Dimensionality reduction (cont.)

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
April 25 th, 2007

Lower dimensional projections

- Rather than picking a subset of the features, we can new features that are combinations of existing features

- Let's see this in the unsupervised setting just X, but no Y

Linear projection and reconstruction

Principal component analysis basic idea

- Project n-dimensional data into k-dimensional space while preserving information:
\square egg., project space of 10000 words into 3-dimensions
\square e.g., project 3-d into 2-d $\ell^{\text {in 3D }}$ points
e

- Choose projection with minimum reconstruction error

$\left\|u_{i}\right\|=1$

$$
u_{1} \Rightarrow u_{2}:
$$

error

Linear projections, a review

- Project a point into a (lower dimensional) space:

$$
\text { point: } x=\left(x_{1}, \ldots, x_{n}\right) \quad n-\operatorname{Dim} \quad \text { k. dim }
$$

\square select a basis - set of basis vectors $-\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$

- we consider orthonormal basis:

select a center - $\overline{\mathbf{x}}$, defines offset of space
\square best coordinates in lower dimensional space defined by dot-products: $\left(z_{1}, \ldots, z_{k}\right), z_{i}=(x-\bar{x}) \underline{K} \mathbf{u}_{i} \quad z_{i}=(x-\bar{z}) \cdot u_{i}$
- minimum squared error

$$
\text { given } \frac{u_{1} \ldots u_{k}}{x}
$$

PCA finds projection that minimizes reconstruction error

- Given \underline{m} data points: $\underline{x}^{i}=\left(x_{1}{ }^{i}, \ldots, x_{n}{ }^{i}\right), i=1 \ldots m$
- Will represent each point as a projection:

\&-Understanding the reconstruction

$$
\begin{aligned}
& \text { - Rewriting error: } \text { error }_{k}=\sum_{i=1}^{m}\left(x^{i}-\hat{x}^{i}\right)^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n}[\sum_{i=k+1}^{n} z_{j}^{i} \underbrace{u_{j} \cdot u_{j} z_{j}^{i}}_{1}+\sum_{r=k+1}^{n} \sum_{\substack{s j e=r}}^{n} z_{s}^{i=1} u_{s} \cdot \mu_{r}^{j} z_{s}^{i}] \quad u_{j} \cdot u_{j}=1 \\
& =\sum_{i=1}^{m} \sum_{j=k+1}^{n}\left(z_{j}^{i}\right)^{2} k
\end{aligned}
$$

Reconstruction error and covariance matrix

$$
\begin{aligned}
& \text { error }_{k}=\sum_{i=1}^{m} \sum_{j=k+1}^{n} \widetilde{\left.u_{j} \cdot\left(x^{i}-\bar{x}\right)\right]^{2}} \\
& \Sigma=\frac{1}{m} \sum_{i=1}^{m}\left(\mathrm{x}^{i}-\overline{\mathrm{x}}\right)\left(\mathrm{x}^{i}-\overline{\mathrm{x}}\right)^{T} \\
& =\sum_{i=1}^{m} \sum_{j=k+1}^{n}\left[u_{j}\left(x^{i}-\bar{x}\right)\right]\left[\left(x_{i}^{i}-\bar{x}\right) \cdot u_{j}\right] \\
& =\sum_{j=x+1}^{n} u_{j}^{\top}[\underbrace{\sum_{i=1}^{m}\left(\dot{x}^{i}-\bar{x}\right)\left(x^{i}-\bar{x}\right)^{\top}}] u_{j} \\
& =m \sum_{j=k+1}^{n} u_{j}^{N} \sum u_{j}=\operatorname{error}_{k}
\end{aligned}
$$

Minimizing reconstruction error and
 - Minimizing reconstruction error equivalent to picking value

 orthonormal basis $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)$ minimizing:- Eigen vector:

- Minimizing reconstruction error equivalent to picking $\left(\underline{\left.\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{n}\right)}\right.$) to be eigen vectors with smallest eigen values

$$
\operatorname{lrror}_{k}=\sum_{i=k+1}^{n} \lambda_{j}
$$

Basic PCA algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of \mathbf{X}
$\square \mathbf{X}_{\mathrm{c}} \leftarrow \mathbf{X}-\overline{\mathrm{X}}$
- Compute covariance matrix:
$\square n \Sigma \leftarrow 1 / m X_{c}{ }^{\top} X_{c}$
- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

PCA example

$$
\widehat{\mathbf{x}}^{i}=\overline{\mathbf{x}}+\sum_{j=1}^{k} z_{j}^{i} \mathbf{u}_{j}
$$

PCA example - reconstruction

only used first principal component

Eigenfaces [Turk, Pentland '91]

Eigenfaces reconstruction

- Each image corresponds to adding 8 principal components:

Relationship to Gaussians

- Selecting top k principal components equivalent to lower dimensional Gaussian approximation:

$\square \varepsilon \sim N\left(0 ; \sigma^{2}\right)$, where σ^{2} is defined by error ${ }_{k}$

Scaling up

- Covariance matrix can be really big!
$\square \Sigma$ is n by n
$\square 10000$ features $\rightarrow|\Sigma|$
\square finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
\square finds to k eigenvectors
\square great implementations available, e.g., Matlab svd
- Write $\mathbf{X}=\boldsymbol{N} \mathbf{N} \mathbf{S} \mathbf{V}^{\top}$
$\square \mathbf{X} \leftarrow$ data matrix, one row per datapoint
$\square \mathbf{W} \leftarrow$ weight matrix, one row per datapoint - coordinate of $\mathbf{x}^{\mathbf{i}}$ in eigenspace
$\square \mathbf{S} \leftarrow$ singular value matrix, diagonal matrix
- in our setting each entry is eigenvalue λ_{j}
$\square \mathbf{V}^{\boldsymbol{\top}} \leftarrow$ singular vector matrix
- in our setting each row is eigenvector \mathbf{v}_{j}

PCA using SVD algoritm

- Start from m by n data matrix \mathbf{X}

■ Recenter: subtract mean from each row of \mathbf{X}
$\square \mathrm{X}_{\mathrm{c}} \leftarrow \mathrm{X}-\overline{\mathrm{X}}$

- Call SVD algorithm on X_{c} - ask for k singular vectors
- Principal components: k singular vectors with highest singular values (rows of \mathbf{V}^{\top})
\square Coefficients become:

$$
z_{j}^{i}=\left(x^{j}-\bar{x}\right) \cdot v_{j}
$$

$$
\begin{aligned}
& \text { or } \\
& \text { from rows of } W \\
& \text { scaled by } S
\end{aligned}
$$

Using PCA for dimensionality reduction in classification

- Want to learn f:X-Y
$\square \mathbf{X}=\left\langle\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}>\right.$
\square but some features are more important than others
- Approach: Use PCA on \mathbf{X} to select a few important features $u_{1} \ldots u_{k}$

$$
\begin{aligned}
\text { rather than learning } & f(x) \mapsto y \\
& f\left(x_{1} \ldots x_{n}\right) \mapsto y \\
\text { you learn } \quad & \underbrace{\left.z_{1}, \ldots, z_{k}\right) \mapsto y}_{z_{i}=(x-\bar{x}) \cdot u_{i}}
\end{aligned}
$$

PCA for classification can lead to problems.

- Direction of maximum variation may be unrelated to "discriminative" directions:

- PCA often works very well, but sometimes must use more advanced methods
\square e.g., Fisher linear discriminant

What you need to know

- Dimensionality reduction
\square why and when it's important
- Simple feature selection
- Principal component analysis
\square minimizing reconstruction error
\square relationship to covariance matrix and eigenvectors
\square using SVD
\square problems with PCA

Announcements

- Homework 5:
\square Extension: Due Friday at 10:30am
\square Hand in to Monica, Wean 4619
- Project:
\square Poster session: Friday May $4^{\text {th }} 2-5 p m$, NSH Atrium
- please arrive a 15 mins early to set up
\square Paper: Thursday May $10^{\text {th }}$ by 2 pm
- electronic submission by email to instructors list
- maximum of 8 pages, NIPS format
- no late days allowed
- FCEs!!!!
\square Please, please, please, please, please, please give us your feedback, it helps us improve the class! ©

Markov Decision Processes (MDPs)

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
April 25 ${ }^{\text {th }}, 200$ 7

Thus far this semester

- Regression:
- Classification:
- Density estimation:

Learning to act

[Ng et al. '05]

- Reinforcement learning
- An agent
\square Makes sensor observations
\square Must select action
\square Receives rewards
- positive for "good" states
- negative for "bad" states

Learning to play backgammon [Tesauro '95]

- Combines reinforcement learning with neural networks
- Played 300,000 games against itself

- Achieved grandmaster level!

Roadmap to learning about reinforcement learning

- When we learned about Bayes nets:
\square First talked about formal framework:
- representation
- inference
\square Then learning for BNs
- For reinforcement learning:
\square Formal framework
- Markov decision processes
\square Then learning

FTGCGGEATH

States and actions

- State space:
\square Joint state \mathbf{x} of entire system
- Action space:
\square Joint action $\mathbf{a}=\left\{a_{1}, \ldots, a_{n}\right\}$ for all agents

States change over time

- Like an HMM, state changes over time
- Next state depends on current state and action selected
\square e.g., action="build castle" likely to lead to a state where you have a castle
- Transition model:
\square Dynamics of the entire system $\mathrm{P}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$

Some states and actions are better than others

- Each state \mathbf{x} is associated with a reward
\square positive reward for successful attack
\square negative for loss
- Reward function:

\square Total reward $\mathrm{R}(\mathbf{x})$

Discounted Rewards

An assistant professor gets paid, say, 20K per year.
How much, in total, will the A.P. earn in their life?
$20+20+20+20+20+\ldots=$ Infinity

What's wrong with this argument?

Discounted Rewards

"A reward (payment) in the future is not worth quite as much as a reward now."
\square Because of chance of obliteration
\square Because of inflation
Example:
Being promised \$10,000 next year is worth only 90% as much as receiving \$10,000 right now.
Assuming payment n years in future is worth only (0.9) ${ }^{n}$ of payment now, what is the AP's Future Discounted Sum of Rewards?

Discount Factors

People in economics and probabilistic decision-making do this all the time.
The "Discounted sum of future rewards" using discount factor γ " is
(reward now) +
γ (reward in 1 time step) +
γ^{2} (reward in 2 time steps) +
γ^{3} (reward in 3 time steps) +
: (infinite sum)

The Academic Life

$\mathrm{V}_{\mathrm{A}}=$ Expected discounted future rewards starting in state A
$V_{B}=$ Expected discounted future rewards starting in state B

$V_{T}=$	$"$	$"$	$"$	$"$	$"$	$"$	$"$	T
$V_{S}=$	$"$	$"$	$"$	$"$	$"$	$"$	$"$	S
$V_{D}=$	$"$	$"$	$"$	$"$	$"$	$"$	$"$	D

How do we compute $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$?

Computing the Future Rewards of an Academic

Assume Discount
Factor $\gamma=0.9$

Joint Decision Space

Markov Decision Process (MDP) Representation:

- State space:
\square Joint state \mathbf{x} of entire system
- Action space:
\square Joint action $\mathbf{a}=\left\{a_{1}, \ldots, a_{n}\right\}$ for all agents
- Reward function:
\square Total reward $\mathrm{R}(\mathbf{x}, \mathbf{a})$

- sometimes reward can depend on action
- Transition model:
\square Dynamics of the entire system $\mathrm{P}\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right)$

Policy: $\pi(\mathbf{x})=\mathbf{a}$

At state \mathbf{x}, action a for all agents

$\pi\left(\mathbf{x}_{2}\right)=$ peasants get gold, footmen attack

Value of Policy

Value: $\mathrm{V}_{\pi}(\mathbf{x})$

Expected longterm reward starting from \mathbf{x}

$$
\begin{gathered}
\mathrm{V}_{\pi}\left(\mathbf{x}_{0}\right)=\mathrm{E}_{\pi}\left[\mathrm{R}\left(\mathbf{x}_{0}\right)+\gamma \mathrm{R}\left(\mathbf{x}_{1}\right)+\gamma^{2} \mathrm{R}\left(\mathbf{x}_{2}\right)+\right. \\
\left.\gamma^{3} \mathrm{R}\left(\mathbf{x}_{3}\right)+\gamma^{4} \mathrm{R}\left(\mathbf{x}_{4}\right)+\right]
\end{gathered}
$$

Computing the value of a policy

$$
\begin{gathered}
\mathrm{V}_{\pi}\left(\mathbf{x}_{0}\right)=\mathrm{E}_{\pi}\left[\mathrm{R}\left(\mathbf{x}_{0}\right)+\gamma \mathrm{R}\left(\mathbf{x}_{1}\right)+\gamma^{2} \mathrm{R}\left(\mathbf{x}_{2}\right)+\right. \\
\left.\gamma^{3} \mathrm{R}\left(\mathbf{x}_{3}\right)+\gamma^{4} \mathrm{R}\left(\mathbf{x}_{4}\right)+\right]
\end{gathered}
$$

- Discounted value of a state:
\square value of starting from x_{0} and continuing with policy π from then on
- A recursion! $\quad \sum_{t=0}^{\infty}$

Computing the value of a policy 1 the matrix inversion approach
 $$
V_{\pi}(x)=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}\left(x^{\prime}\right)
$$

■ Solve by simple matrix inversion:

Computing the value of a policy 2 iteratively

$$
V_{\pi}(x)=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}\left(x^{\prime}\right)
$$

■ If you have 1000,000 states, inverting a 1000,000x1000,000 matrix is hard!

- Can solve using a simple convergent iterative approach: (a.k.a. dynamic programming)
\square Start with some guess V_{0}
\square Iteratively say:

$$
\text { - } V_{t+1}=R+\gamma P_{\pi} V_{t}
$$

\square Stop when $\left\|\mathrm{V}_{\mathrm{t}+1}-\mathrm{V}_{\mathrm{t}}\right\|_{\infty} \leq \varepsilon$

- means that $\left\|\mathrm{V}_{\pi}-\mathrm{V}_{\mathrm{t}+1}\right\|_{\infty} \leq \varepsilon /(1-\gamma)$

But we want to learn a Policy

- So far, told you how good a policy is...

- But how can we choose the best policy???
- Suppose there was only one time step:
world is about to end!!!
\square select action that maximizes reward!

Another recursion!

- Two time steps: address tradeoff
\square good reward now
\square better reward in the future

Unrolling the recursion

- Choose actions that lead to best value in the long run
\square Optimal value policy achieves optimal value V^{*}

$$
V^{*}\left(x_{0}\right)=\max _{a_{0}} R\left(x_{0}, a_{0}\right)+\gamma E_{a_{0}}\left[\max _{a_{1}} R\left(x_{1}\right)+\gamma^{2} E_{a_{1}}\left[\max _{a_{2}} R\left(x_{2}\right)+\cdots\right]\right]
$$

Bellman equation

- Evaluating policy π :

$$
V_{\pi}(x)=R(x)+\gamma \sum_{x^{\prime}} P\left(x^{\prime} \mid x, a=\pi(x)\right) V_{\pi}\left(x^{\prime}\right)
$$

- Computing the optimal value V^{*} - Bellman equation

$$
V^{*}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

Optimal Long-term Plan

Optimal value function $\mathrm{V}^{*}(\mathbf{x})$

Optimal Policy: $\pi^{*}(\mathbf{x})$

$$
Q^{*}(\mathbf{x}, \mathbf{a})=R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

Optimal policy:

$$
\pi^{*}(x)=\arg \max Q^{*}(x, a)
$$

Interesting fact - Unique value

$$
V^{*}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

- Slightly surprising fact: There is only one V^{*} that solves Bellman equation!
\square there may be many optimal policies that achieve V^{*}
- Surprising fact: optimal policies are good everywhere!!!

$$
V_{\pi^{*}}(x) \geq V_{\pi}(x), \quad \forall x, \quad \forall \pi
$$

Solving an MDP

Solve Bellman equation

$$
\begin{aligned}
& \square \begin{array}{c}
\text { Optimal } \\
\text { value } \mathrm{V}^{*}(\mathbf{x})
\end{array} \\
& V^{*}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman '57]
- Value iteration [Bellman ‘57]
- Linear programming [Manne '60]

Value iteration (a.k.a. dynamic programming) the simplest of all

$$
V^{*}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V^{*}\left(\mathbf{x}^{\prime}\right)
$$

- Start with some guess V_{0}
- Iteratively say:

$$
\text { - } V_{t+1}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V_{t}\left(\mathbf{x}^{\prime}\right)
$$

- Stop when $\left\|\mathrm{V}_{\mathrm{t}+1}-\mathrm{V}_{\mathrm{t}}\right\|_{\infty} \leq \varepsilon$
\square means that $\left\|\mathrm{V}^{*}-\mathrm{V}_{\mathrm{t}+1}\right\|_{\infty} \leq \varepsilon /(1-\gamma)$

A simple example

You run a startup company.

In every state you must choose between Saving money or Advertising.

Let's compute $\mathrm{V}_{\mathrm{t}}(\mathrm{x})$ for our example

	t	$\mathrm{V}_{\mathrm{t}}(\mathrm{PU})$	$V_{t}(P F)$	$V_{t}(R U)$	$V_{t}(\mathrm{RF})$
	1				
	2				
	3				
	4				
	5				
	6				

$$
V_{t+1}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V_{t}\left(\mathbf{x}^{\prime}\right)
$$

Let's compute $\mathrm{V}_{\mathrm{t}}(\mathrm{x})$ for our example

$V_{t+1}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V_{t}\left(\mathbf{x}^{\prime}\right)$

Policy iteration - Another approach for computing π^{\star}

- Start with some guess for a policy π_{0}
- Iteratively say:
- evaluate policy:

$$
V_{t}(\mathbf{x})=R\left(\mathbf{x}, \mathbf{a}=\pi_{t}(\mathbf{x})\right)+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}=\pi_{t}(\mathbf{x})\right) V_{t}\left(\mathbf{x}^{\prime}\right)
$$

- improve policy:

$$
\pi_{t+1}(\mathbf{x})=\max _{\mathbf{a}} R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V_{t}\left(\mathbf{x}^{\prime}\right)
$$

- Stop when
\square policy stops changing
- usually happens in about 10 iterations
\square or $\left\|V_{\mathrm{t}+1}-\mathrm{V}_{\mathrm{t}}\right\|_{\infty} \leq \varepsilon$
- means that $\left\|\mathrm{V}^{*}-\mathrm{V}_{\mathrm{t}+1}\right\|_{\infty} \leq \varepsilon /(1-\gamma)$

Policy Iteration \& Value Iteration: Which is best ???

It depends.
Lots of actions? Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic? Value Iteration
Best of Both Worlds:
Modified Policy Iteration [Puterman]
...a simple mix of value iteration and policy iteration

$3^{\text {rd }}$ Approach

Linear Programming

LP Solution to MDP

[Manne ‘60]
Value computed by linear programming:

$$
\begin{aligned}
\text { minimize: } & \sum_{\mathbf{x}} V(\mathbb{x}) \\
\text { subject to }: & \left\{\begin{array}{l}
V(\mathbf{x}) \geq R(\mathbf{x}, \mathbf{a})+\gamma \sum_{\mathbf{x}^{\prime}} P\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{a}\right) V\left(\mathbf{x}^{\prime}\right) \\
\forall \mathbf{x}, \mathbf{a}
\end{array}\right.
\end{aligned}
$$

- One variable $V(\mathbf{x})$ for each state
- One constraint for each state \mathbf{x} and action \mathbf{a}
- Polynomial time solution

What you need to know

- What's a Markov decision process
\square state, actions, transitions, rewards
\square a policy
\square value function for a policy
- computing V_{π}
- Optimal value function and optimal policy
\square Bellman equation
- Solving Bellman equation
\square with value iteration, policy iteration and linear programming

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
$\square \underline{\text { http://www.cs.cmu.edu/~awm/tutorials }}$

