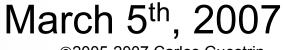
PAC-learning, VC Dimension and Marginbased Bounds (cont.)

Learning Theory

Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University



©2005-2007 Carlos Guestrin

A simple setting...

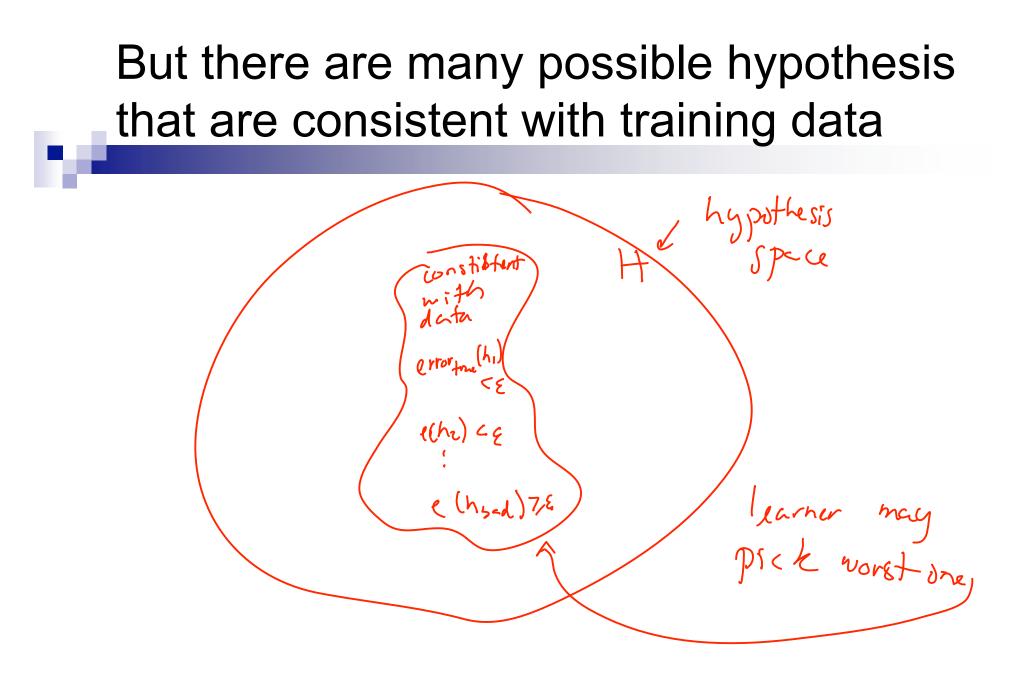
Classification

- m data points
- Finite number of possible hypothesis (e.g., dec. trees of depth d) on categorical data
- A learner finds a hypothesis h that is consistent with training data

Gets zero error in training – error_{train}(h) = 0

What is the probability that h has more than ε true error?

 $\Box \operatorname{error}_{\operatorname{true}}(h) \operatorname{Filt}$



Union bound ■ P(A or B or C or D or ...) $\leq P(A) + P(B) + P(C) + \cdots$ B \mathcal{C}

How likely is learner to pick a bad hypothesis $(1-\varepsilon)^m \leq (\varepsilon^{-\varepsilon})^m \equiv \varepsilon^{-\varepsilon}$

Prob. h; with error_{true}(h) $\geq \varepsilon$ gets m data points right $P(\ell_{\ell}(h_{i}), 7/\epsilon \otimes consistent w: th m data points) \leq (1-\epsilon)^{m}$

There are k hypothesis consistent with data There are k hypothesis consistent with data How likely is learner to pick a bad one? $P(e_t(h) \neq s \text{ hiconsistent } \forall e_t(h_t) \neq s \text{ consistent } \forall \dots \forall e_t(h_t) \neq s \text{ consistent } \forall \forall e_t(h_t) \neq s \text{ consistent } \forall e_t(h_t) \neq s \text{ consi$

Review: Generalization error in finite hypothesis spaces [Haussler '88]

• **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\operatorname{error}_{true}(h) \ge \epsilon) \le |H|e^{-m\epsilon}$$

I want : error une (h) E E Using a PAC bound guarantee with high prob. PAC: probably Approximately correct guarantee with prob.) [-J Typically, 2 use cases: $P(error_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$ \Box 1: Pick ε and δ , give you *m* \Box 2: Pick m and δ , give you ϵ <u>1</u>. e.g., ε≤ο·ι 1-070.95 Iam right 57 | H (e-me 1022 m/H - WE M 7 1 (In(H|+In]) (# print you need 2

Review: Generalization error in finite hypothesis spaces [Haussler '88]

• **Theorem**: Hypothesis space *H* finite, dataset *D* with *m* i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis *h* that is consistent on the training data:

$$P(\operatorname{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

Even if h makes zero errors in training data, may make errors in test

Limitations of Haussler '88 bound

 $P(\operatorname{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$

Consistent classifier

Size of hypothesis space

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with error_{train}(h) in training set?

Simpler question: What's the expected error of a hypothesis?

The error of a hypothesis is like estimating the parameter of a coin!

Chernoff bound: for *m* i.i.d. coin flips, x₁,...,x_m, where x_i∈{0,1}. For 0<ε<1:</p>

$$P\left(\theta - \frac{1}{m}\sum_{i} x_i > \epsilon\right) \le e^{-2m\epsilon^2}$$

Using Chernoff bound to estimate error of a single hypothesis

$$P\left(\theta - \frac{1}{m}\sum_{i} x_{i} > \epsilon\right) \le e^{-2m\epsilon^{2}}$$

But we are comparing many hypothesis: Union bound

For each hypothesis h_i:

$$P(\operatorname{error}_{true}(h_i) - \operatorname{error}_{train}(h_i) > \epsilon) \le e^{-2m\epsilon^2}$$

What if I am comparing two hypothesis, h_1 and h_2 ?

Generalization bound for |H| hypothesis

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, 0 < ε < 1 : for any learned hypothesis h:</p>

 $P(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon) \le |H|e^{-2m\epsilon^2}$

PAC bound and Bias-Variance tradeoff

$$P(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon) \le |H|e^{-2m\epsilon^2}$$

or, after moving some terms around, with probability at least 1- δ :

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln \frac{1}{\delta}}{2m}}$$

Important: PAC bound holds for all h, but doesn't guarantee that algorithm finds best h!!!

©2005-2007 Carlos Guestrin

What about the size of the hypothesis space?

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

How large is the hypothesis space?

Boolean formulas with n binary features

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

Number of decision trees of depth k $m \ge \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right)$

Recursive solution Given *n* attributes H_k = Number of decision trees of depth k $H_0 = 2$ $H_{k+1} = ($ #choices of root attribute) *(# possible left subtrees) * (# possible right subtrees) $= n * H_{k} * H_{k}$ Write $L_k = \log_2 H_k$ $L_0 = 1$ $L_{k+1} = \log_2 n + 2L_k$ So $L_k = (2^k - 1)(1 + \log_2 n) + 1$

PAC bound for decision trees of depth k

$$m \ge \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \ln \frac{1}{\delta} \right)$$

Bad!!!

□ Number of points is exponential in depth!

But, for m data points, decision tree can't get too big...

Number of leaves never more than number data points

Number of decision trees with k leaves $m \ge \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right)$

 H_k = Number of decision trees with k leaves H_0 =2

$$H_{k+1} = n \sum_{i=1}^{k} H_i H_{k+1-i}$$

Loose bound:

 $H_k = n^{k-1}(k+1)^{2k-1}$

Reminder:

 $|DTs depth k| = 2 * (2n)^{2^k - 1}$

PAC bound for decision trees with k leaves – Bias-Variance revisited

$$H_k = n^{k-1}(k+1)^{2k-1}$$

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln \frac{1}{\delta}}{2m}}$$

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{rac{(k-1)\ln n + (2k-1)\ln(k+1) + \ln rac{1}{\delta}}{2m}}$$

Announcements

Midterm on Wednesday

- Open book and notes, no other material
- □ Bring a calculator
- No laptops, PDAs or cellphones

What did we learn from decision trees?

Bias-Variance tradeoff formalized

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln(k+1) + \ln \frac{1}{\delta}}{2m}}$$

Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum *number of points* that allows consistent classification

- \Box Complexity *m* no bias, lots of variance
- \Box Lower than *m* some bias, less variance

What about continuous hypothesis spaces?

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln 2m}{2m}}$$

- Continuous hypothesis space:
 - □ |H| = 1
 - □ Infinite variance???
- As with decision trees, only care about the maximum number of points that can be classified exactly!

How many points can a linear boundary classify exactly? (1-D)

How many points can a linear boundary classify exactly? (2-D)

How many points can a linear boundary classify exactly? (d-D)

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

Shattering a set of points

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

VC dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space Hdefined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves
 - Bound for infinite dimension hypothesis spaces:

 $\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC}{M}}$

$$\frac{C(H)\left(\ln\frac{2m}{VC(H)}+1\right)+\ln\frac{4}{\delta}}{m}$$

Examples of VC dimension

Linear classifiers:

 \Box VC(H) = d+1, for *d* features plus constant term *b*

 $\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$

- Neural networks
 - \Box VC(H) = #parameters
 - Local minima means NNs will probably not find best parameters
- 1-Nearest neighbor?

Another VC dim. example -What can we shatter?

What's the VC dim. of decision stumps in 2d?

Another VC dim. example - What can't we shatter?

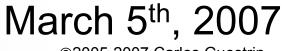
What's the VC dim. of decision stumps in 2d?

What you need to know

- Finite hypothesis space
 - □ Derive results
 - Counting number of hypothesis
 - Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
 - □ Finite case decision trees
 - □ Infinite case VC dimension
- Bias-Variance tradeoff in learning theory
- Remember: will your algorithm find best classifier?

Big Picture

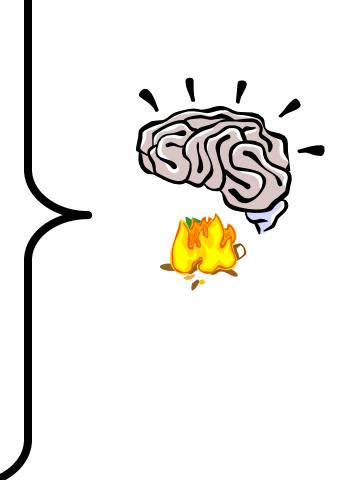
Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University



©2005-2007 Carlos Guestrin

What you have learned thus far

- Learning is function approximation
- Point estimation
- Regression
- Naïve Bayes
- Logistic regression
- Bias-Variance tradeoff
- Neural nets
- Decision trees
- Cross validation
- Boosting
- Instance-based learning
- SVMs
- Kernel trick
- PAC learning
- VC dimension
- Margin bounds
- Mistake bounds



©2005-2007 Carlos Guestrin

Review material in terms of...

- Types of learning problems
- Hypothesis spaces
- Loss functions
- Optimization algorithms

