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Logistic regression

P(Y|X) represented by:

Learning rule – MLE:
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Sigmoid
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Perceptron as a graph
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Linear perceptron
classification region
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Optimizing the perceptron

Trained to minimize sum-squared error
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Derivative of sigmoid
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The perceptron learning rule

Compare to MLE:



5

©2005-2007 Carlos Guestrin 9

Percepton, linear classification, 
Boolean functions
Can learn x1 ∨ x2

Can learn x1 ∧ x2

Can learn any conjunction or disjunction
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Percepton, linear classification, 
Boolean functions
Can learn majority

Can perceptrons do everything?
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Going beyond linear classification

Solving the XOR problem
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Hidden layer

Perceptron:

1-hidden layer:  
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Example data for NN with hidden layer
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Learned weights for hidden layer
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NN for images
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Weights in NN for images
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Forward propagation for 1-hidden 
layer - Prediction

1-hidden layer:  
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Gradient descent for 1-hidden layer –
Back-propagation: Computing

Dropped w0 to make derivation simpler
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Gradient descent for 1-hidden layer –
Back-propagation: Computing

Dropped w0 to make derivation simpler
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Multilayer neural networks
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Forward propagation – prediction

Recursive algorithm
Start from input layer
Output of node Vk with parents U1,U2,…:
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Back-propagation – learning

Just gradient descent!!! 
Recursive algorithm for computing gradient
For each example

Perform forward propagation 
Start from output layer
Compute gradient of node Vk with parents U1,U2,…
Update weight wi

k
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Many possible response functions

Sigmoid

Linear

Exponential

Gaussian

…
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Convergence of backprop

Perceptron leads to convex optimization
Gradient descent reaches global minima

Multilayer neural nets not convex
Gradient descent gets stuck in local minima
Hard to set learning rate
Selecting number of hidden units and layers =  fuzzy process
NNs falling in disfavor in last few years
We’ll see later in semester, kernel trick is a good alternative
Nonetheless, neural nets are one of the most used ML 
approaches
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Training set error

Neural nets represent 
complex functions

Output becomes more complex 
with gradient steps
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Overfitting

Output fits training data “too well”
Poor test set accuracy

Overfitting the training data 
Related to bias-variance tradeoff 
One of central problems of ML

Avoiding overfitting?
More training data
Regularization
Early stopping
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What you need to know about 
neural networks

Perceptron:
Representation
Perceptron learning rule
Derivation

Multilayer neural nets
Representation
Derivation of backprop
Learning rule

Overfitting
Definition
Training set versus test set
Learning curve
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Instance-based 
Learning
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Why not just use Linear Regression?
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Using data to predict new data
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Nearest neighbor
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Univariate 1-Nearest Neighbor

Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume yi=f(xi) for some 
unknown function f.
Given query point xq, your job is to predict 
Nearest Neighbor:
1.   Find the closest xi in our set of datapoints

( )qxfy ≈ˆ

( ) qi
i

xxnni −= argmin

( )nniyy =ˆ2.  Predict
Here’s a 
dataset with 
one input, one 
output and four 
datapoints.
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1-Nearest Neighbor is an example of….
Instance-based learning

Four things make a memory based learner:
A distance metric
How many nearby neighbors to look at?
A weighting function (optional)
How to fit with the local points?

x1 y1
x2 y2
x3 y3

.

.
xn yn

A function approximator 
that has been around 
since about 1910.

To make a prediction, 
search database for 
similar datapoints, and fit 
with the local points.
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1-Nearest Neighbor

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

One
3. A weighting function (optional)

Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.
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Multivariate 1-NN examples

Regression Classification
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Multivariate distance metrics
Suppose the input vectors x1, x2, …xn are two dimensional:
x1 = ( x11 , x12 ) , x2 = ( x21 , x22 ) , …xN = ( xN1 , xN2 ).
One can draw the nearest-neighbor regions in input space.

Dist(xi,xj) =(xi1 – xj1)2+(3xi2 – 3xj2)2

The relative scalings in the distance metric affect region shapes.

Dist(xi,xj) = (xi1 – xj1)2 + (xi2 – xj2)2


