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Lower dimensional projections
" N
m Rather than picking a subset of the features, we
can new features that are combinations of

Pro ;Qc‘wun ;

o Fraban, £.9)
‘Xn,w)"— 0-SX; ~ 0-76%
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m Let's see this in the unsuperwsed setting

but noy -
2

©2005-2007 Carlos Guestrin




Linear projection and reconstruction
£\
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project into \

1-dimension

o 7 X1
/L » s reconstruction:
Wa only know_z‘w W,
® < what was (X;,X
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Principal component analysis —
basic idea

m Project n-dimensional data into k-dimensional
space while preserving information:

e.g., project space of 10000 words into 3-dimensions
L Won >-dimension
e.g., project 3-d into 2-d J/ 1A 3D Poiefs
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Linear projections, a review
" J
m Project a point into a (lower dimensional) space:
point: X = (Xy,...,X,) - DI ke,

select a basis — set of basis vectors — (U,,...,uU,)

m we consider orthonormal basis:
u;Zu;=1, and u;€u=0 for i

select a center — x, defines offset of space

best coordinates in lower dimensional space defined
by dot-products: (z;,...,z,), z; = (X-X)€U;  2i = X-X) -,
= minimum squared error %

ﬁ"\UQn Ao Ae v | - 2_/
bt i R -—(H”z;a.m\\
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PCA finds projection that minimizes

_ reconstruction error ;
R

m Given m data points: X' = (X,),...,X,"), i=1...m
m Will represent each point as a projection:

k J—
w _ : 1 . - =
X'=X+ ) =zju; where: )_(:EZXZ and (j}:(xz_‘x@

3 A
00 »ints
m PCA: | ¥ P
Given k<n, find (uy,...,u,)

minimizing reconstruction error:

e mo
k = S i
=1
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#— Understanding the recorlsl;pucnon

k
i1 (pact A" =X+ tu
55?.«4/:;«%/ ( ; ]]
| !"\7 [99 N - besis Zj — (X . X) . u,
m Note that x' can be represented ==

Given k<n, find (uq,...,u,)

exaCtIy by n-dim . sional prOJectlon: minimizing reconstruction error:
X' =X+ Z Z;'uj errory = Z (X Z)
AT )
(8 &AS Ue ol
S (-2 [ et
m Rewriting error: Crrove* ~ , -

— ©2005-2007 Carlos Guestrin




Reconstruction error and A

covariance matrix 7 Ligroms
" A A keep
m n /\-//_’\ B 1 m . .
errore =3 3 [ (<= D)) STl -%)"
mn=1j=k+l o 7).u
A -0 L )- 4
.l"..,‘ 3 &
n 17 = )= - A
-7 W LZ (A~ (%“-%)X )
SR+ W/
A"
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Minimizing reconstructlon error and

. U cen &t'j»(-—l\ VLL{W"‘S

eigen Vectors E WG Tugs Mejla
{Iju/s

m Minimizing reconstruction error equivalent to picking valec
orthonormal basis (u,,...,u,) minimizing:
n ——
error;, = r’\z ujTZuj

T j=k+1 +h TS ALl A

m Eigen vector:
N
W Sz >\ e — by W

—

® Minimizing reconstruction error equivalent to picking

(Uisq,---,Up) tO De eigen vectors with smallest eigen values
———— 'ZVV()'/K_" 'z A\} — —

&f. K+
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N res

Basic PCA algoritm  v= | &

" ch
: 2

m Start from m by n data matrix X P
m Recenter: subtract mean from each row of X \

X, < X —X

-/_\— . .
m Compute covariance matrix:
A« 1/m X_T X,
m Find eigen vectors and values of X

m Principal components: K eigen vectors with Qfﬁ‘ e
highest eigen values - i Platiss o

10
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PCA example
'm
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PCA example — reconstruction
" J
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Eigenfaces [Turk, Pentland *91]
"
m Input images: = Prmcmalﬂmpgnen’ts\

13
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Eigenfaces reconstruction
"

m Each image corresponds to adding 8 principal
components:

0 beys

s it e

14
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Relationship to Gaussians

2

" J
m PCA assumes data is Gaussian
X~ N(Z)
m Equivalent to weighted sum of simple
Gaussians: =, Cﬁ‘:ﬁ‘s‘-w 2

J  j=1

m  Selecting top k principal components
equivalent to lower dimensional Gaussian

approximation:
— ok

e~N(0;02), where o2 is defined by error,

©2005-2007 Carlos Guestrin
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Scaling up

=

m Covariance matrix can be really big!
Yisnbyn
10000 features — ||
finding eigenvectors is very slow...

m Use singular value decomposition (SVD)
finds to k eigenvectors
great implementations available, e.g., Matlab svd

©2005-2007 Carlos Guestrin
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n "
SvD X
nxnN
" S
m Write X =W S VT
X <« data matrix, one row per datapoint
W « weight matrix, owdatapoint — coordinate of x!in eigenspace

S « singular value matrix, diagonal matrix
= in our setting each entry is eigenvalue 2,

VT « singular vector matrix

T

= in our setting each row is eigenvector v; v
W S 7
X § "
) : N—

Nt N "
- -

nv N

SA
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PCA using SVD algoritm
S

Start from m by n data matrix X
Recenter: subtract mean from each row of X

X, « X=X
Call SVD algorithm on X, — ask for k singular vectors

Principal components: k singular vectors with highest
singular values (rows of V')

Coefficients become: \ . —
2= (=4 )Y,

oV
F‘/om vowd of W
) CGV(Q.A- (Dj S

©2005-2007 Carlos Guestrin

18



Using PCA for dimensionality
reduction In classification
" NN

m \Want to learn f: X&2¥

but some features are more Important than others

m Approach: Use PCA on X to select a few

important features Wi ... L
Vﬂ""'l"“" ']'L\“-" L@Avr\fhb ’JCCX\ k? y

FRemy VB Y
UbU\ |Ler A 'ﬁ(?l,---,én)’_\)y
(’V\/

Ziz X)W
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PCA for classification can lead to

groblems. .

m Direction of maximum variation may be unrelated to “discriminative”
directions: X

Dod X)t/’ =
20Cchon

m PCA often works very well, but sometimes must use more advanced
methods .
MEtno

ew

20
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What you need to know
" A

m Dimensionality reduction
why and when it's important

m Simple feature selectio

a Principal component analysis

minimizing reconstruction error

relationship to covariance matrix and eigenvectors
using SVD

problems with PCA

21
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Announcements
" e

m Homework 5:
Extension: Due Friday at 10:30am
Hand in to Monica, Wean 4619

m Project:
Poster session: Friday May 4™ 2-5pm, NSH Atrium
m please arrive a 15mins early to set up
Paper: Thursday May 10" by 2pm
= electronic submission by email to instructors list
s maximum of 8 pages, NIPS format

m no late days allowed

. S
m |FCEs!!!I

Please, please, please, please, please, please give us your
feedback, it helps us improve the class! ©

o ht’[DZ//VWVW.CW

©2005-2007 Carlos Guestrin
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Markov Decision

Processes (MDPs)
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Thus far this semester
JE
m Regression:

m Classification:

m Density estimation:

©2005-2007 Carlos Guestrin

24



Learning to act

"

m Reinforcement
learning

m An agent

1 Makes sensor
observations

1 Must select action

1 Recelves rewards

m positive for “good”
states

[Ng et al. '05] = negative for “bad”
states

25
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Learning to play backgammon

_ ‘Tesauro ’95‘

m Combines reinforcement
learning with neural networks

m Played 300,000 games against
itself

m Achieved grandmaster level!

26

©2005-2007 Carlos Guestrin



Roadmap to learning about
reinforcement learning
" BN

m \WWhen we learned about Bayes nets:

First talked about formal framework:

m representation
m inference

Then learning for BNs

m For reinforcement learning:

Formal framework
s Markov decision processes

Then learning

©2005-2007 Carlos Guestrin
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peasant

footman

¥

FreeCrait ‘ *‘ +v _ y T
3! Menu (Fi0)% F o '
‘u o r'_r_r r k‘-&:-‘ | ‘

I"r'...

)3 4/ Real-time Strategy Game

| Peasants collect resources and build
el Footmen attack enemies
building Buildings train peasants and footmen

y
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States and actions
'_
m State space:

1 Joint state x of entire system

m Action space:

1 Joint action a= {a,..., a,} for all agents

29
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____States change over time

m Like an HMM, state changes over
time
m Next state depends on current state

and action selected

1 e.g., action="build castle” likely to lead
to a state where you have a castle

m Transition model:

1 Dynamics of the entire system P(Xx’|x,a)

30
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Some states and actions are

better than others
'_
m Each state x I1s associated with a
reward

71 positive reward for successful attack
1 negative for loss

m Reward function:

1 Total reward R(x)

31
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Discounted Rewards
W .

An assistant professor gets paid, say, 20K per yeatr.

How much, in total, will the A.P. earn In their life?

20+ 20+ 20 + 20 + 20 + ... = Infinity

N

Reees

What’'s wrong with this argument?

©2005-2007 Carlos Guestrin
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Discounted Rewards
W .

“A reward (payment) in the future is not worth quite as
much as a reward now.”

Because of chance of obliteration

Because of inflation

Example:

Being promised $10,000 next year is worth only 90% as much as
receiving $10,000 right now.
Assuming payment n years in future is worth only (0.9)" of
payment now, what is the AP’s Future Discounted Sum of
Rewards ?

33
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Discount Factors
W .

People in economics and probabilistic decision-making do
this all the time.

The “Discounted sum of future rewards” using discount
factor y” is

(reward now) +
v (reward in 1 time step) +
vy 2 (reward in 2 time steps) +
vy 3 (reward in 3 time steps) +

(infinite sum)

©2005-2007 Carlos Guestrin
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A

Assis'tant
Prof

Define:
V, = Expected discounted future rewards starting in state A
Vg = Expected discounted future rewards starting in state B

VT — 1 (1 1 1 (1] 1 11 T
VS — 1 1 (1 11 1 (1 1] S
VD —_ 1 1 1 (1 (1 1 111 D

How do we compute V,, Vg, V1, Vg, Vp ?
35
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Computing the Future Rewards of
an Academic
= JEmmES

X

Assistant

" Assume Discount |
Factory=0.9

____________________________

36



Joint Decision Space
"
Markov Decision Process (MDP) Representation:

m State space:
1 Joint state x of entire system

m Action space:

= Joint action a= {a,,..., a,} for all agents

m Reward function:

-1 Total reward R(x,a)

m sometimes reward can depend on action

m Transition model:

1 Dynamics of the entire system P(x’|x,a)

37
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i Policx

n(Xy) = both peasants get wood

At state X,

action a for all
agents

2
rrrrrrrr

n(X,) = one peasant builds
barrack, other gets gold

M 7(X,) = peasants get gold,
| footmen attack



Value of Pollcy

Expected long-

term reward
starting from X

Future rewards
discounted by y € [0,1)
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Computing the value of a policy

m Discounted value of a state:
value of starting from x, and continuing with policy = from then on

Vi(zo) = Ex[R(z0) +vR(x1) +v2R(x2) + v R(x3) + -]
= E:[Y +'R(zt)]

m A recursion! =0

40
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Computing the value of a policy 1 —
the matrix inversion approach

Vi(zx) = R(x)+ ’}/ZP(CC/ | 2,0 = 7(x))Vx(z)

m Solve by simple matrix inversion:

41



Computing the value of a policy 2 —

iterativelx

Vi(zx) = R(x)+ ’}/ZP(CC/ | 2,0 = 7(x))Vx(z)

m |f you have 1000,000 states, inverting a 1000,000x1000,000
matrix is hard!

m Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)
Start with some guess V,,
lteratively say:
sV, =R+yP_V,
Stop when [|[Vi,1-Vill < &
= means that ||V_-V,|l., < /(1)

42
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But we want to learn a Policy

m So far, told you how good a
. . a for all agents
policy Is... -
m But how can we choose the By

best policy???

n(X,) = both peasants get wood

n(X,) = one peasant builds
barrack, other gets gold

m Suppose there was only one
time step:
1 world is about to end!!!

1 select action that maximizes
reward!

n(X,) = peasants get gold,
footmen attack

43
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Another recursion!

o
m Two time steps: address tradeoff

good reward now
better reward In the future

©2005-2007 Carlos Guestrin
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Unrolling the recursion
"

m Choose actions that lead to best value in the long run
Optimal value policy achieves optimal value V*

Vi(zo) = maxR(zo,a0) + vEao[max R(z1) + 72Ea1[”glg>< R(z2) + -]

45
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Bellman equation
=

m Evaluating policy =
Vr(z) = R(z)+~) P |z,a=7(x))Vx(z)

m Computing the optimal value V* - Bellman equation

V*(X) = max R(x,a) + 7> P(X'|x,a)V " (x)

©2005-2007 Carlos Guestrin
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Optimal Long -term Plan

m » Optimal Policy: ©*(x)

Q*(x,a) =R(x,a) + ) P(X'|x,aV"(x)

Optimal policy:

77 (X) =argmax Q*(x,a)

a

47
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Interesting fact — Unique value

o
V*(X) = max R(x,a) + 7> P(X'|x,a)V"(x)

m Slightly surprising fact: There is only one V" that solves
Bellman equation!
there may be many optimal policies that achieve V*

m Surprising fact: optimal policies are good everywhere!!!

Vae(x) > Vr(x), Vo, Vr

©2005-2007 Carlos Guestrin
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Solving an MDP

Solve . .
Optimal Optimal
value V*(x) policy m*(x)

Bellman
V*(x) = max R(x,a) + 7> P(X|x,a)V"(x')

equation

Bellman equation is non-linear!!!
Many algorithms solve the Bellman equations:

m Policy iteration [Howard ‘60, Bellman ‘57]
m Value iteration [Bellman ‘57]
m Linear programming [Manne ‘60]

] 49
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Value iteration (a.k.a. dynamic programming) —
the simplest of all

o (x) = maxR(x,a) +7 Y P(x[x,a)V *(x)

m Start with some guess V,,
m [teratively say:

" Via(X) = maxR(x,a) + 7> P(X'|X,a)V,(X')

= Stop when ||Vy,,-Vil|., < ¢
means that ||V*-V ||, < &/(1-y)

50
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A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

Poor &
Unknown

Poor &
Famous | A

Famous

+10

51
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Let’'s compute V(X) for our example

t |V(PU) V,(PF)|V(RU)| V(RF)

OO0~ WIN|PF

Vi1 (X) = max R(x,a) + 7 Y P(X'| x,a)V,(x')



Let's compute V(X) for our example

Poor &
Famous

+0

' Poor &
Unknown

+O

Rlch &
Unknown

+10

t [V(PU)| V(PF) | V(RU) | V(RF)
1 0 0 10 10

2 0 4.5 14.5 19

3 2.03 6.53 | 25.08 | 18.55
4 | 3.852 | 12.20 | 29.63 | 19.26
5 7.22 | 15.07 | 32.00 | 20.40
6 | 10.03 | 17.65 | 33.58 | 22.43

V., (X) = max R(x,a) +7 Y P(X'|x,a)V,(X)

©2005-2007 Carlos Guestrin

53




Policy iteration — Another approach for

- *
computing
" J
m Start with some guess for a policy =,

m [teratively say:
= evaluate policy:

V,(x) = R(x,a=7,00) + 7 3P| x,a = 7, GOV, (X')

= improve policy:

7. (X) = max R(x,a)+7 > P(X'|x,a)V,(x")

m Stop when
policy stops changing
= usually happens in about 10 iterations
o Ve Vill. < &
= means that |[|V*-V || < &/(1-y)

54
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Policy Iteration & Value Iteration:
Which iIs best ???
" B

It depends.
Lots of actions? Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic? Value Iteration

Best of Both Worlds:

Modified Policy Iteration [Puterman]
...a simple mix of value iteration and policy iteration

3'd Approach

Linear Programming

55
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LP Solution to MDP
" A Manne ‘60]

Value computed by linear programming:
minimize: ZV(X)

subject to: {V (X) 2 R(X’a)J’?/;P(XWx,a)V (x')
VX, a

m One variable V (x) for each state
m One constraint for each state x and action a
m Polynomial time solution

56
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What you need to know

=
m \What's a Markov decision process
state, actions, transitions, rewards
a policy
value function for a policy
= computing V_
m Optimal value function and optimal policy
Bellman equation
m Solving Bellman eqguation

with value iteration, policy iteration and linear
programming

©2005-2007 Carlos Guestrin
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