Markov Decision Processes (MDPs)

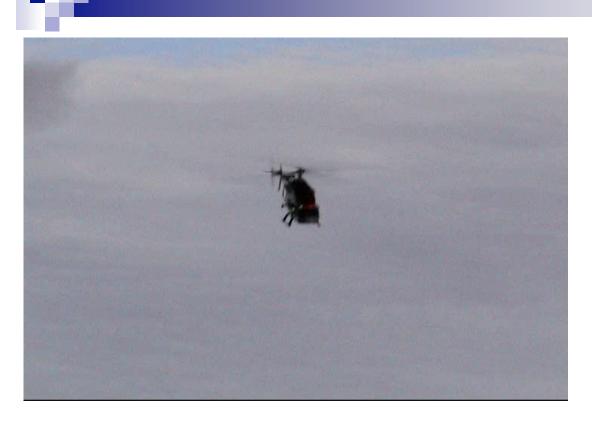
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 30th, 2007

Thus far this semester

- Regression:
- Classification:
- Density estimation:

Learning to act



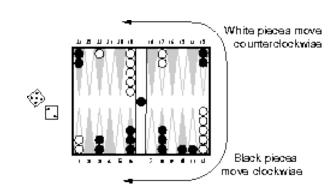
[Ng et al. '05]

- Reinforcement learning
- An agent
 - Makes sensor observations
 - Must select action
 - □ Receives rewards
 - positive for "good" states
 - negative for "bad" states

Learning to play backgammon

[Tesauro '95]

- Combines reinforcement learning with neural networks
- Played 300,000 games against itself
- Achieved grandmaster level!



Roadmap to learning about reinforcement learning

- When we learned about Bayes nets:
 - □ First talked about formal framework:
 - representation
 - inference
 - □ Then learning for BNs
- For reinforcement learning:
 - □ Formal framework
 - Markov decision processes
 - □ Then learning

States and actions

- State space:
 - □ Joint state **x** of entire system

- Action space:
 - □ Joint action $\mathbf{a} = \{a_1, ..., a_n\}$ for all agents

States change over time

- Like an HMM, state changes over time
- Next state depends on current state and action selected
 - e.g., action="build castle" likely to lead to a state where you have a castle
- Transition model:
 - \square Dynamics of the entire system $P(\mathbf{x}'|\mathbf{x},\mathbf{a})$

Some states and actions are better than others

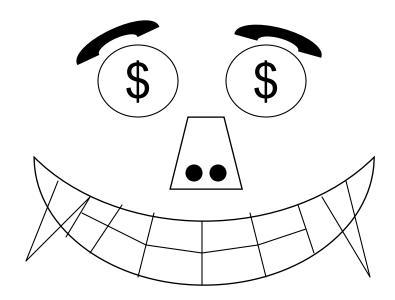
- Each state x is associated with a reward
 - positive reward for successful attack
 - negative for loss
- Reward function:
 - □ Total reward R(**x**)

Discounted Rewards

An assistant professor gets paid, say, 20K per year.

How much, in total, will the A.P. earn in their life?

$$20 + 20 + 20 + 20 + 20 + \dots = Infinity$$



What's wrong with this argument?

Discounted Rewards

"A reward (payment) in the future is not worth quite as much as a reward now."

- □ Because of chance of obliteration
- □ Because of inflation

Example:

Being promised \$10,000 next year is worth only 90% as much as receiving \$10,000 right now.

Assuming payment n years in future is worth only $(0.9)^n$ of payment now, what is the AP's Future Discounted Sum of Rewards?

Discount Factors

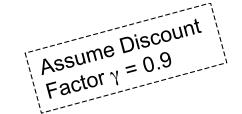
Ŋ.

People in economics and probabilistic decision-making do this all the time.

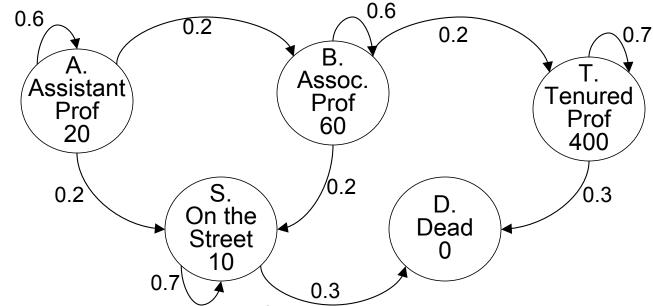
The "Discounted sum of future rewards" using discount factor γ " is

```
(reward now) + \gamma (reward in 1 time step) + \gamma^2 (reward in 2 time steps) + \gamma^3 (reward in 3 time steps) + \gamma^3 (remard in 3 time steps) + \gamma^3 (infinite sum)
```

The Academic Life



Define:

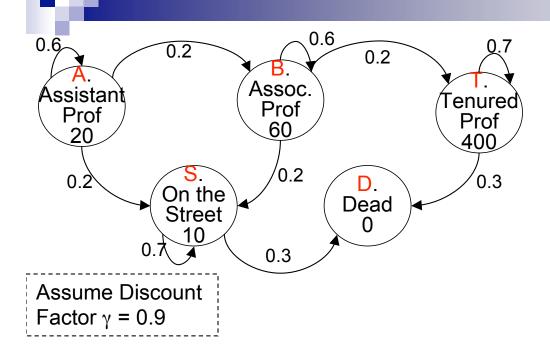


V_A = Expected discounted future rewards starting in state A

V_B = Expected discounted future rewards starting in state B

How do we compute V_A , V_B , V_T , V_S , V_D ?

Computing the Future Rewards of an Academic



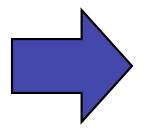
Joint Decision Space

Markov Decision Process (MDP) Representation:

- State space:
 - □ Joint state **x** of entire system
- Action space:
 - □ Joint action $\mathbf{a} = \{a_1, ..., a_n\}$ for all agents
- Reward function:
 - \Box Total reward R(\mathbf{x} , \mathbf{a})
 - sometimes reward can depend on action
- Transition model:
 - \square Dynamics of the entire system $P(\mathbf{x}'|\mathbf{x},\mathbf{a})$

Policy

Policy: $\pi(\mathbf{x}) = \mathbf{a}$



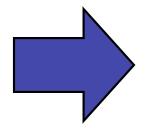
At state **x**, action **a** for all agents

 $\pi(\mathbf{x}_1)$ = one peasant builds barrack, other gets gold

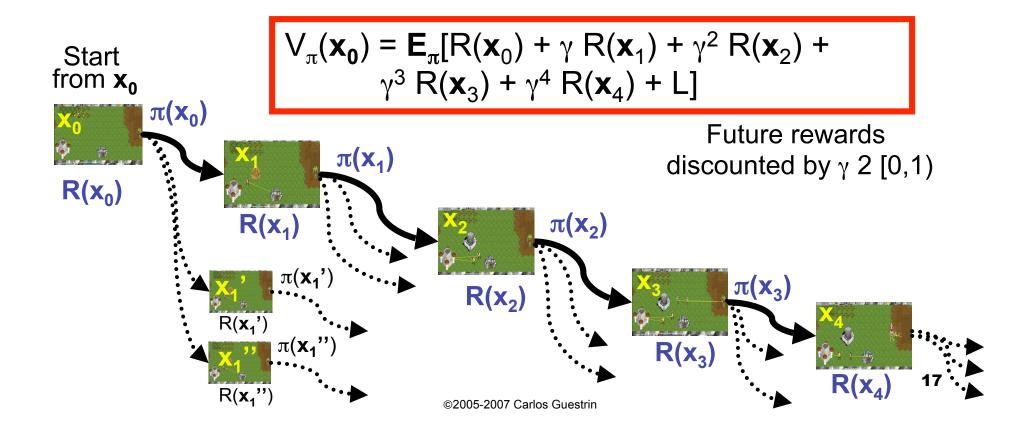
 $\pi(\mathbf{x}_2)$ = peasants get gold, footmen attack

Value of Policy

Value: $V_{\pi}(\mathbf{x})$



Expected longterm reward starting from **x**



Computing the value of a policy

$$V_{\pi}(\mathbf{x_0}) = \mathbf{E}_{\pi}[R(\mathbf{x_0}) + \gamma R(\mathbf{x_1}) + \gamma^2 R(\mathbf{x_2}) + \gamma^3 R(\mathbf{x_3}) + \gamma^4 R(\mathbf{x_4}) + L]$$

- Discounted value of a state:
 - \square value of starting from x_0 and continuing with policy π from then on

$$V_{\pi}(x_0) = E_{\pi}[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \cdots]$$

= $E_{\pi}[\sum_{t=0}^{\infty} \gamma^t R(x_t)]$

A recursion!

Computing the value of a policy 1 – the matrix inversion approach

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

Solve by simple matrix inversion:

Computing the value of a policy 2 – iteratively

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

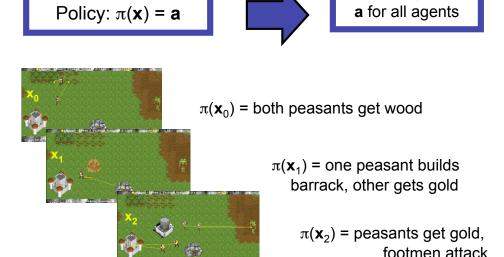
- If you have 1000,000 states, inverting a 1000,000x1000,000 matrix is hard!
- Can solve using a simple convergent iterative approach: (a.k.a. dynamic programming)
 - ☐ Start with some guess V₀
 - □ Iteratively say:

$$V_{t+1} = R + \gamma P_{\pi} V_{t}$$

- □ Stop when $||V_{t+1}-V_t||_1 \cdot ε$
 - means that $||V_{\pi}-V_{t+1}||_1 \cdot \epsilon/(1-\gamma)$

But we want to learn a Policy

- So far, told you how good a policy is...
- But how can we choose the best policy???
- Suppose there was only one time step:
 - □ world is about to end!!!
 - select action that maximizes reward!



At state x, action

Another recursion!

- Two time steps: address tradeoff
 - □ good reward now
 - □ better reward in the future

Unrolling the recursion

- Choose actions that lead to best value in the long run
 - □ Optimal value policy achieves optimal value V*

$$V^*(x_0) = \max_{a_0} R(x_0, a_0) + \gamma E_{a_0} [\max_{a_1} R(x_1, a_1) + \gamma^2 E_{a_1} [\max_{a_2} R(x_2, a_2) + \cdots]]$$

Bellman equation [Bellman 60]

• Evaluating policy π :

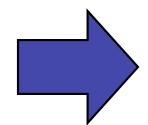
$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

Computing the optimal value V* - Bellman equation

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Optimal Long-term Plan

Optimal value function $V^*(\mathbf{x})$



Optimal Policy: $\pi^*(\mathbf{x})$

$$Q^*(\mathbf{x}, \mathbf{a}) = R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Optimal policy:

$$\pi^*(x) = \underset{a}{\operatorname{arg max}} Q^*(x,a)$$

Interesting fact — Unique value

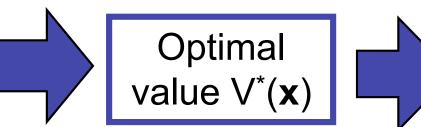
$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

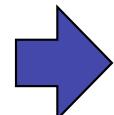
- Slightly surprising fact: There is only one V* that solves Bellman equation!
 - □ there may be many optimal policies that achieve V*
- Surprising fact: optimal policies are good everywhere!!!

$$V_{\pi^*}(x) \geq V_{\pi}(x), \ \forall x, \ \forall \pi$$

Solving an MDP

Solve Bellman equation





$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman '57]
- Value iteration [Bellman '57]
- Linear programming [Manne '60]

Value iteration (a.k.a. dynamic programming) – the simplest of all

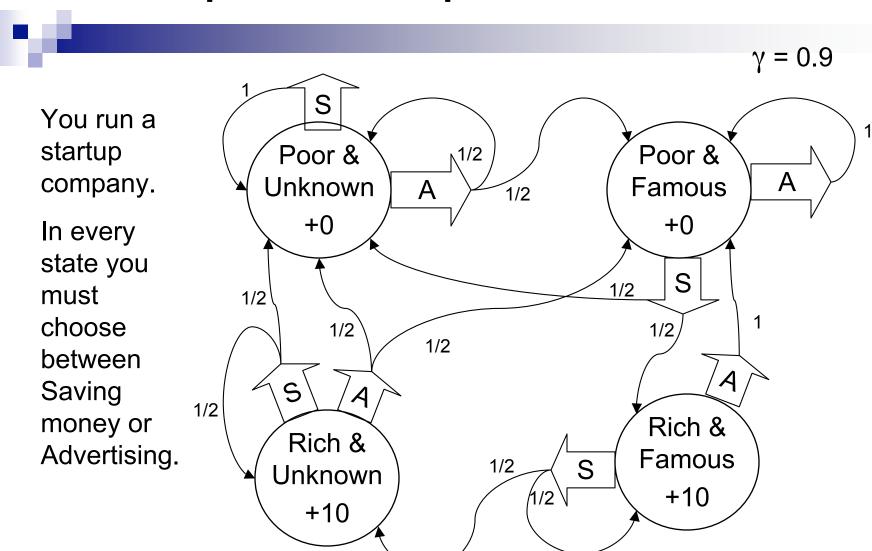
$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Start with some guess V₀
- Iteratively say:

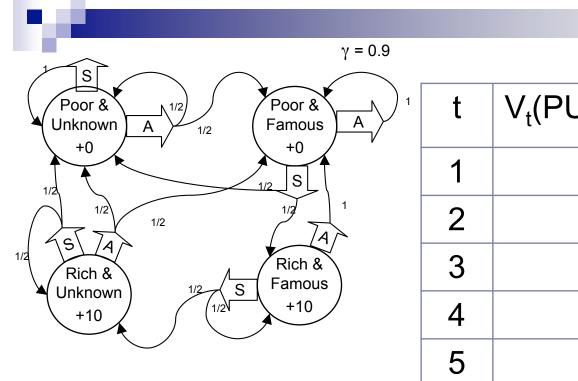
$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

- Stop when $||V_{t+1}-V_t||_1 \cdot \varepsilon$
 - \square means that $||V^*-V_{t+1}||_1 \cdot \varepsilon/(1-\gamma)$

A simple example



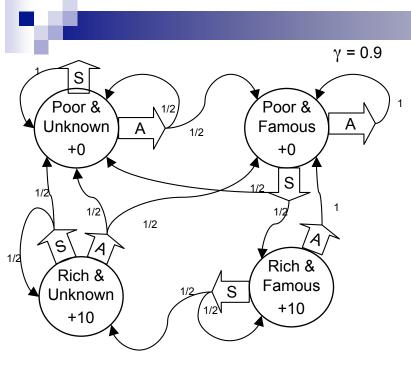
Let's compute $V_t(x)$ for our example



t	V _t (PU)	V _t (PF)	V _t (RU)	$V_t(RF)$
1				
2				
3				
4				
5				
6				

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

Let's compute $V_t(x)$ for our example



t	V _t (PU)	V _t (PF)	V _t (RU)	V _t (RF)
1	0	0	10	10
2	0	4.5	14.5	19
3	2.03	6.53	25.08	18.55
4	3.852	12.20	29.63	19.26
5	7.22	15.07	32.00	20.40
6	10.03	17.65	33.58	22.43

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

Policy iteration – Another approach for computing π^*

- Start with some guess for a policy π_0
- Iteratively say:
 - evaluate policy:

$$V_t(\mathbf{x}) = R(\mathbf{x}, \mathbf{a} = \pi_t(\mathbf{x})) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a} = \pi_t(\mathbf{x})) V_t(\mathbf{x}')$$

improve policy:

$$\pi_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

- Stop when
 - policy stops changing
 - usually happens in about 10 iterations
 - \Box or $||V_{t+1}-V_t||_1 \cdot \epsilon$
 - means that $||V^*-V_{t+1}||_1 \cdot \epsilon/(1-\gamma)$

Policy Iteration & Value Iteration: Which is best ???

It depends.

Lots of actions? Choose Policy Iteration Already got a fair policy? Policy Iteration Few actions, acyclic? Value Iteration

Best of Both Worlds:

Modified Policy Iteration [Puterman] ...a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

LP Solution to MDP

[Manne '60]

Value computed by linear programming:

minimize:
$$\sum_{\mathbf{x}} V(\mathbf{x})$$
subject to:
$$\begin{cases} V(\mathbf{x}) \ge R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V(\mathbf{x}') \\ \forall \mathbf{x}, \mathbf{a} \end{cases}$$

- \blacksquare One variable $V(\mathbf{x})$ for each state
- One constraint for each state x and action a
- Polynomial time solution

What you need to know

- What's a Markov decision process
 - □ state, actions, transitions, rewards
 - □ a policy
 - value function for a policy
 - computing V_π
- Optimal value function and optimal policy
 - □ Bellman equation
- Solving Bellman equation
 - with value iteration, policy iteration and linear programming

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

Reinforcement Learning

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 30th, 2007

The Reinforcement Learning task

World: You are in state 34.

Your immediate reward is 3. You have possible 3 actions.

Robot: I'll take action 2.

World: You are in state 77.

Your immediate reward is -7. You have possible 2 actions.

Robot: I'll take action 1.

World: You're in state 34 (again).

Your immediate reward is 3. You have possible 3 actions.

Formalizing the (online) reinforcement learning problem

- Given a set of states X and actions A
 - □ in some versions of the problem size of **X** and **A** unknown
- Interact with world at each time step t:
 - □ world gives state x_t and reward r_t
 - □ you give next action a_t
- Goal: (quickly) learn policy that (approximately) maximizes long-term expected discounted reward

The "Credit Assignment" Problem


```
I'm in state 43,
              reward = 0, action = 2
                          = 0,
          39,
       " 22,
                        = 0, \quad \text{``} = 1
       " 21,
                        = 0, " = 1
       " 21,
                        = 0, " = 1
                       = 0, \quad = 2
         13,
                          = 0, " = 2
          54,
       " 26,
                       = 100,
```

Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there??

This is the Credit Assignment problem.

Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100
 - □ is this the best I can hope for???
- Exploitation: should I stick with what I know and find a good policy w.r.t. this knowledge?
 - □ at the risk of missing out on some large reward somewhere
- **Exploration**: should I look for a region with more reward?
 - at the risk of wasting my time or collecting a lot of negative reward

Two main reinforcement learning approaches

- Model-based approaches:
 - explore environment! learn model (P(x'|x,a) and R(x,a))(almost) everywhere
 - □ use model to plan policy, MDP-style
 - approach leads to strongest theoretical results
 - □ works quite well in practice when state space is manageable
- Model-free approach:
 - □ don't learn a model! learn value function or policy directly
 - leads to weaker theoretical results
 - □ often works well when state space is large