Learning Theory

PAC-learning, VC Dimension and Marginbased Bounds (cont.)

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 5th, 2007

A simple setting...

- Classification
 - □ m data points
 - of depth d) on categoricals data
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training error_{train}(h) = 0
- What is the probability that h has more than ε true error?
 - □ error_{true}(h) **>**ε

But there are many possible hypothesis that are consistent with training data

Union bound

■ P(A or B or C or D or ...) $\leq P(A) + P(B) + P(C) + \cdots$

How likely is learner to pick a bad hypothesis

- Prob. h with error true (h) $\gtrsim \epsilon$ gets m data points right $\rho(\ell_{t}(h)) \approx 8$ consistent with m data points) $\leq (1-\epsilon)^{m}$
- There are k hypothesis consistent with data
 - □ How likely is learner to pick a bad one?

Review: Generalization error in finite hypothesis spaces [Haussler '88]

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_{true}(h) \geq \epsilon) \leq |H|e^{-m\epsilon}$$
as $m \Rightarrow \text{incresse} =$) P_{rd} , make a back decision decrease exponentially test as $|H| \rightarrow \text{incresses}$

$$=) \text{ Chances of making a back decision increase linearly with } |H|$$

I want: erro-true (h) \(\xi\) Using a PAC bound guarantee with high prob. PAC: probably Approximately Corned guarantee with prob. > 1-5

Typically, 2 use cases: $P(error_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$

□ 1: Pick ε and δ, give you m

m= 10,000 1-8=0.95

 \square 2: Pick m and δ , give you ϵ

1-070.95 I am right

InIHI-ME < INT

10 2 2 m/H - mE

9E> 1 (|NH) + m/s)

true & = error frue (4)

Review: Generalization error in finite hypothesis spaces [Haussler '88]

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

train =

Limitations of Haussler '88 bound

Consistent classifier

que want to make training errors, because bias-vavance tradoff

Size of hypothesis space

1 N H)

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with error_{train}(h) in training set?

10

Simpler question: What's the expected error of a hypothesis?

The error of a hypothesis is like estimating the parameter of a coin!

■ Chernoff bound: for m i.i.d. coin flips, $x_1,...,x_m$, where $x_i \ge \{0,1\}$. For $0 < \varepsilon < 1$:

$$P\left(\theta - \frac{1}{m}\sum_{i}x_{i} > \epsilon\right) \leq e^{-2m\epsilon^{2}}$$
 true
$$\chi_{i} = 0 \quad \text{if } t_{ai} \leq 0 \quad$$

Using Chernoff bound to estimate error of a single hypothesis

$$P\left(\theta - \frac{1}{m}\sum_{i}x_{i} > \epsilon\right) \leq e^{-2m\epsilon^{2}} \quad P(e_{\text{cut}}(h) - e_{\text{min}}(h) > \epsilon)$$
for some hypothesis h

estimate true error $\rightarrow \Theta = \text{error}_{\text{true}}(h)$

error $\{h\} = \frac{1}{m}\sum_{i=1}^{m} f(h(x_{i}^{(i)}) = f^{(i)})$
 $\chi_{i} = f(h(x_{i}^{(i)}) = f^{(i)})$

But we are comparing many hypothesis: **Union bound**

For each hypothesis h_i:

$$P\left(\text{error}_{true}(h_i) - \text{error}_{train}(h_i) > \epsilon\right) \le e^{-2m\epsilon^2}$$

What if I am comparing two hypothesis, h₁ and h₂?

Generalization bound for |H| hypothesis

■ **Theorem**: Hypothesis space \underline{H} finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$P\left(\text{error}_{true}(h) - \text{error}_{train}(h) > \epsilon\right) \leq |H|e^{-2m\epsilon^2} \leq \delta$$

$$\text{at least}$$

$$\text{with prob. } 1-\delta$$

$$\text{E} = \text{error}_{true}(h) - \text{ens. } (h)$$

$$\text{E} = \text{error}_{train}(h) + \text{on. } (h)$$

$$\text{thus } (h) \leq \text{error}_{train}(h) + \text{on. } (h) + \text{on. } (h)$$

PAC bound and Bias-Variance tradeoff

$$P\left(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon\right) \le |H|e^{-2m\epsilon^2}$$

or, after moving some terms around, with probability at least $1-\delta$:

error $true(h) \leq error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$ be small more complex by large $\frac{1}{2}\ln|H|$ high $\frac{1}{2}\ln|H|$

■ Important: PAC bound holds for all *h*, but doesn't guarantee that algorithm finds best *h*!!!

What about the size of the hypothesis space?

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

How large is the hypothesis space?

Boolean formulas with *n* binary features

 $m \geq \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$ Hall conjuctions of a Subset of nathributes, attributes can be negeted, Hall binary formulas
with nattribute, 141? XI 1X7 1 7 XIZ X2 17 X3 1 X23 for each athibute, three options { exclude, include, include, include } negleted?

Number of decision trees of depth k

Recursive solution

Given *n* attributes

 H_k = Number of decision trees of depth k

$$H_0 = 2$$

$$H_{k+1}$$
 = (#choices of root attribute) * (# possible left subtrees) *

(# possible right subtrees)

$$= n * H_k * H_k$$

Write
$$L_k = log_2 H_k$$

$$L_0 = 1$$

$$L_{k+1} = \log_2 n + 2L_k$$

So
$$L_k = (2^k-1)(1+\log_2 n) +1$$

PAC bound for decision trees of depth k

$$m \ge \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \ln \frac{1}{\delta} \right)$$

- Bad!!!
 - □ Number of points is exponential in depth!

■ But, for *m* data points, decision tree can't get too big...

I no more than in leaves

Number of leaves never more than number data points

HK

Number of decision trees with k leaves

 H_k = Number of decision trees with k leaves

$$H_0 = 2$$

$$H_{k+1} = n \sum_{i=1}^{k} H_i H_{k+1-i}$$

Loose bound:

$$H_k = n^{k-1}(k+1)^{2k-1}$$

$$\ln H = (K-1) \ln n + (2 K-1) (n (k+1))$$

Reminder:

|DTs depth
$$k$$
| = 2 * $(2n)^{2^k-1}$

PAC bound for decision trees with k leaves – Bias-Variance revisited

$$H_k = n^{k-1}(k+1)^{2k-1}$$
 $\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln \frac{1}{\delta}}{2m}}$

Announcements

- Midterm on Wednesday
 - Open book and notes, no other material
 - □ Bring a calculator
 - □ No laptops, PDAs or cellphones

What did we learn from decision trees?

Bias-Variance tradeoff formalized

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln(k+1) + \ln\frac{1}{\delta}}{2m}}$$

Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum *number of points* that allows consistent classification

- \square Complexity m no bias, lots of variance
- \square Lower than m some bias, less variance

What about continuous hypothesis spaces?

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

- Continuous hypothesis space:
 - □ |H| = 100
 - □ Infinite variance???
 - As with decision trees, only care about the maximum number of points that can be classified exactly!

How many points can a linear boundary classify exactly? (1-D)

How many points can a linear boundary classify exactly? (2-D)

How many points can a linear boundary classify exactly? (d-D)

dt l points &

can be

can be

classified exactly

space

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves

$$\begin{array}{c|c} \operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}} \\ \text{for linear classifier high } & \text{low because } = dt | \\ \text{Small A} \\ \text{low} & \text{high} \\ \text{low} & \text{high} \\ \end{array}$$

Shattering a set of points

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

if {X1 X2 kg} &+ } h276H {X3} &-) that consitent

there can be more than

$$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ &$$

VC dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

linear classifier x cannot shatter, x game:
you give set of point
adversary labels
them

you must bear able classify them cornetly

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves
 - Bound for infinite dimension hypothesis spaces:

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

Examples of VC dimension

- Linear classifiers:
 - \Box VC(H) = d+1, for <u>d</u> features plus constant term b d+1 parameters
- Neural networks
 - □ VC(H) = #parameters
 - Local minima means NNs will probably not find best parameters

■ 1-Nearest neighbor? (in my fraining data , a point is the its own neighbor)

Another VC dim. example - + + + What can we shatter?

■ What's the VC dim. of decision stumps in 2d?

Another VC dim. example -What can't we shatter?

What's the VC dim. of decision stumps in 2d?

must prove that you can't shatter man than 3 min(x/y) coord maxky coord => + =) find points

What you need to know

- 20
 - Finite hypothesis space
 - □ Derive results
 - □ Counting number of hypothesis
 - Mistakes on Training data
 - Complexity of the classifier depends on number of points that can be classified exactly
 - □ Finite case decision trees
 - □ Infinite case VC dimension
 - Bias-Variance tradeoff in learning theory
 - Remember: will your algorithm find best classifier?

Big Picture

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 5th, 2007

What you have learned thus far

- Learning is function approximation
- Point estimation
- Regression
- Naïve Bayes
- Logistic regression
- Bias-Variance tradeoff
- Neural nets
- Decision trees
- Cross validation
- Boosting
- Instance-based learning
- SVMs
- Kernel trick
- PAC learning
- VC dimension
- Margin-bounds
- Mistake bounds

Review material in terms of...

- Types of learning problems
- Hypothesis spaces
- Loss functions
- Optimization algorithms

BIG PICTURE

(a few points of comparison)

learning task DE density estimation

CI Classification

Reg Regression

LL Log-loss/MLE

Mrg Margin-based

RMS Squared error

Naïve Bayes

DĚ, LL

Boosting Cl. exp-loss loss function

Logistic regression

log loss v. hinge loss
SVMs
CI, Mrg

Instance-based
Learning

DE,CI,Reg

SVM regression

Reg, Mrg

kernel regression

Neural Nets

DE,CI,Reg,RMS

Decision trees DE,CI,Reg linear regression Reg, RMS