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A simple setting…

 Classification
 m data points
 Finite number of possible hypothesis (e.g., dec. trees

of depth d)
 A learner finds a hypothesis h that is consistent

with training data
 Gets zero error in training – errortrain(h) = 0

 What is the probability that h has more than ε
true error?
 errortrue(h) ¸ ε
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But there are many possible hypothesis
that are consistent with training data
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Union bound

 P(A or B or C or D or …)
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How likely is learner to pick a bad
hypothesis

 Prob. h with errortrue(h) ¸ ε  gets m data points right

 There are k hypothesis consistent with data
 How likely is learner to pick a bad one?
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Review: Generalization error in
finite hypothesis spaces [Haussler ’88]

 Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned
hypothesis h that is consistent on the training data:
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Using a PAC bound

 Typically, 2 use cases:
 1: Pick ε and δ, give you m
 2: Pick m and δ, give you ε
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Review: Generalization error in
finite hypothesis spaces [Haussler ’88]

 Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned
hypothesis h that is consistent on the training data:

Even if h makes zero errors in training data, may make errors in test
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Limitations of Haussler ‘88 bound

 Consistent classifier

 Size of hypothesis space
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What if our classifier does not have
zero error on the training data?

 A learner with zero training errors may make
mistakes in test set

 What about a learner with errortrain(h) in training set?
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Simpler question: What’s the
expected error of a hypothesis?

 The error of a hypothesis is like estimating the
parameter of a coin!

 Chernoff bound: for m i.i.d. coin flips, x1,…,xm,
where xi2{0,1}. For 0<ε<1:
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Using Chernoff bound to estimate
error of a single hypothesis
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But we are comparing many
hypothesis: Union bound

For each hypothesis hi: 

What if I am comparing two hypothesis, h1 and h2? 
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Generalization bound for |H|
hypothesis

 Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned
hypothesis h:
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PAC bound and Bias-Variance
tradeoff

 Important: PAC bound holds for all h,
but doesn’t guarantee that algorithm finds best h!!!

or, after moving some terms around,
with probability at least 1-δ:
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What about the size of the
hypothesis space?

 How large is the hypothesis space?
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Boolean formulas with n binary features



©2005-2007 Carlos Guestrin 18

Number of decision trees of depth k

Recursive solution
Given n attributes
Hk = Number of decision trees of depth k
H0 =2
Hk+1 = (#choices of root attribute) *

(# possible left subtrees) *
(# possible right subtrees)

   = n * Hk * Hk

Write Lk = log2 Hk
L0 = 1
Lk+1 = log2 n + 2Lk
So Lk = (2k-1)(1+log2 n) +1
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PAC bound for decision trees of
depth k

 Bad!!!
 Number of points is exponential in depth!

 But, for m data points, decision tree can’t get too big…

Number of leaves never more than number data points
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Number of decision trees with k leaves

Hk = Number of decision trees with k leaves
H0 =2

Loose bound: Reminder:
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PAC bound for decision trees with k
leaves – Bias-Variance revisited
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Announcements

 Midterm on Wednesday
 Open book and notes, no other material
 Bring a calculator
 No laptops, PDAs or cellphones
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What did we learn from decision trees?

 Bias-Variance tradeoff formalized

 Moral of the story:
Complexity of learning not measured in terms of size
hypothesis space, but in maximum number of points that
allows consistent classification
 Complexity m – no bias, lots of variance
 Lower than m – some bias, less variance
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What about continuous hypothesis
spaces?

 Continuous hypothesis space:
 |H| = 1
 Infinite variance???

 As with decision trees, only care about the
maximum number of points that can be
classified exactly!
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How many points can a linear
boundary classify exactly? (1-D)
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How many points can a linear
boundary classify exactly? (2-D)
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How many points can a linear
boundary classify exactly? (d-D)
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PAC bound using VC dimension

 Number of training points that can be
classified exactly is VC dimension!!!
 Measures relevant size of hypothesis space, as

with decision trees with k leaves
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Shattering a set of points
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VC dimension
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PAC bound using VC dimension

 Number of training points that can be
classified exactly is VC dimension!!!
 Measures relevant size of hypothesis space, as

with decision trees with k leaves
 Bound for infinite dimension hypothesis spaces:
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Examples of VC dimension

 Linear classifiers:
 VC(H) = d+1, for d features plus constant term b

 Neural networks
 VC(H) = #parameters
 Local minima means NNs will probably not find best

parameters

 1-Nearest neighbor?
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Another VC dim. example -
What can we shatter?
 What’s the VC dim. of decision stumps in 2d?



©2005-2007 Carlos Guestrin 34

Another VC dim. example -
What can’t we shatter?
 What’s the VC dim. of decision stumps in 2d?
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What you need to know

 Finite hypothesis space
 Derive results
 Counting number of hypothesis
 Mistakes on Training data

 Complexity of the classifier depends on number of
points that can be classified exactly
 Finite case – decision trees
 Infinite case – VC dimension

 Bias-Variance tradeoff in learning theory
 Remember: will your algorithm find best classifier?
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Big Picture
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What you have learned thus far
 Learning is function approximation
 Point estimation
 Regression
 Naïve Bayes
 Logistic regression
 Bias-Variance tradeoff
 Neural nets
 Decision trees
 Cross validation
 Boosting
 Instance-based learning
 SVMs
 Kernel trick
 PAC learning
 VC dimension
 Margin bounds
 Mistake bounds
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Review material in terms of…

 Types of learning problems

 Hypothesis spaces

 Loss functions

 Optimization algorithms
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BIG PICTURE
(a few points of comparison)

Naïve 
Bayes

Logistic 
regression

Neural
Nets

Boosting

SVMs

Instance-based
Learning

SVM 
regression

kernel
regression

linear
regression

Decision
trees

Log-loss/MLELL
Margin-basedMrg

RegressionReg

Squared errorRMS

ClassificationCl

density estimationDE
learning

task

loss
function

DE, LL

DE, LL

DE,Cl,Reg,RMS

Cl, exp-loss

DE,Cl,Reg

DE,Cl,Reg

Cl, Mrg
Reg, Mrg

Reg, RMS

Reg, RMS

This is a very incomplete view!!! 


