
1

©2005-2007 Carlos Guestrin 1

Neural Networks

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 14th, 2007

©2005-2007 Carlos Guestrin 2

Logistic regression

 P(Y|X) represented by:

 Learning rule – MLE:
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Sigmoid
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Perceptron as a graph
-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



3

©2005-2007 Carlos Guestrin 5

Linear perceptron
classification region
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Optimizing the perceptron

 Trained to minimize sum-squared error
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Derivative of sigmoid
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The perceptron learning rule

 Compare to MLE:
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Percepton, linear classification,
Boolean functions

 Can learn x1 Ç x2

 Can learn x1 Æ x2

 Can learn any conjunction or disjunction
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Percepton, linear classification,
Boolean functions

 Can learn majority

 Can perceptrons do everything?
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Going beyond linear classification

 Solving the XOR problem
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Hidden layer

 Perceptron:

 1-hidden layer:
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Example data for NN with hidden layer
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Learned weights for hidden layer
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NN for images
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Weights in NN for images
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Forward propagation for 1-hidden
layer - Prediction
 1-hidden layer:
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Gradient descent for 1-hidden layer –
Back-propagation: Computing

Dropped w0 to make derivation simpler
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Gradient descent for 1-hidden layer –
Back-propagation: Computing

Dropped w0 to make derivation simpler
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Multilayer neural networks
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Forward propagation – prediction

 Recursive algorithm
 Start from input layer
 Output of node Vk with parents U1,U2,…:
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Back-propagation – learning

 Just gradient descent!!!
 Recursive algorithm for computing gradient
 For each example

 Perform forward propagation
 Start from output layer
 Compute gradient of node Vk with parents U1,U2,…
 Update weight wi

k
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Many possible response functions

 Sigmoid

 Linear

 Exponential

 Gaussian

 …
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Convergence of backprop

 Perceptron leads to convex optimization
 Gradient descent reaches global minima

 Multilayer neural nets not convex
 Gradient descent gets stuck in local minima
 Hard to set learning rate
 Selecting number of hidden units and layers =  fuzzy process
 NNs falling in disfavor in last few years
 We’ll see later in semester, kernel trick is a good alternative
 Nonetheless, neural nets are one of the most used ML

approaches
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Training set error

 Neural nets represent
complex functions
 Output becomes more complex

with gradient steps
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Overfitting

 Output fits training data “too well”
 Poor test set accuracy

 Overfitting the training data
 Related to bias-variance tradeoff
 One of central problems of ML

 Avoiding overfitting?
 More training data
 Regularization
 Early stopping
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What you need to know about
neural networks
 Perceptron:

 Representation
 Perceptron learning rule
 Derivation

 Multilayer neural nets
 Representation
 Derivation of backprop
 Learning rule

 Overfitting
 Definition
 Training set versus test set
 Learning curve
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Instance-based
Learning
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Why not just use Linear Regression?
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Using data to predict new data
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Nearest neighbor
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Univariate 1-Nearest Neighbor

Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume yi=f(xi) for some
unknown function f.
Given query point xq, your job is to predict
Nearest Neighbor:
1.   Find the closest xi in our set of datapoints
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Here’s a
dataset with
one input, one
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1-Nearest Neighbor is an example of….
 Instance-based learning

Four things make a memory based learner:
 A distance metric
 How many nearby neighbors to look at?
 A weighting function (optional)
 How to fit with the local points?

x1                 y1
x2                 y2
x3                 y3

.

.
xn                yn

A function approximator
that has been around
since about 1910.

To make a prediction,
search database for
similar datapoints, and fit
with the local points.
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1-Nearest Neighbor

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

One
3. A weighting function (optional)

Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.
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Multivariate 1-NN examples

Regression Classification
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Multivariate distance metrics
Suppose the input vectors x1, x2, …xn are two dimensional:
x1 = ( x11 , x12 ) , x2 = ( x21 , x22 ) , …xN = ( xN1 , xN2 ).
One can draw the nearest-neighbor regions in input space.

Dist(xi,xj) =(xi1 – xj1)2+(3xi2 – 3xj2)2

The relative scalings in the distance metric affect region shapes.

Dist(xi,xj) = (xi1 – xj1)2 + (xi2 – xj2)2


