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Optimal classification

* JE
m Theorem: Bayes classifier hg, ¢ is optimal! W“Jg::
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How hard is it to learn the optimal
_ classif PV

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
| Data = Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change  Yes

m How do we represent these? How many Earameters?
Prior, P(Y): (-1 Pro Q%b Ok

= Suppose Y is composed of k classes

+ o
ikell Coer-l) & J” fj -
Lf eSISF?;o(js’el:;(()l(sIngposed &)f n blnary?eatures | "\b ﬁb’d"‘élﬁ
Qw go-ch

m Complex model — High variance with limited data!!!

Conditional Independence
" A

m X is conditionally independent of Y given Z, if
the probability distribution governing X is
independent of the value of Y, given the value of Z

(Vi,j,k)P(X =i|]Y = j,Z=k) = P(X =i|Z =k)

® e.9., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
1 Rl = Thunde indeptadinkof
veind ngzn l?ﬁ}r}mm\)
m Equivalent to: RS
P(X,)Y | Z)=P(X | 2)P(Y | Z)
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The Naive Bayes assumption
"

2 M \/LA_\()

= Naive Bayes assumption: Y L¥z |
Featuurgs apr(e independent given class:
\ 1o

P(X1, Xo|Y) = P(Xl‘XQaY)P(XQDi))
= P(X1]Y)P(X2]Y)
More generally: i \/\ SR (R ANV

P(X1.. Xn|Y) = HP(X1|Y) 2Pe:j)<
7 lelhed \v&im izl J (T
] Hon%any parameters now? fwzos:::
= Suppose X is composed of n binary features KI
\Q,("Z,“—\\ partmtas w2 D <N
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The Naive Bayes Classifier
" JE
m Given:
Prior P(Y)
n conditionally independent features X given the class Y
For each X;, we have likelihood P(X||Y)

m Decision rule:
y'=hyp(x) = argmaxP(y)P(z1,...,2n|y)

= argmax P(y) H P(z;ly)

m If assumption holds, NB is optimal classifier!
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MLE for the parameters of NB
* JdE

m Given dataset
Count(A=a,B=b) < number of examples where A=a and B=b

m MLE for NB, simply:
Prior: P(Y=y) =

Likelihood: P(X=xY=y;) =
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Subtleties of NB classifier 1 —

_ Violatinﬁ the NB assumption

m Usually, features are not conditionally independent:

P(X1..XnlY) # HP(Xz'lY)

m Actual probabilities P(Y|X) often biased towards O or 1
m Nonetheless, NB is the single most used classifier out
there
NB often performs well, even when assumption is violated

[Domingos & Pazzani '96] discuss some conditions for good
performance
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Subtleties of NB classifier 2 —
Insufficient training data
" N

m What if you never see a training instance where
X,=a when Y=b?
e.g., Y={SpamEmail}, X,={'Enlargement’}
P(X,=a | Y=b) =0
m Thus, no matter what the values X,,..., X, take:
P(Y=b | X,=a,X,,...,.X,) =0

m \What now???
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Beta(30,20)

MAP for Beta distribution
" R

Kol - liky
eﬁH—i_aH_l(l _ e)ﬂT_.I_aT_l parameter value
PO |D) = ~ Beta(By+ay, Brtar)

BBy + am, Br + ar)

oy =3
X1 =2

= MAP: use most likely parameter: PH B ek

f =argmaxP(|D) = Lt~
0 BH tly t prFdr -2

m Beta prior equivalent to extra thumbtack flips
m As N — oo, prior is “forgotten”
m But, for small sample size, prior is important!
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Bayesian learning for NB

_ Earameters — a.k.a. smoothing

m Dataset of N examples
m Prior
“distribution” Q(X,,Y), Q(Y)
m “virtual” examples

m MAP estimate
P(XY)

m Now, even if you never observe a feature/class, posterior
probability never zero
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Text classification
" A
m Classify e-mails
Y = {Spam,NotSpam}
m Classify news articles
Y = {what is the topic of the article?}
m Classify webpages
Y = {Student, professor, project, ...}

m \What about the features X?
The text!
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Features X are entire document —

_ X-| for ith word in article

Article from rec.sport.hockey

Path: cantaloupe.srv.cs.cmu.edu'!das-news.harvard.e
From: xxxQyyy.zzz.edu (John Doe)

Subject: Re: This year’s biggest and worst (opinic
Date: 5 Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most
obvious candidate for pleasant surprise is Alex
Zhitnik. He came highly touted as a defensive
defenseman, but he’s clearly much more than that.
Great skater and hard shot (though wish he were
more accurate). In fact, he pretty much allowed
the Kings to trade away that huge defensive
liability Paul Coffey. Kelly Hrudey is only the
biggest disappointment if you thought he was any
good to begin with. But, at best, he’s only a
mediocre goaltender. A better choice would be
Tomas Sandstrom, though not through any fault of

his own, but because some thugs in Toronto decided
©2005-2007 Carlos Guestrin 13

NB for Text classification
" JEE 00
m P(X|Y) is huge!!!

Article at least 1000 words, X={Xj,...,X;000}

X; represents i"word in document, i.e., the domain of X; is entire
vocabulary, e.g., Webster Dictionary (or more), 10,000 words, etc.

m NB assumption helps a lot!!!
P(Xi=x;|Y=y) is just the probability of observing word x; in a
document on topic y

LengthDoc

hyp(x) = arg manP(y) T Plxly)
i=1
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Bag of words model
" J

m Typical additional assumption — Position in document
doesn’t matter: P(X;=x|Y=y) = P(X,=x|Y=y)
“Bag of words” model — order of words on the page ignored
Sounds really silly, but often works very well!

LengthDoc

P(y) I Pxily)

=1

When the lecture is over, remember to wake up the
person sitting next to you in the lecture room.
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Bag of words model
" J

m Typical additional assumption — Position in document
doesn’t matter: P(X;=x|Y=y) = P(X,=x|Y=y)
“Bag of words” model — order of words on the page ignored
Sounds really silly, but often works very well!

LengthDoc

P(y) I Pxily)

=1

in is lecture lecture next over person remember room
sitting the the the to to up wake when you
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Bag of Words Approach
"

» All About The Company

aardvark

0
about 2
all 2

Africa 1

all about the apple 0
company

anxious 0

luction, and distribution

Our energy explorati
operations span the ith activities in more than 100
countries.

At TOTAL, we draw our greatest strength from our gas 1
fast-growing oil and gas reserves. Our strategic emphasis
on natural gas provides a strong position in a rapidly
expanding market.

Our expanding refining and marketing operations in Asia oil 1
and the Mediterranean Rim complement already solid
positions in Europe, Aftica, and the U.S

Our growing specialty chemicals sector adds balance and Zaire 0
profit to the core energy business
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NB with Bag of Words for text
classification
JEE—

m Learning phase:
Prior P(Y)

= Count how many documents you have from each topic (+
prior)
P(XilY)
= For each topic, count how many times you saw word in
documents of this topic (+ prior)

m Test phase:
For each document
= Use naive Bayes decision rule
LengthDoc

hyp(x) = arg manP(y) T  Plxily)
i=1
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Twenty News Groups results

Given 1000 training documents from each group
Learn to classify new documents according to
which newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med
talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classification accuracy
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Learning curve for Twenty News

_ Grougs
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Accuracy vs. Training set size (1/3 withheld for test)
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What if we have continuous X, ?
" JEE

Eg., character recognition: X; is it" pixel

Gaussian Naive Bayes (GNB):

P(X ] % ) 1 20.2k
Y = = )
) Yk oo o

Sometimes assume variance
m isindependent of Y (i.e., o)),
m orindependent of X (i.e., o)

mor bOth (I'e" 0) ©2005-2007 Carlos Guestrin 21

Estimating Parameters:

Y discrete, X; continuous
"

Maximum likelihood estimates: Jth fraining
example
1

=~ J —
Hip, = Zjd(w_y)ZX S(YI = y;)

d(x)=1if x true,

else O

1

Y 0(YI=y) -1

S =) ?5 (YT =)
J
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Example: GNB for classifying mental

states

[Mitchell et al.]

~1 mm resolution
~2 images per sec.
15,000 voxels/image

non-invasive, safe

measures Blood

@ CG2_3DT1FL_TALVM

;IEIL”

0 S e

) |
I 1

Oxygen Level
Dependent (BOLD) Typical
response impulse
response
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|

Brain scans can
track activation
with precision and
sensitivity

[Mitchell et al.]
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Gaussian Naive Bayes: Learned W,qyel worg
P(BrainActivity | WordCategory = {People,Animal}
" S iichel et ]

-
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Learned Bayes Models — Means for

_ P‘BrainActivitxlWordCategory) ——

Pairwise classification accuracy: 85%

People words 5% . Animal words
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What you need to know about

_ Naive Baxes

m Types of learning problems
Learning is (just) function approximation!
Optimal decision using Bayes Classifier
Naive Bayes classifier
What's the assumption
Why we use it
How do we learn it
Why is Bayesian estimation important
Text classification
Bag of words model
Gaussian NB
Features are still conditionally independent
Each feature has a Gaussian distribution given class

©2005-2007 Carlos Guestrin
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Generative v. Discriminative
classifiers — Intuition
JEm

m Wantto Learn: h XY
X — features
Y — target classes
m Bayes optimal classifier — P(Y|X)
m Generative classifier, e.g., Naive Bayes:
Assume some functional form for P(X|Y), P(Y)
Estimate parameters of P(X|Y), P(Y) directly from training data
Use Bayes rule to calculate P(Y|X= x)
This is a ‘generative’ model
= Indirect computation of P(Y|X) through Bayes rule
= But, can generate a sample of the data, P(X) = 3, P(y) P(Xly)
m Discriminative classifiers, e.g., Logistic Regression:
Assume some functional form for P(Y|X)
Estimate parameters of P(Y|X) directly from training data
This is the ‘discriminative’ model
= Directly learn P(Y|X)

= But cannot obtain a sample of the data, because P(X) is not available
©2005-2007 Carlos Guestrin
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Logistic 1
function

Logistic Regression (o sigmoia): 1+

m Learn P(Y|X) directly! . //
Assume a particular functional form :.. /,/
Sigmoid applied to a linear function /
of the data: . /

P(Y =1|X) = L ;

1+ exp(wo + X wiX;)

Features can be discrete or continuous!
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Understanding the sigmoid
" JE

1
g(wo + ) w;z;)
Z 1 4 ewot2; wiz;
7
Wy=-2, w,=-1 w,=0, w,=-1 w,=0, w,=-0.5
©2005-2007 Carlos Guestrin 30
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Logistic Regression —

a Linear classifier
"

rrrrrrr

g(wo + sz‘l‘z’) =

©2005-2007 Carlos Guestrin 31

Very convenient!

u 1
P(Y =1|X =< Xq1,..Xpn >) =
| K 1+ exp(wo + X wiX;)

implies
exp(wo + X; wi X;)

P(Y =0|X =< Xq1,..Xn >) =
| " 1+ exp(wg + X3 wi X;)

implies
P(Y =0|X)
— ooy = exp(wo + ) wiXy)
P =11%) 22: o linear
classification
implies rule!
P(Y = 0[X)
n— = = X
Py =1px) ~ W0t e
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Logistic regression v. Naive Bayes
“ J

m Consider learning f: X 2 Y, where
X is a vector of real-valued features, < X1 ... Xn >
Y is boolean

m Could use a Gaussian Naive Bayes classifier
assume all X; are conditionally independent given Y
model P(X; | Y =y,) as Gaussian N(w,,0;)
model P(Y) as Bernoulli(6,1-0)

m What does that imply about the form of P(Y|X)?

©2005-2007 Carlos Guestrin 33

Logistic regression v. Naive Bayes
* A

m Consider learning f: X 2 Y, where
X is a vector of real-valued features, < X1 ... Xn >
Y is boolean

m Could use a Gaussian Naive Bayes classifier
assume all X; are conditionally independent given Y
model P(X; | Y =y,) as Gaussian N(w,,0;)
model P(Y) as Bernoulli(6,1-0)

m What does that imply about the form of P(Y|X)?
1

1 + exp(wo + > wiX;)

P(Y =1|X =< Xq,..Xn>) =

Cool!lll
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Derive form for P(Y|X) for continuous X

P(Y = 11X) = P(Y = 1)P(X]Y = 1)

P(Y =1)P(X|Y =1)+ P(Y = 0)P(X|Y =0)

1
P(Y=0)P(X|Y=0
1+ PEY:l%PéXIY:lg
1

= P(Y=0)P(X|Y =0
1+ exp(In P%Y:l;PEX;Y:lg)

1
1+ exp( (In159) + 5 In 5=

©2005-2007 Carlos Guestrin 35

Ratio of class-conditional probabilities
"

P(X;[y =1) Pi=elV=uw)=""T ¢ ™

In
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Derive form for P(Y|X) for continuous X

P(Y =1)P(X|Y =1)

| JP(Yz 11X) = P(Y =1)P(X|Y =1)4+ P(Y =0)P(X|Y =0)
1
1+ exp( ('”%)+Ziln%
1
P(Y =1|X) =

14 exp(wo + X w; X;)

©2005-2007 Carlos Guestrin 37

Gaussian Naive Bayes v. Logistic Regression
“ J

Set of Gaussian Set of Logistic
Naive Bayes parameters Regression parameters
(feature variance
independent of class label)

m Representation equivalence

But only in a special case!!! (GNB with class-independent variances)
m But what's the difference???
m LR makes no assumptions about P(X|Y) in learning!!!

m Loss function!!!
Optimize different functions — Obtain different solutions

©2005-2007 Carlos Guestrin 38
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Logistic regression for more

. dian2lasses

m Logistic regression in more general case, where
Y €{Y, .. Yy} : learn R-1 sets of weights

©2005-2007 Carlos Guestrin 39

Logistic regression more generally
" JE

m Logistic regression in more general case, where Y €
{Y, ... Y.} : learn R-1 sets of weights

for k<R

ex n_ X

14 1T exp(wjo + Xieg wjiX;)

for k=R (normalization, so no weights for this class)
1

1+ Zfz_ll exp(w;o + 71 wjiX;)

PY =yplX) =

Features can be discrete or continuous!
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Loss functions: Likelihood v.
Conditional Likelihood
" SN

m Generative (Naive Bayes) Loss function:
Data likelihood

N
INP(D|w) = Y InP(x/,y/ | w)
=1
N . . N .
= > InP@ |x,w)+ > InPEI|w)
j=1 j=1

m Discriminative models cannot compute P(xi|w)!
m But, discriminative (logistic regression) loss function:
Conditional Data Likelihood N

In P(Dy | Dx,w) = > InP(y/ | x7, w)
j=1

Doesn’'t waste effort learning P(X) — focuses on P(Y|X) all that matters
for classification

©2005-2007 Carlos Guestrin a1

Expressing Conditional Log Likelihood
" S

P(Y =0|X,w) = 1

I(w) =Y InP(y/ X, w) 1 eap(uwg + 5 wiXs)
j P(Y =1X,w) = exp(wo + 3; wiX)

1+ exp(wo + 3w X;)

I(w) = Y y/InP(y/ = 1x/,w) + (1 — /) In P(y/ = 0|x/,w)
j

©2005-2007 Carlos Guestrin 42
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Maximizing Conditional Log Likelihood

P(Y =0|X,W) =

1
" JE

P(Y =1|X,W) =

1+ exp(wo + X wiX;)
] ] exp(wo + >; w; X;)
(w) = InJ[PG %7, w)
J

1+ exp(wo + 25 wiX;)
. n _ n .
= > y(wo+ > wizl) — In(1 + exp(wo + > wizl))
j i i

Good news: [(w) is concave function of w — no locally optimal
solutions

Bad news: no closed-form solution to maximize I(w)

Good news: concave functions easy to optimize

©2005-2007 Carlos Guestrin 43

Optimizing concave function —
Gradient ascent
SR

m Conditional likelihood for Logistic Regression is concave
— Find optimum with gradient ascent
ol(w) ol(w)

. ey

Gradient: Vywl(w) = [

/
dup ]

Update rule: Aw = n)v/v‘vl(w)

8'1,Un

m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent much better (see reading)
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Maximize Conditional Log Likelihood:

Gradient ascent
= I

W) = Yy wo+ > wiad) — In(L + expluwo + 3 wiad))
j i i

Gradient ascent algorithm: iterate until change < ¢

Foralli, w;j—w;+nY al[y/ —P(YI=1|x),w)]

J
repeat
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)
That's all M(C)LE. How about MAP?
n pur(W |1 X) o PV | X, w)p(w)

m One common approach is to define priors on w
Normal distribution, zero mean, identity covariance
“Pushes” parameters towards zero

m Corresponds to Regularization
Helps avoid very large weights and overfitting
Explore this in your homework
More on this later in the semester

m MAP estimate

N
* J | xJ
w* =argmaxin |p(w) ‘Hl Py’ | x7,w)
]:
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Gradient of M(C)AP
"

8wi

©2005-2007 Carlos Guestrin

) N S L
In |p(w) [[ P/ | %/, w) pw) =] e
i=1 i

47

MLE vs MAP
"

m Maximum conditional likelihood estimate

N
* J | xJ
w* =argmaxin |j1:[1P(y |x,w)]

wi — w;+ Y 2lly! — PO =1|xI,w)]
J

m Maximum conditional a posteriori estimate

N
* J | xJ
w* =argmaxin [p(w) ‘Hl Py | x ,w)}
]:

w; — w;+n {—)\wi + ng'[yﬂ' —P(YI =1|x,w)]
j

|

©2005-2007 Carlos Guestrin
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What you should know about

_ Logistic Regression (LR)

m Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR
Solution differs because of objective (loss) function
m In general, NB and LR make different assumptions
NB: Features independent given class — assumption on P(X|Y)
LR: Functional form of P(Y|X), no assumption on P(X|Y)
m LR is a linear classifier
decision rule is a hyperplane
m LR optimized by conditional likelihood
no closed-form solution
concave — global optimum with gradient ascent
Maximum conditional a posteriori corresponds to regularization
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