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Lower dimensional projections

Rather than picking a subset of the features, we 
can new features that are combinations of 
existing features

Let’s see this in the unsupervised setting 
just X, but no Y
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Linear projection and reconstruction

x1

x2

project into
1-dimension z1

reconstruction:
only know z1, 

what was (x1,x2)
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Principal component analysis –
basic idea

Project n-dimensional data into k-dimensional 
space while preserving information:

e.g., project space of 10000 words into 3-dimensions
e.g., project 3-d into 2-d

Choose projection with minimum reconstruction 
error
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Linear projections, a review

Project a point into a (lower dimensional) space:
point: x = (x1,…,xn) 
select a basis – set of basis vectors – (u1,…,uk)

we consider orthonormal basis: 
ui·ui=1, and ui·uj=0 for i≠j

select a center – x, defines offset of space 
best coordinates in lower dimensional space defined 
by dot-products: (z1,…,zk), zi = (x-x)·ui

minimum squared error
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PCA finds projection that minimizes 
reconstruction error

Given m data points: xi = (x1
i,…,xn

i), i=1…m
Will represent each point as a projection:

where:                           and 

PCA:
Given k·n, find (u1,…,uk) 
minimizing reconstruction error:

x1

x2
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Understanding the reconstruction 
error

Note that xi can be represented 
exactly by n-dimensional projection:

Rewriting error:

Given k·n, find (u1,…,uk) 
minimizing reconstruction error:
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Reconstruction error and 
covariance matrix
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Minimizing reconstruction error and 
eigen vectors

Minimizing reconstruction error equivalent to picking 
orthonormal basis (u1,…,un) minimizing:

Eigen vector:

Minimizing  reconstruction error equivalent to picking 
(uk+1,…,un) to be eigen vectors with smallest eigen values
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Basic PCA algoritm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

Xc ← X – X
Compute covariance matrix:

Σ ← 1/m Xc
T Xc

Find eigen vectors and values of Σ
Principal components: k eigen vectors with 
highest eigen values
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PCA example
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PCA example – reconstruction 

only used first principal component
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Eigenfaces [Turk, Pentland ’91]

Input images: Principal components:
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Eigenfaces reconstruction

Each image corresponds to adding 8 principal 
components:
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Relationship to Gaussians
PCA assumes data is Gaussian

x ~ N(x;Σ)
Equivalent to weighted sum of simple 
Gaussians:

Selecting top k principal components 
equivalent to lower dimensional Gaussian 
approximation:

ε~N(0;σ2),  where σ2 is defined by errork

x1

x2
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Scaling up

Covariance matrix can be really big!
Σ is n by n
10000 features → |Σ|
finding eigenvectors is very slow…

Use singular value decomposition (SVD)
finds to k eigenvectors
great implementations available, e.g., Matlab svd
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SVD
Write X = W S VT

X ← data matrix, one row per datapoint
W ← weight matrix, one row per datapoint – coordinate of xi in eigenspace
S ← singular value matrix, diagonal matrix

in our setting each entry is eigenvalue λj

VT ← singular vector matrix
in our setting each row is eigenvector vj
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PCA using SVD algoritm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

Xc ← X – X
Call SVD algorithm on Xc – ask for k singular vectors
Principal components: k singular vectors with highest 
singular values (rows of VT)

Coefficients become:
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Using PCA for dimensionality 
reduction in classification
Want to learn f:X�Y

X=<X1,…,Xn>
but some features are more important than others

Approach: Use PCA on X to select a few 
important features
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PCA for classification can lead to 
problems…
Direction of maximum variation may be unrelated to “discriminative”
directions:

PCA often works very well, but sometimes must use more advanced 
methods

e.g., Fisher linear discriminant
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What you need to know

Dimensionality reduction
why and when it’s important

Simple feature selection
Principal component analysis

minimizing reconstruction error
relationship to covariance matrix and eigenvectors
using SVD
problems with PCA
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Announcements

Homework 5:
Extension: Due Friday at 10:30am
Hand in to Monica, Wean 4619

Project:
Poster session: Friday May 4th 2-5pm, NSH Atrium 

please arrive a 15mins early to set up
Paper: Thursday May 10th by 2pm

electronic submission by email to instructors list
maximum of 8 pages, NIPS format
no late days allowed

FCEs!!!!
Please, please, please, please, please, please give us your 
feedback, it helps us improve the class! ☺

http://www.cmu.edu/fce
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Thus far this semester

Regression:

Classification:

Density estimation:
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Learning to act

Reinforcement 
learning
An agent 

Makes sensor 
observations
Must select action
Receives rewards 

positive for “good”
states
negative for “bad”
states

[Ng et al. ’05] 
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Learning to play backgammon 
[Tesauro ’95]

Combines reinforcement 
learning with neural networks
Played 300,000 games against 
itself
Achieved grandmaster level!
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Roadmap to learning about 
reinforcement learning

When we learned about Bayes nets:
First talked about formal framework:

representation 
inference

Then learning for BNs

For reinforcement learning:
Formal framework

Markov decision processes

Then learning
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peasant

footman

building

Real-time Strategy Game
Peasants collect resources and build
Footmen attack enemies
Buildings train peasants and footmen
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States and actions

State space: 
Joint state x of entire system

Action space: 
Joint action a= {a1,…, an} for all agents
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States change over time
Like an HMM, state changes over 
time

Next state depends on current state 
and action selected

e.g., action=“build castle” likely to lead 
to a state where you have a castle

Transition model: 
Dynamics of the entire system P(x’|x,a) 
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Some states and actions are 
better than others

Each state x is associated with a 
reward

positive reward for successful attack

negative for loss

Reward function: 
Total reward R(x)
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Discounted Rewards
An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

20 + 20 + 20 + 20 + 20 + … = Infinity

What’s wrong with this argument?

$ $
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Discounted Rewards

“A reward (payment) in the future is not worth quite as 
much as a reward now.”

Because of chance of obliteration
Because of inflation

Example:
Being promised $10,000 next year is worth only 90% as much as 
receiving $10,000 right now.

Assuming payment n years in future is worth only (0.9)n of 
payment now, what is the AP’s Future Discounted Sum of 
Rewards ?
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Discount Factors

People in economics and probabilistic decision-making do 
this all the time.
The “Discounted sum of future rewards” using discount 
factor γ” is

(reward now) +
γ (reward in 1 time step) +
γ 2 (reward in 2 time steps) +
γ 3 (reward in 3 time steps) +

:
:       (infinite sum)
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The Academic Life

Define:
VA = Expected discounted future rewards starting in state A
VB = Expected discounted future rewards starting in state B
VT =       “ “ “ “ “ “ “ T
VS =       “ “ “ “ “ “ “ S
VD =       “ “ “ “ “ “ “ D

How do we compute VA, VB, VT, VS, VD ?

A.
Assistant

Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

Assume Discount 

Factor γ = 0.9

0.7

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2
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Computing the Future Rewards of 
an Academic

Assume Discount 
Factor γ = 0.9

0.7
A.

Assistant
Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2
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Joint Decision Space

State space: 
Joint state x of entire system

Action space: 
Joint action a= {a1,…, an} for all agents

Reward function: 
Total reward R(x,a)

sometimes reward can depend on action

Transition model: 
Dynamics of the entire system P(x’|x,a) 

Markov Decision Process (MDP) Representation:



38
©2005-2007 Carlos Guestrin

Policy

Policy: π(x) = a
At state x, 

action a for all 
agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds 
barrack, other gets gold 

x1

π(x2) = peasants get gold, 
footmen attack

x2
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Value of Policy

Value: Vπ(x)
Expected long-

term reward 
starting from x

Start 
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 
γ3 R(x3) + γ4 R(x4) + �]

Future rewards 
discounted by γ ∈ [0,1)x1

R(x1)

x1’’

x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)
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Computing the value of a policy
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) + 

γ3 R(x3) + γ4 R(x4) + �]
Discounted value of a state:

value of starting from x0 and continuing with policy π from then on

A recursion!
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Computing the value of a policy 1 –
the matrix inversion approach

Solve by simple matrix inversion:
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Computing the value of a policy 2 –
iteratively

If you have 1000,000 states, inverting a 1000,000x1000,000 
matrix is hard!
Can solve using a simple convergent iterative approach: 
(a.k.a. dynamic programming)

Start with some guess V0

Iteratively say:
Vt+1 = R + γ Pπ Vt

Stop when ||Vt+1-Vt||∞ · ε
means that ||Vπ-Vt+1||∞ · ε/(1-γ)
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But we want to learn a Policy
Policy: π(x) = a

At state x, action 
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds 
barrack, other gets gold 

x1

π(x2) = peasants get gold, 
footmen attack

x2

So far, told you how good a 
policy is…
But how can we choose the 
best policy???

Suppose there was only one 
time step:

world is about to end!!!
select action that maximizes 
reward!
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Another recursion!

Two time steps: address tradeoff 
good reward now 
better reward in the future
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Unrolling the recursion

Choose actions that lead to best value in the long run
Optimal value policy achieves optimal value V*
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Bellman equation

Evaluating policy π:

Computing the optimal value V* - Bellman equation 

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ
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Optimal Long-term Plan

Optimal Policy: π*(x)Optimal value 
function V*(x)

Optimal policy:
)a,x(maxarg)x(

a

∗∗ = Qπ

∑ ∗∗ +=
'

)'(),|'(),(),(
x

xaxxaxax VPRQ γ
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Interesting fact – Unique value

Slightly surprising fact: There is only one V* that solves 
Bellman equation!

there may be many optimal policies that achieve V*

Surprising fact: optimal policies are good everywhere!!!

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ
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Solving an MDP

Policy iteration [Howard ‘60, Bellman ‘57]

Value iteration [Bellman ‘57]

Linear programming [Manne ‘60]

…

Solve 
Bellman 
equation

Optimal 
value V*(x)

Optimal 
policy π*(x)

Many algorithms solve the Bellman equations:

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

Bellman equation is non-linear!!!
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Value iteration (a.k.a. dynamic programming) –
the simplest of all

Start with some guess V0

Iteratively say:

Stop when ||Vt+1-Vt||∞ · ε
means that ||V∗-Vt+1||∞ · ε/(1-γ)

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

∑+=+
'

1 )'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ
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A simple example

You run a 
startup 
company.

In every 
state you 
must 
choose 
between 
Saving 
money or 
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2
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Let’s compute Vt(x) for our example

6
5
4
3
2
1

Vt(RF)Vt(RU)Vt(PF)Vt(PU)t

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

∑+=+
'

1 )'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ
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Let’s compute Vt(x) for our example

22.4333.5817.6510.036
20.4032.0015.077.225
19.2629.6312.203.8524
18.5525.086.532.033

1914.54.502
1010001

Vt(RF)Vt(RU)Vt(PF)Vt(PU)t

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

∑+=+
'

1 )'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ
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Policy iteration – Another approach for 
computing π*

Start with some guess for a policy π0

Iteratively say:
evaluate policy: 

improve policy:

Stop when 
policy stops changing

usually happens in about 10 iterations
or ||Vt+1-Vt||∞ · ε

means that ||V∗-Vt+1||∞ · ε/(1-γ)

∑+=+
'

1 )'(),|'(),(max)(
xa

xaxxaxx tt VPR γπ

∑ =+==
'

)'())(,|'())(,()(
x

xxaxxxaxx tttt VPRV πγπ
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Policy Iteration & Value Iteration: 
Which is best ???
It depends.

Lots of actions?  Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic?   Value Iteration

Best of Both Worlds:
Modified Policy Iteration   [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming
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LP Solution to MDP
Value computed by linear programming:

One variable V (x)  for each state
One constraint for each state x and action a
Polynomial time solution

[Manne ‘60]

:subject to

:minimize

⎩
⎨
⎧ ≥

∑

,∀ ax

x

)(xV

)(xV )(xV

,∀ ax
)(xV ∑+

'

)'(),|'(),(
x

xaxxax VPR γ
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What you need to know

What’s a Markov decision process
state, actions, transitions, rewards
a policy
value function for a policy

computing Vπ

Optimal value function and optimal policy
Bellman equation

Solving Bellman equation
with value iteration, policy iteration and linear 
programming
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