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Optimal classification

 Theorem: Bayes classifier hBayes is optimal!

 That is

 Proof:
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How hard is it to learn the optimal
classifier?
 Data =

 How do we represent these? How many parameters?
 Prior, P(Y):

 Suppose Y is composed of k classes

 Likelihood, P(X|Y):
 Suppose X is composed of n binary features

 Complex model ! High variance with limited data!!!
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Conditional Independence

 X is conditionally independent of Y  given Z, if
the probability distribution governing X is
independent of the value of Y, given the value of Z

 e.g.,

 Equivalent to:
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The Naïve Bayes assumption

 Naïve Bayes assumption:
 Features are independent given class:

 More generally:

 How many parameters now?
 Suppose X is composed of n binary features
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The Naïve Bayes Classifier

 Given:
 Prior P(Y)
 n conditionally independent features X given the class Y
 For each Xi, we have likelihood P(Xi|Y)

 Decision rule:

 If assumption holds, NB is optimal classifier!
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MLE for the parameters of NB

 Given dataset
 Count(A=a,B=b) Ã number of examples where A=a and B=b

 MLE for NB, simply:
 Prior: P(Y=y) =

 Likelihood: P(Xi=xi|Yi=yi) =
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Subtleties of NB classifier 1 –
Violating the NB assumption

 Usually, features are not conditionally independent:

 Actual probabilities P(Y|X) often biased towards 0 or 1
 Nonetheless, NB is the single most used classifier out

there
 NB often performs well, even when assumption is violated
 [Domingos & Pazzani ’96] discuss some conditions for good

performance
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Subtleties of NB classifier 2 –
Insufficient training data

 What if you never see a training instance where
X1=a when Y=b?
 e.g., Y={SpamEmail}, X1={‘Enlargement’}
 P(X1=a | Y=b) = 0

 Thus, no matter what the values X2,…,Xn take:
 P(Y=b | X1=a,X2,…,Xn) = 0

 What now???
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MAP for Beta distribution

 MAP: use most likely parameter:

 Beta prior equivalent to extra thumbtack flips
 As N → 1, prior is “forgotten”
 But, for small sample size, prior is important!
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Bayesian learning for NB
parameters – a.k.a. smoothing

 Dataset of N examples
 Prior

 “distribution” Q(Xi,Y), Q(Y)
 m “virtual” examples

 MAP estimate
 P(Xi|Y)

 Now, even if you never observe a feature/class, posterior
probability never zero
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Text classification

 Classify e-mails
 Y = {Spam,NotSpam}

 Classify news articles
 Y = {what is the topic of the article?}

 Classify webpages
 Y = {Student, professor, project, …}

 What about the features X?
 The text!
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Features X are entire document –
Xi for ith word in article
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NB for Text classification

 P(X|Y) is huge!!!
 Article at least 1000 words, X={X1,…,X1000}
 Xi represents ith word in document, i.e., the domain of Xi is entire

vocabulary, e.g., Webster Dictionary (or more), 10,000 words, etc.

 NB assumption helps a lot!!!
 P(Xi=xi|Y=y) is just the probability of observing word xi in a

document on topic y
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Bag of words model

 Typical additional assumption – Position in document
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y)
 “Bag of words” model – order of words on the page ignored
 Sounds really silly, but often works very well!

When the lecture is over, remember to wake up the 
person sitting next to you in the lecture room.
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Bag of words model

 Typical additional assumption – Position in document
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y)
 “Bag of words” model – order of words on the page ignored
 Sounds really silly, but often works very well!

in is lecture lecture next over person remember room 
sitting the the the to to up wake when you
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Bag of Words Approach

aardvark 0

about 2

all 2

Africa 1

apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0
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NB with Bag of Words for text
classification
 Learning phase:

 Prior P(Y)
 Count how many documents you have from each topic (+

prior)

 P(Xi|Y)
 For each topic, count how many times you saw word in

documents of this topic (+ prior)

 Test phase:
 For each document

 Use naïve Bayes decision rule
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Twenty News Groups results
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Learning curve for Twenty News
Groups
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What if we have continuous Xi ?

Eg., character recognition: Xi is ith pixel

Gaussian Naïve Bayes (GNB):

Sometimes assume variance
 is independent of Y (i.e., σi),
 or independent of Xi (i.e., σk)
 or both (i.e., σ)
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Estimating Parameters:
Y discrete, Xi continuous

Maximum likelihood estimates: jth training
example

δ(x)=1 if x true,
else 0
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Example: GNB for classifying mental states

~1 mm resolution

~2 images per sec.

15,000 voxels/image

non-invasive, safe

measures Blood
Oxygen Level
Dependent (BOLD)
response

Typical
impulse
response

10 sec

[Mitchell et al.]
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Brain scans can
track activation
with precision and
sensitivity

[Mitchell et al.]
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Gaussian Naïve Bayes: Learned µvoxel,word
P(BrainActivity | WordCategory = {People,Animal})

[Mitchell et al.]
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Learned Bayes Models – Means for
P(BrainActivity | WordCategory)

Animal wordsPeople words

Pairwise classification accuracy: 85%
[Mitchell et al.]
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What you need to know about
Naïve Bayes

 Types of learning problems
 Learning is (just) function approximation!

 Optimal decision using Bayes Classifier
 Naïve Bayes classifier

 What’s the assumption
 Why we use it
 How do we learn it
 Why is Bayesian estimation important

 Text classification
 Bag of words model

 Gaussian NB
 Features are still conditionally independent
 Each feature has a Gaussian distribution given class
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Generative v. Discriminative
classifiers – Intuition

 Want to Learn: h:X a Y
 X – features
 Y – target classes

 Bayes optimal classifier – P(Y|X)
 Generative classifier, e.g., Naïve Bayes:

 Assume some functional form for P(X|Y), P(Y)
 Estimate parameters of P(X|Y), P(Y) directly from training data
 Use Bayes rule to calculate P(Y|X= x)
 This is a ‘generative’ model

 Indirect computation of P(Y|X) through Bayes rule
 But, can generate a sample of the data, P(X) = ∑y P(y) P(X|y)

 Discriminative classifiers, e.g., Logistic Regression:
 Assume some functional form for P(Y|X)
 Estimate parameters of P(Y|X) directly from training data
 This is the ‘discriminative’ model

 Directly learn P(Y|X)
 But cannot obtain a sample of the data, because P(X) is not available
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Logistic Regression
Logistic
function
(or Sigmoid):

 Learn P(Y|X) directly!
 Assume a particular functional form
 Sigmoid applied to a linear function

of the data:

Z

Features can be discrete or continuous!
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Understanding the sigmoid
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Logistic Regression –
a Linear classifier
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Very convenient!

implies

implies

implies

linear
classification

rule!
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Logistic regression v. Naïve Bayes

 Consider learning f: X  Y, where
  X is a vector of real-valued features, < X1 … Xn >
  Y is boolean

 Could use a Gaussian Naïve Bayes classifier
  assume all Xi are conditionally independent given Y
  model P(Xi | Y = yk) as Gaussian N(µik,σi)
  model P(Y) as Bernoulli(θ,1-θ)

  What does that imply about the form of P(Y|X)?
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Logistic regression v. Naïve Bayes

 Consider learning f: X  Y, where
  X is a vector of real-valued features, < X1 … Xn >
  Y is boolean

 Could use a Gaussian Naïve Bayes classifier
  assume all Xi are conditionally independent given Y
  model P(Xi | Y = yk) as Gaussian N(µik,σi)
  model P(Y) as Bernoulli(θ,1-θ)

  What does that imply about the form of P(Y|X)?

Cool!!!!
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Derive form for P(Y|X) for continuous Xi
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Ratio of class-conditional probabilities
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Derive form for P(Y|X) for continuous Xi
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Gaussian Naïve Bayes v. Logistic Regression

 Representation equivalence
 But only in a special case!!! (GNB with class-independent variances)

 But what’s the difference???
 LR makes no assumptions about P(X|Y) in learning!!!
 Loss function!!!

 Optimize different functions ! Obtain different solutions

Set of Gaussian 
Naïve Bayes parameters

(feature variance 
independent of class label)

Set of Logistic 
Regression parameters
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Logistic regression for more
than 2 classes

 Logistic regression in more general case, where
Y 2 {Y1 ... YR} : learn R-1 sets of weights
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Logistic regression more generally

 Logistic regression in more general case, where Y 2
{Y1 ... YR} : learn R-1 sets of weights

for k<R

for k=R (normalization, so no weights for this class)

Features can be discrete or continuous!
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Loss functions: Likelihood v.
Conditional Likelihood

 Generative (Naïve Bayes) Loss function:
Data likelihood

 Discriminative models cannot compute P(xj|w)!
 But, discriminative (logistic regression) loss function:

Conditional Data Likelihood

 Doesn’t waste effort learning P(X) – focuses on P(Y|X) all that matters
for classification
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Expressing Conditional Log Likelihood
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Maximizing Conditional Log Likelihood

Good news: l(w) is concave function of w ! no locally optimal
solutions

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions easy to optimize
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Optimizing concave function –
Gradient ascent

 Conditional likelihood for Logistic Regression is concave
! Find optimum with gradient ascent

 Gradient ascent is simplest of optimization approaches
 e.g., Conjugate gradient ascent much better (see reading)

Gradient:

Update rule:

Learning rate, η>0
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Maximize Conditional Log Likelihood:
Gradient ascent

Gradient ascent algorithm: iterate until change < ε

   For all i,

repeat
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That’s all M(C)LE.  How about MAP?

 One common approach is to define priors on w
 Normal distribution, zero mean, identity covariance
 “Pushes” parameters towards zero

 Corresponds to Regularization
 Helps avoid very large weights and overfitting
 Explore this in your homework
 More on this later in the semester

 MAP estimate
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Gradient of M(C)AP
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MLE vs MAP
 Maximum conditional likelihood estimate

 Maximum conditional a posteriori estimate
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What you should know about
Logistic Regression (LR)

 Gaussian Naïve Bayes with class-independent variances
representationally equivalent to LR
 Solution differs because of objective (loss) function

 In general, NB and LR make different assumptions
 NB: Features independent given class ! assumption on P(X|Y)
 LR: Functional form of P(Y|X), no assumption on P(X|Y)

 LR is a linear classifier
 decision rule is a hyperplane

 LR optimized by conditional likelihood
 no closed-form solution
 concave ! global optimum with gradient ascent
 Maximum conditional a posteriori corresponds to regularization
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