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Logistic Regression
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Announcements

Recitations stay on Thursdays
5-6:30pm in Wean 5409
This week: Naïve Bayes & Logistic Regression

Extension for the first homework:
Due Wed. Feb 8th beginning of class
Mitchell’s chapter is most useful reading

Go to the AI seminar:
Tuesdays 3:30pm, Wean 5409
http://www.cs.cmu.edu/~aiseminar/
This week’s seminar very relevant to what we are covering in 
class
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Optimal classification

Theorem: Bayes classifier hBayes is optimal!

That is

Proof:
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How hard is it to learn the optimal 
classifier?

Data =  

How do we represent these? How many parameters?
Prior, P(Y):

Suppose Y is composed of k classes

Likelihood, P(X|Y):
Suppose X is composed of n binary features

Complex model → High variance with limited data!!!
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Conditional Independence

X is conditionally independent of Y  given Z, if 
the probability distribution governing X is 
independent of the value of Y, given the value of Z

e.g.,

Equivalent to:

©2005-2007 Carlos Guestrin 6

The Naïve Bayes assumption

Naïve Bayes assumption:
Features are independent given class:

More generally:

How many parameters now?
Suppose X is composed of n binary features
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The Naïve Bayes Classifier

Given:
Prior P(Y)
n conditionally independent features X given the class Y
For each Xi, we have likelihood P(Xi|Y)

Decision rule:

If assumption holds, NB is optimal classifier!
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MLE for the parameters of NB

Given dataset
Count(A=a,B=b) ← number of examples where A=a and B=b

MLE for NB, simply:
Prior: P(Y=y) = 

Likelihood: P(Xi=xi|Yi=yi) =
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Subtleties of NB classifier 1 –
Violating the NB assumption

Usually, features are not conditionally independent:

Actual probabilities P(Y|X) often biased towards 0 or 1
Nonetheless, NB is the single most used classifier out 
there

NB often performs well, even when assumption is violated
[Domingos & Pazzani ’96] discuss some conditions for good 
performance
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Subtleties of NB classifier 2 –
Insufficient training data
What if you never see a training instance where 
X1=a when Y=b?

e.g., Y={SpamEmail}, X1={‘Enlargement’}
P(X1=a | Y=b) = 0

Thus, no matter what the values X2,…,Xn take:
P(Y=b | X1=a,X2,…,Xn) = 0

What now???
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MAP for Beta distribution

MAP: use most likely parameter:

Beta prior equivalent to extra thumbtack flips
As N →∞, prior is “forgotten”
But, for small sample size, prior is important!
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Bayesian learning for NB 
parameters – a.k.a. smoothing
Dataset of N examples
Prior 

“distribution” Q(Xi,Y), Q(Y)
m “virtual” examples

MAP estimate
P(Xi|Y)

Now, even if you never observe a feature/class, posterior 
probability never zero
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Text classification

Classify e-mails
Y = {Spam,NotSpam}

Classify news articles
Y = {what is the topic of the article?}

Classify webpages
Y = {Student, professor, project, …}

What about the features X?
The text!
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Features X are entire document –
Xi for ith word in article
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NB for Text classification

P(X|Y) is huge!!!
Article at least 1000 words, X={X1,…,X1000}
Xi represents ith word in document, i.e., the domain of Xi is entire 
vocabulary, e.g., Webster Dictionary (or more), 10,000 words, etc.

NB assumption helps a lot!!!
P(Xi=xi|Y=y) is just the probability of observing word xi in a 
document on topic y
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Bag of words model

Typical additional assumption – Position in document 
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y) 

“Bag of words” model – order of words on the page ignored
Sounds really silly, but often works very well!

When the lecture is over, remember to wake up the 
person sitting next to you in the lecture room.
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Bag of words model

Typical additional assumption – Position in document 
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y) 

“Bag of words” model – order of words on the page ignored
Sounds really silly, but often works very well!

in is lecture lecture next over person remember room 
sitting the the the to to up wake when you
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Bag of Words Approach

aardvark 0

about 2

all 2

Africa 1

apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0
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NB with Bag of Words for text 
classification

Learning phase:
Prior P(Y)

Count how many documents you have from each topic (+ 
prior)

P(Xi|Y) 
For each topic, count how many times you saw word in 
documents of this topic (+ prior)

Test phase:
For each document

Use naïve Bayes decision rule
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Twenty News Groups results
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Learning curve for Twenty News 
Groups
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What if we have continuous Xi ?

Eg., character recognition: Xi is ith pixel

Gaussian Naïve Bayes (GNB):

Sometimes assume variance
is independent of Y (i.e., σi), 
or independent of Xi (i.e., σk)
or both (i.e., σ)
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Estimating Parameters: 
Y discrete, Xi continuous

Maximum likelihood estimates: jth training 
example

δ(x)=1 if x true, 
else 0
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Example: GNB for classifying mental states

~1 mm resolution

~2 images per sec.

15,000 voxels/image

non-invasive, safe

measures Blood 
Oxygen Level 
Dependent (BOLD) 
response

Typical 
impulse 
response

10 sec

[Mitchell et al.]
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Brain scans can 
track activation 
with precision and 
sensitivity

[Mitchell et al.]
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Gaussian Naïve Bayes: Learned µvoxel,word
P(BrainActivity | WordCategory = {People,Animal})

[Mitchell et al.]
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Learned Bayes Models – Means for
P(BrainActivity | WordCategory)

Animal wordsPeople words

Pairwise classification accuracy: 85%
[Mitchell et al.]
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What you need to know about 
Naïve Bayes

Types of learning problems
Learning is (just) function approximation!

Optimal decision using Bayes Classifier
Naïve Bayes classifier

What’s the assumption
Why we use it
How do we learn it
Why is Bayesian estimation important

Text classification
Bag of words model

Gaussian NB
Features are still conditionally independent
Each feature has a Gaussian distribution given class
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Generative v. Discriminative 
classifiers – Intuition 
Want to Learn: h:X a Y

X – features
Y – target classes

Bayes optimal classifier – P(Y|X)
Generative classifier, e.g., Naïve Bayes:

Assume some functional form for P(X|Y), P(Y)
Estimate parameters of P(X|Y), P(Y) directly from training data
Use Bayes rule to calculate P(Y|X= x)
This is a ‘generative’ model

Indirect computation of P(Y|X) through Bayes rule
But, can generate a sample of the data, P(X) = ∑y P(y) P(X|y)

Discriminative classifiers, e.g., Logistic Regression:
Assume some functional form for P(Y|X)
Estimate parameters of P(Y|X) directly from training data
This is the ‘discriminative’ model

Directly learn P(Y|X)
But cannot obtain a sample of the data, because P(X) is not available
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Logistic Regression
Logistic
function
(or Sigmoid):

Learn P(Y|X) directly!
Assume a particular functional form
Sigmoid applied to a linear function 
of the data:

Z

Features can be discrete or continuous!
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Understanding the sigmoid
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Logistic Regression –
a Linear classifier
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Very convenient!

implies

implies

implies

linear 
classification 

rule!
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Logistic regression v. Naïve Bayes

Consider learning f: X Y, where
X is a vector of real-valued features, < X1 … Xn >
Y is boolean

Could use a Gaussian Naïve Bayes classifier
assume all Xi are conditionally independent given Y
model P(Xi | Y = yk) as Gaussian N(µik,σi)
model P(Y) as Bernoulli(θ,1-θ)

What does that imply about the form of P(Y|X)?
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Logistic regression v. Naïve Bayes

Consider learning f: X Y, where
X is a vector of real-valued features, < X1 … Xn >
Y is boolean

Could use a Gaussian Naïve Bayes classifier
assume all Xi are conditionally independent given Y
model P(Xi | Y = yk) as Gaussian N(µik,σi)
model P(Y) as Bernoulli(θ,1-θ)

What does that imply about the form of P(Y|X)?

Cool!!!!
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Derive form for P(Y|X) for continuous Xi
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Ratio of class-conditional probabilities
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Derive form for P(Y|X) for continuous Xi
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Gaussian Naïve Bayes v. Logistic Regression

Representation equivalence
But only in a special case!!! (GNB with class-independent variances)

But what’s the difference???
LR makes no assumptions about P(X|Y) in learning!!!
Loss function!!!

Optimize different functions → Obtain different solutions

Set of Gaussian 
Naïve Bayes parameters

(feature variance 
independent of class label)

Set of Logistic 
Regression parameters
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Logistic regression for more 
than 2 classes
Logistic regression in more general case, where 
Y ∈ {Y1 ... YR} : learn R-1 sets of weights
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Logistic regression more generally

Logistic regression in more general case, where Y ∈
{Y1 ... YR} : learn R-1 sets of weights

for k<R

for k=R (normalization, so no weights for this class)

Features can be discrete or continuous!
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Loss functions: Likelihood v. 
Conditional Likelihood
Generative (Naïve Bayes) Loss function: 
Data likelihood

Discriminative models cannot compute P(xj|w)!
But, discriminative (logistic regression) loss function:
Conditional Data Likelihood

Doesn’t waste effort learning P(X) – focuses on P(Y|X) all that matters 
for classification  
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Expressing Conditional Log Likelihood

©2005-2007 Carlos Guestrin 44

Maximizing Conditional Log Likelihood

Good news: l(w) is concave function of w → no locally optimal 
solutions

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions easy to optimize
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Optimizing concave function –
Gradient ascent 
Conditional likelihood for Logistic Regression is concave 
→ Find optimum with gradient ascent

Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent much better (see reading)

Gradient:

Update rule:

Learning rate, η>0
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Maximize Conditional Log Likelihood:       
Gradient ascent

Gradient ascent algorithm: iterate until change < ε

For all i, 

repeat   
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That’s all M(C)LE.  How about MAP?

One common approach is to define priors on w
Normal distribution, zero mean, identity covariance
“Pushes” parameters towards zero

Corresponds to Regularization
Helps avoid very large weights and overfitting
Explore this in your homework
More on this later in the semester

MAP estimate
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Gradient of M(C)AP
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MLE vs MAP 
Maximum conditional likelihood estimate

Maximum conditional a posteriori estimate
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What you should know about 
Logistic Regression (LR)

Gaussian Naïve Bayes with class-independent variances 
representationally equivalent to LR

Solution differs because of objective (loss) function

In general, NB and LR make different assumptions
NB: Features independent given class → assumption on P(X|Y)
LR: Functional form of P(Y|X), no assumption on P(X|Y)

LR is a linear classifier
decision rule is a hyperplane

LR optimized by conditional likelihood
no closed-form solution
concave → global optimum with gradient ascent
Maximum conditional a posteriori corresponds to regularization



26

©2005-2007 Carlos Guestrin 51

Acknowledgements

Some of the material is the presentation is 
courtesy of Tom Mitchell


