space:
 Joint action a= {a1,…, an} for all agents

30
©2005-2007 Carlos Guestrin

States change over time
 Like an HMM, state changes over

time

 Next state depends on current state
and action selected
 e.g., action=“build castle” likely to lead

to a state where you have a castle

 Transition model:
 Dynamics of the entire system P(x’|x,a)

31
©2005-2007 Carlos Guestrin

Some states and actions are
better than others

 Each state x is associated with a
reward
 positive reward for successful attack

 negative for loss

 Reward function:
 Total reward R(x)

32
©2005-2007 Carlos Guestrin

Discounted Rewards
An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

20 + 20 + 20 + 20 + 20 + … = Infinity

What’s wrong with this argument?

$ $

33
©2005-2007 Carlos Guestrin

Discounted Rewards

“A reward (payment) in the future is not worth quite as
much as a reward now.”

 Because of chance of obliteration
 Because of inflation

Example:
Being promised $10,000 next year is worth only 90% as much as
receiving $10,000 right now.

Assuming payment n years in future is worth only (0.9)n of
payment now, what is the AP’s Future Discounted Sum of
Rewards ?

34
©2005-2007 Carlos Guestrin

Discount Factors

People in economics and probabilistic decision-making do
this all the time.
The “Discounted sum of future rewards” using discount
factor γ” is

 (reward now) +
 γ (reward in 1 time step) +
 γ 2 (reward in 2 time steps) +
 γ 3 (reward in 3 time steps) +

:
: (infinite sum)

35
©2005-2007 Carlos Guestrin

The Academic Life

Define:
VA = Expected discounted future rewards starting in state A
VB = Expected discounted future rewards starting in state B
VT = “ “ “ “ “ “ “ T
VS = “ “ “ “ “ “ “ S
VD = “ “ “ “ “ “ “ D

How do we compute VA, VB, VT, VS, VD ?

A.
Assistant

Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

Assume Discount

Factor γ = 0.9

0.7

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2

36
©2005-2007 Carlos Guestrin

Computing the Future Rewards of
an Academic

Assume Discount
Factor γ = 0.9

0.7
A.

Assistant
Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2

37
©2005-2007 Carlos Guestrin

Joint Decision Space

 State space:
 Joint state x of entire system

 Action space:
 Joint action a= {a1,…, an} for all agents

 Reward function:
 Total reward R(x,a)

 sometimes reward can depend on action

 Transition model:
 Dynamics of the entire system P(x’|x,a)

Markov Decision Process (MDP) Representation:

38
©2005-2007 Carlos Guestrin

Policy

Policy: π(x) = a
At state x,

action a for all
agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

39
©2005-2007 Carlos Guestrin

Value of Policy

Value: Vπ(x)
Expected long-

term reward
starting from x

Start
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +
γ3 R(x3) + γ4 R(x4) + L]

Future rewards
discounted by γ 2 [0,1)x1

R(x1)

 x1’’

 x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)

40
©2005-2007 Carlos Guestrin

Computing the value of a policy
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +

γ3 R(x3) + γ4 R(x4) + L]
 Discounted value of a state:

 value of starting from x0 and continuing with policy π from then on

 A recursion!

41
©2005-2007 Carlos Guestrin

Computing the value of a policy 1 –
the matrix inversion approach

 Solve by simple matrix inversion:

42
©2005-2007 Carlos Guestrin

Computing the value of a policy 2 –
iteratively

 If you have 1000,000 states, inverting a 1000,000x1000,000
matrix is hard!

 Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
 Start with some guess V0

 Iteratively say:
 Vt+1 = R + γ Pπ Vt

 Stop when ||Vt+1-Vt||1 · ε
 means that ||Vπ-Vt+1||1 · ε/(1-γ)

43
©2005-2007 Carlos Guestrin

But we want to learn a Policy
Policy: π(x) = a

At state x, action
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

 So far, told you how good a
policy is…

 But how can we choose the
best policy???

 Suppose there was only one
time step:
 world is about to end!!!
 select action that maximizes

reward!

44
©2005-2007 Carlos Guestrin

Another recursion!

 Two time steps: address tradeoff
 good reward now
 better reward in the future

45
©2005-2007 Carlos Guestrin

Unrolling the recursion

 Choose actions that lead to best value in the long run
 Optimal value policy achieves optimal value V*

46
©2005-2007 Carlos Guestrin

Bellman equation

 Evaluating policy π:

 Computing the optimal value V* - Bellman equation

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

47
©2005-2007 Carlos Guestrin

Optimal Long-term Plan

Optimal Policy: π*(x)Optimal value
function V*(x)

Optimal policy:
)a,x(maxarg)x(

a

!!
= Q"

! ""
+=

'

)'(),|'(),(),(
x

xaxxaxax VPRQ #

48
©2005-2007 Carlos Guestrin

Interesting fact – Unique value

 Slightly surprising fact: There is only one V* that solves
Bellman equation!
 there may be many optimal policies that achieve V*

 Surprising fact: optimal policies are good everywhere!!!

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

49
©2005-2007 Carlos Guestrin

Solving an MDP

 Policy iteration [Howard ‘60, Bellman ‘57]

 Value iteration [Bellman ‘57]

 Linear programming [Manne ‘60]

 …

Solve
Bellman
equation

Optimal
value V*(x)

Optimal
policy π*(x)

Many algorithms solve the Bellman equations:

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

Bellman equation is non-linear!!!

50
©2005-2007 Carlos Guestrin

Value iteration (a.k.a. dynamic programming) –
the simplest of all

 Start with some guess V0

 Iteratively say:


 Stop when ||Vt+1-Vt||1 · ε
 means that ||V∗-Vt+1||1 · ε/(1-γ)

! ""
+=

'

)'(),|'(),(max)(
x

a

xaxxaxx VPRV #

!+=+

'

1)'(),|'(),(max)(
x

a

xaxxaxx
tt
VPRV "

51
©2005-2007 Carlos Guestrin

A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

52
©2005-2007 Carlos Guestrin

Let’s compute Vt(x) for our example

6
5
4
3
2
1

Vt(RF)Vt(RU)Vt(PF)Vt(PU)t

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

!+=+

'

1)'(),|'(),(max)(
x

a

xaxxaxx
tt
VPRV "

53
©2005-2007 Carlos Guestrin

Let’s compute Vt(x) for our example

22.4333.5817.6510.036
20.4032.0015.077.225
19.2629.6312.203.8524
18.5525.086.532.033

1914.54.502
1010001

Vt(RF)Vt(RU)Vt(PF)Vt(PU)t

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

!+=+

'

1)'(),|'(),(max)(
x

a

xaxxaxx
tt
VPRV "

54
©2005-2007 Carlos Guestrin

Policy iteration – Another approach for
computing π*

 Start with some guess for a policy π0

 Iteratively say:
 evaluate policy:

 improve policy:

 Stop when
 policy stops changing

 usually happens in about 10 iterations
 or ||Vt+1-Vt||1 · ε

 means that ||V∗-Vt+1||1 · ε/(1-γ)

!+=+

'

1)'(),|'(),(max)(
x

a

xaxxaxx
tt
VPR "#

! =+==
'

)'())(,|'())(,()(
x

xxaxxxaxx
tttt
VPRV "#"

55
©2005-2007 Carlos Guestrin

Policy Iteration & Value Iteration:
Which is best ???
It depends.

Lots of actions? Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic? Value Iteration

Best of Both Worlds:
Modified Policy Iteration [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

56
©2005-2007 Carlos Guestrin

LP Solution to MDP
Value computed by linear programming:

 One variable V (x) for each state
 One constraint for each state x and action a
 Polynomial time solution

[Manne ‘60]

 :subject to

:minimize



 ≥

∑

,∀ ax

x

)(xV

)(xV)(xV

,∀ ax
)(xV !+

'

)'(),|'(),(
x

xaxxax VPR "

57
©2005-2007 Carlos Guestrin

What you need to know

 What’s a Markov decision process
 state, actions, transitions, rewards
 a policy
 value function for a policy

 computing Vπ

 Optimal value function and optimal policy
 Bellman equation

 Solving Bellman equation
 with value iteration, policy iteration and linear

programming

58
©2005-2007 Carlos Guestrin

Acknowledgment

 This lecture contains some material from
Andrew Moore’s excellent collection of ML
tutorials:
 http://www.cs.cmu.edu/~awm/tutorials

