Neural Networks

Machine Learning - 10701/15781
Carlos Guestrin, X0XO
Carnegie Mellon University
February $14^{\text {th }}, 2007$

Logistic regression

$\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ represented by:

$$
\begin{aligned}
P(Y=1 \mid x, W) & =\frac{1}{1+e^{-\left(w_{0}+\sum_{i} w_{i} x_{i}\right)}} \\
& =g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)
\end{aligned}
$$

■ Learning rule - MLE:
$\underset{\substack{\text { compute } \\ \text { derivative }}}{ } \frac{\partial \ell(W)}{\partial w_{i}}=\sum_{j} x_{i}^{j}\left[y^{j}-P\left(Y^{j}=1 \mid x^{j}, W\right)\right]$

$w_{i}^{\left(t_{i}\right)} \leftarrow w_{i}^{(t)}+\eta \sum_{j} x_{i}^{j} \delta^{j}$, truth $/$ pradiction
$\delta^{j}=y^{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)$

Sigmoid

$$
g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\left(w_{0}+\sum_{i} w_{i} x_{i}\right)}}
$$

Perceptron as a graph

Optimizing the perceptron

- Trained to minimize sum-squared errof
squarad

$$
\ell(W)=\frac{1}{2} \sum_{\substack{j=1 \\ j_{\text {datapoints }}^{m}}}^{m}[\underbrace{j}_{\text {truth }}-g w_{\text {prediction }}^{g} w_{0}+\sum_{i} w_{i} x_{i}^{j})^{2}
$$

$\frac{\partial l(w)}{\partial w_{\mu}}=\frac{\partial}{\partial w_{\mu}}\left[\frac{1}{2} \sum_{j}\left[y_{j}-g\left(\omega_{0}+\sum_{1} w_{i} x_{i}^{j}\right)\right]^{2}\right]$
$=\frac{1}{2} \sum_{j} \frac{\partial}{\partial w_{m}}\left[y_{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right]\right]^{2}$

The perceptron learning rule

Percepton, linear classification,

Boolean functions $w_{u}+\sum_{i} w_{i} x_{i}<0 \Rightarrow f_{i} l_{s e}$

- Can learn $x_{1} \vee x_{2}=y$
- Can learn $\stackrel{1}{x_{1} x_{1} \lambda x_{2}=y}$

- Can learn any conjunction or disjunction
$x_{1} \vee x_{2} \vee \ldots \vee x_{n}$
$x_{1} \underbrace{-0.5}_{1}$
\vdots
x_{n}

Percepton, linear classification, Boolean functions

- Can learn majority $\quad \sum_{i} x_{i}>\frac{n}{2}$
- Can perceptrons do everything?

XOR $\equiv y=x_{1} \wedge \imath x_{2} \vee \neg x_{1} \wedge x_{2}$

Going beyond linear classification

- Solving the XOR problem

Hidden layer

Perceptron: \quad out $(\mathbf{x})=g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)$

- 1-hidden layer:

$$
\operatorname{out}(\mathbf{x})=g(w_{0}+\sum_{k} w_{k} \underbrace{g\left(w_{0}^{k}+\sum_{i} w_{i}^{k} x_{i}\right)}_{V_{k}})
$$

Example data for NN with hidden layer

Learned weights for hidden layer

A network: activation of V_{1}, V_{2}, V_{3} correspond to
binary encading

Learned hidden laver representation:

Input	Hidden Values	Output
10000000	. 89.04 .08	$\rightarrow 10000000$
01000000	. 01.11 . 88	$\rightarrow 01000000$
00100000	. $01.97 \quad .27$	$\rightarrow 00100000$
00010000	.99 .97	$\rightarrow 00010000$
00001000	. 03 . 05 . 02	$\rightarrow 00001000$
00000100	. 22.99 .99	$\rightarrow 00000100$
00000010	$\begin{array}{lll}.80 & .01\end{array} .98$	$\rightarrow 00000010$
00000001	. $60.94 \quad .01$	$\rightarrow 00000001$

NN for images

Typical input images
90% accurate learning head pose, and recognizing 1-of-20 faces

Weights in NN for images

Typical input images
©2005-2007 Carlos Guestrin

Multilayer neural networks

Forward propagation - prediction

- Recursive algorithm
- Start from input layer
- Output of node $\underline{V_{k}}$ with parents $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots$:

$$
V_{k}=g\left(\sum_{i} w_{i}^{k} U_{i}\right)
$$

Back-propagation - learning

■ Just gradient descent!!!

- Recursive algorithm for computing gradient
- For each example
\square Perform forward propagation
Start from output layer
\square Compute gradient of node V_{k} with parents $\underline{\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots}$Update weight $\mathrm{w}_{j}^{\mathrm{k}}$

Many possible response functions

Sigmoid $g\left(w_{s}+\sum_{i} w_{i} x_{i}\right)$

- Linear $w_{0}+\sum_{i} w_{i} x_{i}$

- Exponential

$$
e^{w_{0}+\sum_{i} w_{i} x_{i}}
$$

- Gaussian

■.
... Threstold

Convergence of backprop

- Perceptron leads to convex optimization

\square Gradient descent reaches global minima
- Multilayer neural nets not convexGradient descent gets stuck in local minima
Hard to set learning rate
Selecting number of hidden units and layers = fuzzy process
NNs falling in disfavor in last few years
We'll see later in semester, kernel trick is a good alternative
Nonetheless, neural nets are one of the most used ML approaches

Training set error Ourxting

- Neural nets represent complex functions
\square Output becomes more complex
with gradient steps

Overfitting

- Output fits training data "too well"

Poor test set accuracy

- Overfitting the training data

Related to bias-variance tradeoff
One of central problems of ML

- Avoiding overfitting?

More training data
Regularization, regnlarize w.r.t. w^{2} (typically)
Early stopping momentum...

What you need to know about neural networks

- Perceptron:
\square Representation
\square Perceptron learning rule
\square Derivation
- Multilayer neural nets
\square Representation
\square Derivation of backprop
\square Learning rule
- Overfitting
\square Definition
\square Training set versus test set
\square Learning curve

Using data to predict new data

Nearest neighbor

Univariate 1-Nearest Neighbor

Given datapoints $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) . .\left(x_{N}, y_{N}\right)$, where we assume $y_{i}=f\left(x_{i}\right)$ for some unknown function f.
Given query point x_{q}, your job is to predict $\hat{y} \approx f\left(x_{q}\right)$ Nearest Neighbor:

1. Find the closest x_{i} in our set of datapoints

$$
i(n n)=\underset{i}{\operatorname{argmin}}\left|x_{i}-x_{q}\right|
$$

2. Predict $\hat{y}=y_{i(n n)}$

Here's a dataset with one input, one output and four datapoints.

1-Nearest Neighbor is an example of.... Instance-based learning

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

Four things make a memory based learner:

- A distance metric
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to fit with the local points?

1-Nearest Neighbor

Four things make a memory based learner:

1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

One
3. A weighting function (optional)

Unused
4. How to fit with the local points?

Just predict the same output as the nearest neighbor.

Multivariate 1-NN examples

Regression
Classification

Multivariate distance metrics

Suppose the input vectors $\mathrm{x} 1, \mathrm{x} 2, \ldots \mathrm{xn}$ are two dimensional:
$\mathbf{x}_{1}=\left(x_{11}, x_{12}\right), \mathbf{x}_{2}=\left(x_{21}, x_{22}\right), \ldots \mathbf{x}_{N}=\left(x_{N 1}, x_{N 2}\right)$.
One can draw the nearest-neighbor regions in input space.

$\operatorname{Dist}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(x_{i 1}-x_{j 1}\right)^{2}+\left(x_{i 2}-x_{j 2}\right)^{2}$

$\operatorname{Dist}\left(\mathbf{x}_{i} ; \mathbf{x}_{j}\right)=\left(x_{i 1}-x_{j 1}\right)^{2}+\left(3 x_{i 2}-3 x_{j 2}\right)^{2}$

The relative scalings in the distance metric affect region shapes.

