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Logistic regression
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Sigmoid
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Perceptron as a graph

.
.
-
[ | o
"
< s s
a\te

1
: g(wo + Xi:wz‘”i) 1 4 e (ot wizy)
I"’o O(A‘i_PV‘T
®

@ — = gl

©2005-2007 Carlos Guestrin 4




Linear perceptron

classification region
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Optimizing the perceptron
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Derivative of sigmoid
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The perceptron learning rule
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Percepton, linear classification,
_ Boolean functions
.

m Canlearn x; V X,

m Can learn x; A X,

m Can learn any conjunction or disjunction
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Percepton, linear classification,
_ Boolean functions
JEE

m Can learn majority

m Can perceptrons do everything?
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Going beyond linear classification
"
m Solving the XOR problem
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Hidden layer
" J
m Perceptron: out(x) = g(wo+ 3 w;z;)

m 1-hidden layer:
out(x) = g (wo + Zwkg(wé + waﬂ%))
k i
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Example data for NN with hidden layer
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A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??
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Learned weights for hidden layer
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A network:
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Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001 14




NN for images
"

left strt rght up

30x32
inputs

sl el

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces .5

Weights in NN for images
"

Learned Weights

BN

Typical input images
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Forward propagation for 1-hidden

_ Iaxer - Prediction

m 1-hidden layer:
out(x) = g (wo + Zwkg(wlé + Z wf.rz))
k i
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Gradient descent for 1-hidden layer —

Back propagation: Computing * o)
"
(w) = —Z[y — out(x)]?

Dropped w, to make derivation simpler

out(x) = (Z wk/g(z wy aw))

¢ t(x’
oL(W) — sum™_q — [y — out( J)]aou (x7)
owy, 7= owy,
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Gradient descent for 1-hidden layer —
Back-propagation: Computing 7
"

Dropped w, to make derivation simpler

(W) = —Z[y — out(x/)]?
out(x) = (Z wk/g(z wy aw))

AR - z [y — out(x)]

(2 ’L

8out(x3 )
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Multilayer neural networks
" JE

©2005-2007 Carlos Guestrin 20

10



Forward propagation — prediction
" A

m Recursive algorithm

m Start from input layer

m Output of node V|, with parents U,,U,,...:

Vi = Q(waUz)
i
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Back-propagation — learning

" J

m Just gradient descent!!!

m Recursive algorithm for computing gradient

m For each example
Perform forward propagation
Start from output layer
Compute gradient of node V, with parents U,,U,,...
Update weight wk
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Many possible response functions
"

m Sigmoid

m Linear

m Exponential

m Gaussian
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Convergence of backprop
* J
m Perceptron leads to convex optimization
Gradient descent reaches global minima

m Multilayer neural nets not convex
Gradient descent gets stuck in local minima
Hard to set learning rate
Selecting number of hidden units and layers = fuzzy process
NNs falling in disfavor in last few years
We'll see later in semester, kernel trick is a good alternative
Nonetheless, neural nets are one of the most used ML
approaches
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Training set error
" J
m Neural nets represent
complex functions

Output becomes more complex
with gradient steps
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Overfitting
" JE

m Output fits training data “too well”
Poor test set accuracy

m Overfitting the training data
Related to bias-variance tradeoff
One of central problems of ML

m Avoiding overfitting?
More training data
Regularization
Early stopping
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What you need to know about
neural networks
"

m Perceptron:
Representation
Perceptron learning rule
Derivation

m Multilayer neural nets
Representation
Derivation of backprop
Learning rule

m Overfitting
Definition
Training set versus test set
Learning curve
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Instance-based
Learning
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Why not just use Linear Regression?
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Using data to predict new data
N

A
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Nearest neighbor
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Univariate 1-Nearest Neighbor

Given datapoints (x,y;) (X5 Y,).-(Xy, Yn).Where we assume y=f(x;) for some

unknown function f.

Given query point x_, your job is to predict e ( )
query point x,, your | p y=fl,

Nearest Neighbor:

1. Find the closest x; in our set of datapoints

z'(nn)= argmin‘xi - xq‘

2. Predict V = Yi(u)

2 @
Here's a \%e“"gﬁg“‘
. T
dataset with :‘Ep
: Here, this i
one input, one e thgg,g?'ez;s
Output and four datapoint
datapoints.
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1-Nearest Neighbor is an example of....
Instance-based learning
" JE
A function approximator

~ N

that has been around \ /
X
X
X

since about 1910. 1 —>Yy;
2 — Y,

To make a prediction, 5 —Y,

search database for
similar datapoints, and fit
with the local points.

X, —»Ys

Four things make a memory based learner:
[ A distance metric

[ How many nearby neighbors to look at?
n A weighting function (optional)

n How to fit with the local points?
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1-Nearest Neighbor

“ J
Four things make a memory based learner:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
One

3. A weighting function (optional)
Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.
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Multivariate 1-NN examples
" JdE

Regression Classification

©2005-2007 Carlos Guestrin

35

Multivariate distance metrics
" J

Suppose the input vectors x1, x2, ...xn are two dimensional:
X; = (X110 X12) 0 X = (Xpp, Xp2) 5 - Xy = (Xpg o Xz )-
One can draw the nearest-neighbor regions in input space.

[

The relative scalings in the distance metric affect region shapes.
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Dist(x;,x;) = (X;s = X;1)* + (Xip = X;2)*  Dist(x;,X;) =(X;; — X;1)2+(3x;, — 3x;,)?
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