

Sigmoid
$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{-(w_0 + \sum_i w_i x_i)}}$$

$$w_0 = 2, w_1 = 1 \qquad w_0 = 0, w_1 = 1 \qquad w_0 = 0, w_1 = 0.5$$

Linear perceptron classification region
$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{-(w_0 + \sum_i w_i x_i)}}$$

$$w_0 \neq w_i x_i$$

$$w_0 \neq w_i x_i \neq w_i x_i \neq w_i x_i$$

Optimizing the perceptron

Trained to minimize sum-squared error squared

$$\ell(W) = \frac{1}{2} \sum_{j \ge i}^{n} [y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j})]^{2}$$

$$\frac{1}{2} \sum_{j \ge i}^{n} [y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j})]^{2}$$

$$\frac{1}{2} \sum_{j \ge i}^{n} [y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j})]^{2}$$

$$\frac{1}{2} \sum_{j \ge i}^{n} [y^{j} - g(w_{0} + \sum_{i} w_{i} x_{i}^{j})]^{2}$$

2005-2007 Carlos Guestrin

Derivative of sigmoid

$$\frac{\partial \ell(W)}{\partial w_i} = -\sum_{j} [y^j - g(w_0 + \sum_{i} w_i x_i^j)] \ x_i^j \ g'(w_0 + \sum_{i} w_i x_i^j)$$
$$g(x) = \frac{1}{1 + e^{-x}}$$

©2005-2007 Carlos Guestri

7

The perceptron learning rule

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$$

$$\delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)] g^j (1 - g^j)$$

$$g^j = g(w_0 + \sum_i w_i x_i^j)$$

Compare to MLE:

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$$
 $\delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]$

2005-2007 Carlos Guestrin

Percepton, linear classification, Boolean functions

- Can learn x₁ ∨ x₂
- Can learn $x_1 \wedge x_2$
- Can learn any conjunction or disjunction

©2005-2007 Carlos Guestrin

9

Percepton, linear classification, Boolean functions

- Can learn majority
- Can perceptrons do everything?

©2005-2007 Carlos Guestrin

Going beyond linear classification

Solving the XOR problem

©2005-2007 Carlos Guestrin

11

Hidden layer

- Perceptron: $out(\mathbf{x}) = g(w_0 + \sum_i w_i x_i)$
- 1-hidden layer: $out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$

©2005-2007 Carlos Guestrin

Forward propagation for 1-hidden layer - Prediction

1-hidden layer:

out(x) =
$$g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

©2005-2007 Carlos Guestrin

17

Gradient descent for 1-hidden layer – Back-propagation: Computing $\frac{\partial \ell(W)}{\partial w}$

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$

Dropped w_0 to make derivation simpler

$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'}g(\sum_{i'} w_{i'}^{k'} x_{i'})\right)$$

$$\frac{\partial \ell(W)}{\partial w_k} = sum_{j=1}^m - [y - out(\mathbf{x}^j)] \frac{\partial out(\mathbf{x}^j)}{\partial w_k}$$

©2005-2007 Carlos Guestrin

Gradient descent for 1-hidden layer – Back-propagation: Computing $\frac{\partial \ell(W)}{\partial w_i^k}$ $\ell(W) = \frac{1}{2} \sum_j [y^j - out(\mathbf{x}^j)]^2$ Dropped w₀ to make derivative to make derivative to the second secon

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$

Dropped w₀ to make derivation simpler

$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'}g(\sum_{i'} w_{i'}^{k'} x_{i'})\right)$$

$$\frac{\partial \ell(W)}{\partial w_i^k} = \sum_{j=1}^m -[y - out(\mathbf{x}^j)] \frac{\partial out(\mathbf{x}^j)}{\partial w_i^k}$$

Multilayer neural networks

Forward propagation – prediction

- Recursive algorithm
- Start from input layer
- Output of node V_k with parents U₁,U₂,...:

$$V_k = g\left(\sum_i w_i^k U_i\right)$$

©2005-2007 Carlos Guestrin

21

Back-propagation - learning

- Just gradient descent!!!
- Recursive algorithm for computing gradient
- For each example
 - □ Perform forward propagation
 - ☐ Start from output layer
 - \square Compute gradient of node V_k with parents $U_1, U_2, ...$
 - \square Update weight w_i^k

©2005-2007 Carlos Guestrin

Many possible response functions

- Sigmoid
 - Linear
 - Exponential
 - Gaussian
 - •

©2005-2007 Carlos Guestrin

23

Convergence of backprop

- Perceptron leads to convex optimization
 - □ Gradient descent reaches global minima
- Multilayer neural nets not convex
 - ☐ Gradient descent gets stuck in local minima
 - □ Hard to set learning rate
 - □ Selecting number of hidden units and layers = fuzzy process
 - □ NNs falling in disfavor in last few years
 - □ We'll see later in semester, *kernel trick* is a good alternative
 - □ Nonetheless, neural nets are one of the most used ML approaches

©2005-2007 Carlos Guestrin

Training set error

- Neural nets represent complex functions
 - ☐ Output becomes more complex with gradient steps

©2005-2007 Carlos Guestrin

25

Overfitting

- Output fits training data "too well"
 - □ Poor test set accuracy
- Overfitting the training data
 - □ Related to bias-variance tradeoff
 - $\hfill\square$ One of central problems of ML
- Avoiding overfitting?
 - More training data
 - □ Regularization
 - □ Early stopping

©2005-2007 Carlos Guestrin

What you need to know about neural networks Perceptron: □ Representation □ Perceptron learning rule □ Derivation Multilayer neural nets □ Representation □ Derivation of backprop Learning rule Overfitting □ Definition ☐ Training set versus test set □ Learning curve ©2005-2007 Carlos Guestrin 27

1-Nearest Neighbor is an example of.... Instance-based learning

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

Four things make a memory based learner:

- A distance metric
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to fit with the local points?

©2005-2007 Carlos Guestrin

33

1-Nearest Neighbor

Four things make a memory based learner:

- 1. A distance metric
 - **Euclidian (and many more)**
- 2. How many nearby neighbors to look at?

One

- 3. A weighting function (optional)
 - Unused
- 4. How to fit with the local points?
 - Just predict the same output as the nearest neighbor.

©2005-2007 Carlos Guestrin

Multivariate 1-NN examples

Regression

Classification

©2005-2007 Carlos Guestrin

35

Multivariate distance metrics

Suppose the input vectors x1, x2, ...xn are two dimensional:

$$\mathbf{x}_1 = (\ x_{11} \ , \ x_{12} \) \ , \ \mathbf{x}_2 = (\ x_{21} \ , \ x_{22} \) \ , \ ... \\ \mathbf{x}_N = (\ x_{N1} \ , \ x_{N2} \).$$

One can draw the nearest-neighbor regions in input space.

$$Dist(\mathbf{x}_{i},\mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} \quad Dist(\mathbf{x}_{i},\mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (3x_{i2} - 3x_{j2})^{2}$$

$$Dist(\mathbf{x}_{i},\mathbf{x}_{i}) = (x_{i1} - x_{i1})^{2} + (3x_{i2} - 3x_{i2})^{2}$$

The relative scalings in the distance metric affect region shapes.

©2005-2007 Carlos Guestrin