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Optimal classification

 Theorem: Bayes classifier hBayes is optimal!

 That is

 Proof:
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How hard is it to learn the optimal
classifier?
 Data =

 How do we represent these? How many parameters?
 Prior, P(Y):

 Suppose Y is composed of k classes

 Likelihood, P(X|Y):
 Suppose X is composed of n binary features

 Complex model ! High variance with limited data!!!
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Conditional Independence

 X is conditionally independent of Y  given Z, if
the probability distribution governing X is
independent of the value of Y, given the value of Z

 e.g.,

 Equivalent to:
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The Naïve Bayes assumption

 Naïve Bayes assumption:
 Features are independent given class:

 More generally:

 How many parameters now?
 Suppose X is composed of n binary features
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The Naïve Bayes Classifier

 Given:
 Prior P(Y)
 n conditionally independent features X given the class Y
 For each Xi, we have likelihood P(Xi|Y)

 Decision rule:

 If assumption holds, NB is optimal classifier!
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MLE for the parameters of NB

 Given dataset
 Count(A=a,B=b) Ã number of examples where A=a and B=b

 MLE for NB, simply:
 Prior: P(Y=y) =

 Likelihood: P(Xi=xi|Yi=yi) =
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Subtleties of NB classifier 1 –
Violating the NB assumption

 Usually, features are not conditionally independent:

 Actual probabilities P(Y|X) often biased towards 0 or 1
 Nonetheless, NB is the single most used classifier out

there
 NB often performs well, even when assumption is violated
 [Domingos & Pazzani ’96] discuss some conditions for good

performance
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Subtleties of NB classifier 2 –
Insufficient training data

 What if you never see a training instance where
X1=a when Y=b?
 e.g., Y={SpamEmail}, X1={‘Enlargement’}
 P(X1=a | Y=b) = 0

 Thus, no matter what the values X2,…,Xn take:
 P(Y=b | X1=a,X2,…,Xn) = 0

 What now???
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MAP for Beta distribution

 MAP: use most likely parameter:

 Beta prior equivalent to extra thumbtack flips
 As N → 1, prior is “forgotten”
 But, for small sample size, prior is important!
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Bayesian learning for NB
parameters – a.k.a. smoothing

 Dataset of N examples
 Prior

 “distribution” Q(Xi,Y), Q(Y)
 m “virtual” examples

 MAP estimate
 P(Xi|Y)

 Now, even if you never observe a feature/class, posterior
probability never zero
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Text classification

 Classify e-mails
 Y = {Spam,NotSpam}

 Classify news articles
 Y = {what is the topic of the article?}

 Classify webpages
 Y = {Student, professor, project, …}

 What about the features X?
 The text!
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Features X are entire document –
Xi for ith word in article

©2005-2007 Carlos Guestrin 14

NB for Text classification

 P(X|Y) is huge!!!
 Article at least 1000 words, X={X1,…,X1000}
 Xi represents ith word in document, i.e., the domain of Xi is entire

vocabulary, e.g., Webster Dictionary (or more), 10,000 words, etc.

 NB assumption helps a lot!!!
 P(Xi=xi|Y=y) is just the probability of observing word xi in a

document on topic y
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Bag of words model

 Typical additional assumption – Position in document
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y)
 “Bag of words” model – order of words on the page ignored
 Sounds really silly, but often works very well!

When the lecture is over, remember to wake up the 
person sitting next to you in the lecture room.
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Bag of words model

 Typical additional assumption – Position in document
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y)
 “Bag of words” model – order of words on the page ignored
 Sounds really silly, but often works very well!

in is lecture lecture next over person remember room 
sitting the the the to to up wake when you
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Bag of Words Approach

aardvark 0

about 2

all 2

Africa 1

apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0
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NB with Bag of Words for text
classification
 Learning phase:

 Prior P(Y)
 Count how many documents you have from each topic (+

prior)

 P(Xi|Y)
 For each topic, count how many times you saw word in

documents of this topic (+ prior)

 Test phase:
 For each document

 Use naïve Bayes decision rule
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Twenty News Groups results
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Learning curve for Twenty News
Groups
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What if we have continuous Xi ?

Eg., character recognition: Xi is ith pixel

Gaussian Naïve Bayes (GNB):

Sometimes assume variance
 is independent of Y (i.e., σi),
 or independent of Xi (i.e., σk)
 or both (i.e., σ)
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Estimating Parameters:
Y discrete, Xi continuous

Maximum likelihood estimates: jth training
example

δ(x)=1 if x true,
else 0



12

©2005-2007 Carlos Guestrin 23

Example: GNB for classifying mental states

~1 mm resolution

~2 images per sec.

15,000 voxels/image

non-invasive, safe

measures Blood
Oxygen Level
Dependent (BOLD)
response

Typical
impulse
response

10 sec

[Mitchell et al.]
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Brain scans can
track activation
with precision and
sensitivity

[Mitchell et al.]
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Gaussian Naïve Bayes: Learned µvoxel,word
P(BrainActivity | WordCategory = {People,Animal})

[Mitchell et al.]
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Learned Bayes Models – Means for
P(BrainActivity | WordCategory)

Animal wordsPeople words

Pairwise classification accuracy: 85%
[Mitchell et al.]
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What you need to know about
Naïve Bayes

 Types of learning problems
 Learning is (just) function approximation!

 Optimal decision using Bayes Classifier
 Naïve Bayes classifier

 What’s the assumption
 Why we use it
 How do we learn it
 Why is Bayesian estimation important

 Text classification
 Bag of words model

 Gaussian NB
 Features are still conditionally independent
 Each feature has a Gaussian distribution given class
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Generative v. Discriminative
classifiers – Intuition

 Want to Learn: h:X a Y
 X – features
 Y – target classes

 Bayes optimal classifier – P(Y|X)
 Generative classifier, e.g., Naïve Bayes:

 Assume some functional form for P(X|Y), P(Y)
 Estimate parameters of P(X|Y), P(Y) directly from training data
 Use Bayes rule to calculate P(Y|X= x)
 This is a ‘generative’ model

 Indirect computation of P(Y|X) through Bayes rule
 But, can generate a sample of the data, P(X) = ∑y P(y) P(X|y)

 Discriminative classifiers, e.g., Logistic Regression:
 Assume some functional form for P(Y|X)
 Estimate parameters of P(Y|X) directly from training data
 This is the ‘discriminative’ model

 Directly learn P(Y|X)
 But cannot obtain a sample of the data, because P(X) is not available
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Logistic Regression
Logistic
function
(or Sigmoid):

 Learn P(Y|X) directly!
 Assume a particular functional form
 Sigmoid applied to a linear function

of the data:

Z

Features can be discrete or continuous!
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Understanding the sigmoid
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Logistic Regression –
a Linear classifier
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Very convenient!

implies

implies

implies

linear
classification

rule!
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Logistic regression v. Naïve Bayes

 Consider learning f: X  Y, where
  X is a vector of real-valued features, < X1 … Xn >
  Y is boolean

 Could use a Gaussian Naïve Bayes classifier
  assume all Xi are conditionally independent given Y
  model P(Xi | Y = yk) as Gaussian N(µik,σi)
  model P(Y) as Bernoulli(θ,1-θ)

  What does that imply about the form of P(Y|X)?
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Logistic regression v. Naïve Bayes

 Consider learning f: X  Y, where
  X is a vector of real-valued features, < X1 … Xn >
  Y is boolean

 Could use a Gaussian Naïve Bayes classifier
  assume all Xi are conditionally independent given Y
  model P(Xi | Y = yk) as Gaussian N(µik,σi)
  model P(Y) as Bernoulli(θ,1-θ)

  What does that imply about the form of P(Y|X)?

Cool!!!!
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Derive form for P(Y|X) for continuous Xi
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Ratio of class-conditional probabilities
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Derive form for P(Y|X) for continuous Xi
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Gaussian Naïve Bayes v. Logistic Regression

 Representation equivalence
 But only in a special case!!! (GNB with class-independent variances)

 But what’s the difference???
 LR makes no assumptions about P(X|Y) in learning!!!
 Loss function!!!

 Optimize different functions ! Obtain different solutions

Set of Gaussian 
Naïve Bayes parameters

(feature variance 
independent of class label)

Set of Logistic 
Regression parameters
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Logistic regression for more
than 2 classes

 Logistic regression in more general case, where
Y 2 {Y1 ... YR} : learn R-1 sets of weights
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Logistic regression more generally

 Logistic regression in more general case, where Y 2
{Y1 ... YR} : learn R-1 sets of weights

for k<R

for k=R (normalization, so no weights for this class)

Features can be discrete or continuous!
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Loss functions: Likelihood v.
Conditional Likelihood

 Generative (Naïve Bayes) Loss function:
Data likelihood

 Discriminative models cannot compute P(xj|w)!
 But, discriminative (logistic regression) loss function:

Conditional Data Likelihood

 Doesn’t waste effort learning P(X) – focuses on P(Y|X) all that matters
for classification
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Expressing Conditional Log Likelihood
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Maximizing Conditional Log Likelihood

Good news: l(w) is concave function of w ! no locally optimal
solutions

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions easy to optimize
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Optimizing concave function –
Gradient ascent

 Conditional likelihood for Logistic Regression is concave
! Find optimum with gradient ascent

 Gradient ascent is simplest of optimization approaches
 e.g., Conjugate gradient ascent much better (see reading)

Gradient:

Update rule:

Learning rate, η>0
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Maximize Conditional Log Likelihood:
Gradient ascent

Gradient ascent algorithm: iterate until change < ε

   For all i,

repeat

©2005-2007 Carlos Guestrin 46

That’s all M(C)LE.  How about MAP?

 One common approach is to define priors on w
 Normal distribution, zero mean, identity covariance
 “Pushes” parameters towards zero

 Corresponds to Regularization
 Helps avoid very large weights and overfitting
 Explore this in your homework
 More on this later in the semester

 MAP estimate
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Gradient of M(C)AP
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MLE vs MAP
 Maximum conditional likelihood estimate

 Maximum conditional a posteriori estimate
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What you should know about
Logistic Regression (LR)

 Gaussian Naïve Bayes with class-independent variances
representationally equivalent to LR
 Solution differs because of objective (loss) function

 In general, NB and LR make different assumptions
 NB: Features independent given class ! assumption on P(X|Y)
 LR: Functional form of P(Y|X), no assumption on P(X|Y)

 LR is a linear classifier
 decision rule is a hyperplane

 LR optimized by conditional likelihood
 no closed-form solution
 concave ! global optimum with gradient ascent
 Maximum conditional a posteriori corresponds to regularization
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