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A simple setting...
" A
m Classification

m data points

Finite number of p033|ble hypothesis (e.g., dec. trees
of dey depth d) o~ C@&M\W‘Lw a At

m A learner finds a hypothesis h that is consistent

with training data
merror in training — erro@
m What is the probability that h has more than ¢
true error? T
ve et

errore(h) 3¢
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But there are many possible hypothesis

that are consistent with training data
"
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Union bound

" T
m P(AorBorCorDor...)¢ P(a)« P(B)+ Rt

by 5 S
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How likely is learner to pick a bad

hxgothe&s e (¢ = 7

m Prob. hwith error,,(h) ¢ gets m data points right
P((k("\\ VA (on§73+f(/?"'w ‘Hh M 0'{6.‘12»/»1;/\4‘3) < (),5)

m There are k hypothesis consistent with data

How likely is learner to pick a bad one? n
(\)&Zt(_b\ e 8 h co S 57"01" V ¢ ("VQ?/E 2 Congisdent V - % ) 7€ 56"5.}94,})

Fh m Aat= ?6”\'}S>

((é(}\\\7/2 P Conglg—ltq—J' V2

o . e < e€ 7
< v (=gl ;, .
< (W Uf%\m lH( = j S?WPW% “qne.
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Review: Generalization error In

__finite hypothesis spaces [Haussler '88]

m Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 <¢ <1 : for any learned

hypothesis h that is consistent on the training data:
P(erroryye(h) > ¢€) < |Hle ™

S oD Incriesey T Fu make o Sen X
JJ‘-C’?S?M )L\Z,V@.S/L
\ EXporndiall, &0t
OS5 H\H —) ([ NCeagpg

- ’okok OQLU 3o \\’\Uf&c,%.k

linerly ik (L
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L & L St vl
Using a PAC bound **zi 70 000 -

- iﬁ‘l ﬁrolw\lvﬁ |iﬁm9(lm7‘cl’~3 Correct

m Typically, 2 use cases: P(erroryye(h) > ¢€) < |Hle ™
1: Pick € and 9, give you m
2: Pick m and o, give you ¢
6-63.’ £ £06-f
- 2097 T cm fijl\?‘

1
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Review: Generalization error In
__finite hypothesis spaces [Haussler '88]

m Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 <¢ <1 : for any learned

hypothesis h that is consistent on the training data:
P(errorypye(h) > ¢€) < |H‘€_m€

Even if h makes zero errors in training data, may make errors in test
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Limitations of Haussler ‘88 bound
= B P(erroryye(h) > €) < |Hle ™"

m Consistent classifier

m Size of hypothesis space
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What if our classifier does not have
zero error on the training data?
JERN

m A learner with zero training errors may make
mistakes in test set

m \What about a learner with error,, . (h) in training set?
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Simpler question: What's the
i exgeoted error of a hypothesis?

m The error of a hypothesis is like estimating the
parameter of a coin!

m Chernoff bound: for m i.i.d. coin flips, X4,...,X.,,
where x,€{0,1}. For 0<e<1:

1
P (H—in > E) < g ome
m <
1

2
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Using Chernoff bound to estimate

error of a single hypothesis
S

1
P (H—in > E) < g—2me’
m <

(]
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But we are comparing many

] hxgothesis: Union bound

For each hypothesis h::
P (errort’rue(hi) — errortmm(hi) > 6) < €—2m€2

What if | am comparing two hypothesis, h, and h,?
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Generalization bound for |H|

] hxgothesis

m Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 <¢ <1 : for any learned

hypothesis h:
P (erroripye(h) — errory,qin(h) > €) < |H|e—2m€2
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PAC bound and Bias-Variance
tradeoff

2
P (erroripue(h) — erroryqgin(h) > €) < |H|e 2™M¢

or, after moving some terms around,

with probability at least 1-6: 1
In|H|+In s

errortrue(h) S errortra,in(h> I \
2m

m Important: PAC bound holds for all h,
but doesn’t guarantee that algorithm finds best h!!!
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What about the size of the

] hxgothesis space?

1 1
> —|(In|H In —
m_2€2< H|+ 5)

m How large is the hypothesis space?
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Boolean formulas with n binary features
" S
1 1
m > 2—€2<In]H|—|—Ing>



Number of decision trees of depth k
. m > 5o (10l 410 5)

€
Recursive solution
Given n attributes
H, = Number of decision trees of depth k
H, =2
H,., = (#choices of root attribute) *
(# possible left subtrees) *
(# possible right subtrees)

=n*H, *H,
Write L, = log, H,
L..s =log, n+2L,
So L, = (2¢1)(1+log, n) +1
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PAC bound for decision trees of

] degth K

In 2 1
m > 2—62((2’“— 1)(1+|092n)+1+|ng>

m Bad!!l

Number of points is exponential in depth!

m But, for m data points, decision tree can’t get too big...

Number of leaves never more than number data poipts
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Number of decision trees with k leaves

E > 1 (IanH—Inl)
m> -
= = 52 5
H, = Number of decision trees with k leaves
H, =2
k
Hyy1=n ) HiHpii_,
=1
Loose bound: Reminder:

H, =nf 1k + 1)%F1 IDTs depth k| = 2 % (2n)2" 1
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PAC bound for decision trees with k
leaves — Bias-Variance revisited
JEE

1
In|H|+1In3
2m

Hk' pu— ’n,k_ 1 (k —I— 1)2k_ 1 errortrue(h) < errortraz’n(h) + J

(k—1)Inn+ (2k—1)In(k+ 1) +In}

2m

errortrue(h) < errortfr’ain(h) ‘|‘\
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Announcements
I

m Midterm on Wednesday
Open book and notes, no other material
Bring a calculator
No laptops, PDAs or cellphones
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What did we learn from decision trees?
" I

m Bias-Variance tradeoff formalized

(k—1)Inn+ (2k—1)In(k+ 1) +In}

2m

errorgrye(h) < errortmm(hHJ

m Moral of the story:
Complexity of learning not measured in terms of size
hypothesis space, but in maximum number of points that
allows consistent classification

Complexity m — no bias, lots of variance
Lower than m — some bias, less variance
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What about continuous hypothesis

] sgaces?

errort’rue(h) < errortrain(h) + \

In|H|+In%

2m

m Continuous hypothesis space:
H| = 1
Infinite variance???

m As with decision trees, only care about the
maximum number of points that can be
classified exactly!
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How many points can a linear

] boundar¥ classify exactly? (1-D)
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How many points can a linear

] boundar¥ classify exactly? (2-D)
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How many points can a linear

i boundar¥ classify exactly? (d-D)
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PAC bound using VC dimension

" J
® Number of training points that can be
classified exactly is VC dimension!!!

Measures relevant size of hypothesis space, as
with decision trees with k leaves

VO(H) (ln V(%’E”H) | 1)+|n§

errortrue(h) S errortrain(h) I \ "
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Shattering a set of points
" J
Definition: a dichotomy of a set S is a

partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.
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VC dimension
"

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of

the largest finite subset of X shattered by H.

If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = .
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PAC bound using VC dimension

" J
® Number of training points that can be
classified exactly is VC dimension!!!

Measures relevant size of hypothesis space, as
with decision trees with k leaves

Bound for infinite dimension hypothesis spaces:

VC(H) (Inyény +1) +ing

m

errortrue(h) < errortrain(h) | \
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Examples of VC dimension

" o0 < eronpaiy LD ) H 8
m Linear classifiers:
VC(H) = d+1, for d features plus constant term b

m Neural networks
VC(H) = #parameters

Local minima means NNs will probably not find best
parameters

m 1-Nearest neighbor?
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Another VC dim. example -

. \What can we shatter?

m What's the VC dim. of decision stumps in 2d?
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Another VC dim. example -

. \Whatcant we shatter?

m What's the VC dim. of decision stumps in 2d?
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What you need to know

" J

m Finite hypothesis space
Derive results
Counting number of hypothesis
Mistakes on Training data

m Complexity of the classifier depends on number of
points that can be classified exactly

Finite case — decision trees
Infinite case — VC dimension

m Bias-Variance tradeoff in learning theory
m Remember: will your algorithm find best classifier?
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Big Picture

Machine Learning — 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 5t 2007
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What you have learned thus far

Learning is function approximation

Point estimation
Regression

Naive Bayes

Logistic regression
Bias-Variance tradeoff
Neural nets

Decision trees

Cross validation
Boosting
Instance-based learning
SVMs

Kernel trick

PAC learning

VC dimension

Margin bounds
Mistake bounds
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Review material in terms of...
" A

m Types of learning problems

m Hypothesis spaces

m Loss functions

m Optimization algorithms
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BIG PICTURE —
(a few points of comparison) task
" A >
loss
Boosting o)
Naive &1, oxpHoss function i
Bayes
DE, LL
Logistic SVMs
regression Cl. Mrg
DE, LL
Instance-based
Learning
DE,CI,Reg
Neural
Nets
DE,Cl,Reg,RMS Decision
trees
DE,CI,Reg

This is a very incomplete view!!! . e cuestin

DE

density estimation

Cl

Classification

Reg

Regression

LL

Log-loss/MLE

Mrg

Margin-based

RMS

Squared error

SVM

regression

Reg, Mrg

kernel

regression
Reg, RMS

linear

regression

Reg, RMS
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