
©2005-2007 Carlos Guestrin
1

Dimensionality
reduction (cont.)
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 25th, 2007

2
©2005-2007 Carlos Guestrin

Lower dimensional projections

Rather than picking a subset of the features, we
can new features that are combinations of
existing features

Let’s see this in the unsupervised setting
just X, but no Y

3
©2005-2007 Carlos Guestrin

Linear projection and reconstruction

x1

x2

project into
1-dimension z1

reconstruction:
only know z1,

what was (x1,x2)

4
©2005-2007 Carlos Guestrin

Principal component analysis –
basic idea

Project n-dimensional data into k-dimensional
space while preserving information:

e.g., project space of 10000 words into 3-dimensions
e.g., project 3-d into 2-d

Choose projection with minimum reconstruction
error

5
©2005-2007 Carlos Guestrin

Linear projections, a review

Project a point into a (lower dimensional) space:
point: x = (x1,…,xn)
select a basis – set of basis vectors – (u1,…,uk)

we consider orthonormal basis:
ui·ui=1, and ui·uj=0 for i≠j

select a center – x, defines offset of space
best coordinates in lower dimensional space defined
by dot-products: (z1,…,zk), zi = (x-x)·ui

minimum squared error

6
©2005-2007 Carlos Guestrin

PCA finds projection that minimizes
reconstruction error

Given m data points: xi = (x1
i,…,xn

i), i=1…m
Will represent each point as a projection:

where: and

PCA:
Given k·n, find (u1,…,uk)
minimizing reconstruction error:

x1

x2

7
©2005-2007 Carlos Guestrin

Understanding the reconstruction
error

Note that xi can be represented
exactly by n-dimensional projection:

Rewriting error:

Given k·n, find (u1,…,uk)
minimizing reconstruction error:

8
©2005-2007 Carlos Guestrin

Reconstruction error and
covariance matrix

9
©2005-2007 Carlos Guestrin

Minimizing reconstruction error and
eigen vectors

Minimizing reconstruction error equivalent to picking
orthonormal basis (u1,…,un) minimizing:

Eigen vector:

Minimizing reconstruction error equivalent to picking
(uk+1,…,un) to be eigen vectors with smallest eigen values

10
©2005-2007 Carlos Guestrin

Basic PCA algoritm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

Xc ← X – X
Compute covariance matrix:

Σ ← 1/m Xc
T Xc

Find eigen vectors and values of Σ
Principal components: k eigen vectors with
highest eigen values

11
©2005-2007 Carlos Guestrin

PCA example

12
©2005-2007 Carlos Guestrin

PCA example – reconstruction

only used first principal component

13
©2005-2007 Carlos Guestrin

Eigenfaces [Turk, Pentland ’91]

Input images: Principal components:

14
©2005-2007 Carlos Guestrin

Eigenfaces reconstruction

Each image corresponds to adding 8 principal
components:

15
©2005-2007 Carlos Guestrin

Relationship to Gaussians
PCA assumes data is Gaussian

x ~ N(x;Σ)
Equivalent to weighted sum of simple
Gaussians:

Selecting top k principal components
equivalent to lower dimensional Gaussian
approximation:

ε~N(0;σ2), where σ2 is defined by errork

x1

x2

16
©2005-2007 Carlos Guestrin

Scaling up

Covariance matrix can be really big!
Σ is n by n
10000 features → |Σ|
finding eigenvectors is very slow…

Use singular value decomposition (SVD)
finds to k eigenvectors
great implementations available, e.g., Matlab svd

17
©2005-2007 Carlos Guestrin

SVD
Write X = W S VT

X ← data matrix, one row per datapoint
W ← weight matrix, one row per datapoint – coordinate of xi in eigenspace
S ← singular value matrix, diagonal matrix

in our setting each entry is eigenvalue λj

VT ← singular vector matrix
in our setting each row is eigenvector vj

18
©2005-2007 Carlos Guestrin

PCA using SVD algoritm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

Xc ← X – X
Call SVD algorithm on Xc – ask for k singular vectors
Principal components: k singular vectors with highest
singular values (rows of VT)

Coefficients become:

19
©2005-2007 Carlos Guestrin

Using PCA for dimensionality
reduction in classification
Want to learn f:X�Y

X=<X1,…,Xn>
but some features are more important than others

Approach: Use PCA on X to select a few
important features

20
©2005-2007 Carlos Guestrin

PCA for classification can lead to
problems…
Direction of maximum variation may be unrelated to “discriminative”
directions:

PCA often works very well, but sometimes must use more advanced
methods

e.g., Fisher linear discriminant

21
©2005-2007 Carlos Guestrin

What you need to know

Dimensionality reduction
why and when it’s important

Simple feature selection
Principal component analysis

minimizing reconstruction error
relationship to covariance matrix and eigenvectors
using SVD
problems with PCA

22
©2005-2007 Carlos Guestrin

Announcements

Homework 5:
Extension: Due Friday at 10:30am
Hand in to Monica, Wean 4619

Project:
Poster session: Friday May 4th 2-5pm, NSH Atrium

please arrive a 15mins early to set up
Paper: Thursday May 10th by 2pm

electronic submission by email to instructors list
maximum of 8 pages, NIPS format
no late days allowed

FCEs!!!!
Please, please, please, please, please, please give us your
feedback, it helps us improve the class! ☺

http://www.cmu.edu/fce

©2005-2007 Carlos Guestrin
23

Markov Decision
Processes (MDPs)
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 25th, 2006

24
©2005-2007 Carlos Guestrin

Thus far this semester

Regression:

Classification:

Density estimation:

25
©2005-2007 Carlos Guestrin

Learning to act

Reinforcement
learning
An agent

Makes sensor
observations
Must select action
Receives rewards

positive for “good”
states
negative for “bad”
states

[Ng et al. ’05]

26
©2005-2007 Carlos Guestrin

Learning to play backgammon
[Tesauro ’95]

Combines reinforcement
learning with neural networks
Played 300,000 games against
itself
Achieved grandmaster level!

27
©2005-2007 Carlos Guestrin

Roadmap to learning about
reinforcement learning

When we learned about Bayes nets:
First talked about formal framework:

representation
inference

Then learning for BNs

For reinforcement learning:
Formal framework

Markov decision processes

Then learning

28
©2005-2007 Carlos Guestrin

peasant

footman

building

Real-time Strategy Game
Peasants collect resources and build
Footmen attack enemies
Buildings train peasants and footmen

29
©2005-2007 Carlos Guestrin

States and actions

State space:
Joint state x of entire system

Action space:
Joint action a= {a1,…, an} for all agents

30
©2005-2007 Carlos Guestrin

States change over time
Like an HMM, state changes over
time

Next state depends on current state
and action selected

e.g., action=“build castle” likely to lead
to a state where you have a castle

Transition model:
Dynamics of the entire system P(x’|x,a)

31
©2005-2007 Carlos Guestrin

Some states and actions are
better than others

Each state x is associated with a
reward

positive reward for successful attack

negative for loss

Reward function:
Total reward R(x)

32
©2005-2007 Carlos Guestrin

Discounted Rewards
An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

20 + 20 + 20 + 20 + 20 + … = Infinity

What’s wrong with this argument?

$ $

33
©2005-2007 Carlos Guestrin

Discounted Rewards

“A reward (payment) in the future is not worth quite as
much as a reward now.”

Because of chance of obliteration
Because of inflation

Example:
Being promised $10,000 next year is worth only 90% as much as
receiving $10,000 right now.

Assuming payment n years in future is worth only (0.9)n of
payment now, what is the AP’s Future Discounted Sum of
Rewards ?

34
©2005-2007 Carlos Guestrin

Discount Factors

People in economics and probabilistic decision-making do
this all the time.
The “Discounted sum of future rewards” using discount
factor γ” is

(reward now) +
γ (reward in 1 time step) +
γ 2 (reward in 2 time steps) +
γ 3 (reward in 3 time steps) +

:
: (infinite sum)

35
©2005-2007 Carlos Guestrin

The Academic Life

Define:
VA = Expected discounted future rewards starting in state A
VB = Expected discounted future rewards starting in state B
VT = “ “ “ “ “ “ “ T
VS = “ “ “ “ “ “ “ S
VD = “ “ “ “ “ “ “ D

How do we compute VA, VB, VT, VS, VD ?

A.
Assistant

Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

Assume Discount

Factor γ = 0.9

0.7

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2

36
©2005-2007 Carlos Guestrin

Computing the Future Rewards of
an Academic

Assume Discount
Factor γ = 0.9

0.7
A.

Assistant
Prof
20

B.
Assoc.

Prof
60

S.
On the
Street

10

D.
Dead

0

T.
Tenured

Prof
400

0.7

0.6

0.3

0.2 0.2

0.2

0.3

0.6
0.2

37
©2005-2007 Carlos Guestrin

Joint Decision Space

State space:
Joint state x of entire system

Action space:
Joint action a= {a1,…, an} for all agents

Reward function:
Total reward R(x,a)

sometimes reward can depend on action

Transition model:
Dynamics of the entire system P(x’|x,a)

Markov Decision Process (MDP) Representation:

38
©2005-2007 Carlos Guestrin

Policy

Policy: π(x) = a
At state x,

action a for all
agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

39
©2005-2007 Carlos Guestrin

Value of Policy

Value: Vπ(x)
Expected long-

term reward
starting from x

Start
from x0

x0

R(x0)

π(x0)

Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +
γ3 R(x3) + γ4 R(x4) + �]

Future rewards
discounted by γ ∈ [0,1)x1

R(x1)

x1’’

x1’
R(x1’)

R(x1’’)

π(x1)

x2

R(x2)

π(x2)

x3

R(x3)

π(x3)
x4

R(x4)

π(x1’)

π(x1’’)

40
©2005-2007 Carlos Guestrin

Computing the value of a policy
Vπ(x0) = Eπ[R(x0) + γ R(x1) + γ2 R(x2) +

γ3 R(x3) + γ4 R(x4) + �]
Discounted value of a state:

value of starting from x0 and continuing with policy π from then on

A recursion!

41
©2005-2007 Carlos Guestrin

Computing the value of a policy 1 –
the matrix inversion approach

Solve by simple matrix inversion:

42
©2005-2007 Carlos Guestrin

Computing the value of a policy 2 –
iteratively

If you have 1000,000 states, inverting a 1000,000x1000,000
matrix is hard!
Can solve using a simple convergent iterative approach:
(a.k.a. dynamic programming)

Start with some guess V0

Iteratively say:
Vt+1 = R + γ Pπ Vt

Stop when ||Vt+1-Vt||∞ · ε
means that ||Vπ-Vt+1||∞ · ε/(1-γ)

43
©2005-2007 Carlos Guestrin

But we want to learn a Policy
Policy: π(x) = a

At state x, action
a for all agents

π(x0) = both peasants get wood
x0

π(x1) = one peasant builds
barrack, other gets gold

x1

π(x2) = peasants get gold,
footmen attack

x2

So far, told you how good a
policy is…
But how can we choose the
best policy???

Suppose there was only one
time step:

world is about to end!!!
select action that maximizes
reward!

44
©2005-2007 Carlos Guestrin

Another recursion!

Two time steps: address tradeoff
good reward now
better reward in the future

45
©2005-2007 Carlos Guestrin

Unrolling the recursion

Choose actions that lead to best value in the long run
Optimal value policy achieves optimal value V*

46
©2005-2007 Carlos Guestrin

Bellman equation

Evaluating policy π:

Computing the optimal value V* - Bellman equation

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

47
©2005-2007 Carlos Guestrin

Optimal Long-term Plan

Optimal Policy: π*(x)Optimal value
function V*(x)

Optimal policy:
)a,x(maxarg)x(

a

∗∗ = Qπ

∑ ∗∗ +=
'

)'(),|'(),(),(
x

xaxxaxax VPRQ γ

48
©2005-2007 Carlos Guestrin

Interesting fact – Unique value

Slightly surprising fact: There is only one V* that solves
Bellman equation!

there may be many optimal policies that achieve V*

Surprising fact: optimal policies are good everywhere!!!

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

49
©2005-2007 Carlos Guestrin

Solving an MDP

Policy iteration [Howard ‘60, Bellman ‘57]

Value iteration [Bellman ‘57]

Linear programming [Manne ‘60]

…

Solve
Bellman
equation

Optimal
value V*(x)

Optimal
policy π*(x)

Many algorithms solve the Bellman equations:

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

Bellman equation is non-linear!!!

50
©2005-2007 Carlos Guestrin

Value iteration (a.k.a. dynamic programming) –
the simplest of all

Start with some guess V0

Iteratively say:

Stop when ||Vt+1-Vt||∞ · ε
means that ||V∗-Vt+1||∞ · ε/(1-γ)

∑ ∗∗ +=
'

)'(),|'(),(max)(
xa

xaxxaxx VPRV γ

∑+=+
'

1)'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ

51
©2005-2007 Carlos Guestrin

A simple example

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

52
©2005-2007 Carlos Guestrin

Let’s compute Vt(x) for our example

6
5
4
3
2
1

Vt(RF)Vt(RU)Vt(PF)Vt(PU)t

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

∑+=+
'

1)'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ

53
©2005-2007 Carlos Guestrin

Let’s compute Vt(x) for our example

22.4333.5817.6510.036
20.4032.0015.077.225
19.2629.6312.203.8524
18.5525.086.532.033

1914.54.502
1010001

Vt(RF)Vt(RU)Vt(PF)Vt(PU)t

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
1

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

∑+=+
'

1)'(),|'(),(max)(
xa

xaxxaxx tt VPRV γ

54
©2005-2007 Carlos Guestrin

Policy iteration – Another approach for
computing π*

Start with some guess for a policy π0

Iteratively say:
evaluate policy:

improve policy:

Stop when
policy stops changing

usually happens in about 10 iterations
or ||Vt+1-Vt||∞ · ε

means that ||V∗-Vt+1||∞ · ε/(1-γ)

∑+=+
'

1)'(),|'(),(max)(
xa

xaxxaxx tt VPR γπ

∑ =+==
'

)'())(,|'())(,()(
x

xxaxxxaxx tttt VPRV πγπ

55
©2005-2007 Carlos Guestrin

Policy Iteration & Value Iteration:
Which is best ???
It depends.

Lots of actions? Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic? Value Iteration

Best of Both Worlds:
Modified Policy Iteration [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

56
©2005-2007 Carlos Guestrin

LP Solution to MDP
Value computed by linear programming:

One variable V (x) for each state
One constraint for each state x and action a
Polynomial time solution

[Manne ‘60]

:subject to

:minimize

⎩
⎨
⎧ ≥

∑

,∀ ax

x

)(xV

)(xV)(xV

,∀ ax
)(xV ∑+

'

)'(),|'(),(
x

xaxxax VPR γ

57
©2005-2007 Carlos Guestrin

What you need to know

What’s a Markov decision process
state, actions, transitions, rewards
a policy
value function for a policy

computing Vπ

Optimal value function and optimal policy
Bellman equation

Solving Bellman equation
with value iteration, policy iteration and linear
programming

58
©2005-2007 Carlos Guestrin

Acknowledgment

This lecture contains some material from
Andrew Moore’s excellent collection of ML
tutorials:

http://www.cs.cmu.edu/~awm/tutorials

