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SVMs reminder
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Dual SVM formulation –
the non-separable case
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Reminder from last time: What if the
data is not linearly separable?

Use features of features 
of features of features….

Feature space can get really large really quickly!
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Dual formulation only depends on
dot-products, not on w!
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Dot-product of polynomials



©2005-2007 Carlos Guestrin 7

Finally: the “kernel trick”!

 Never represent features explicitly
 Compute dot products in closed form

 Constant-time high-dimensional dot-
products for many classes of features

 Very interesting theory – Reproducing
Kernel Hilbert Spaces
 Not covered in detail in 10701/15781,

more in 10702
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Common kernels

 Polynomials of degree d

 Polynomials of degree up to d

 Gaussian kernels

 Sigmoid
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Overfitting?

 Huge feature space with kernels, what about
overfitting???
 Maximizing margin leads to sparse set of support

vectors
 Some interesting theory says that SVMs search for

simple hypothesis with large margin
 Often robust to overfitting
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What about at classification time

 For a new input x, if we need to represent Φ(x),
we are in trouble!

 Recall classifier: sign(w.Φ(x)+b)
 Using kernels we are cool!
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SVMs with kernels

 Choose a set of features and kernel function
 Solve dual problem to obtain support vectors αi

 At classification time, compute:

Classify as
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Remember kernel regression

Remember kernel regression???
1. wi = exp(-D(xi, query)2 / Kw

2)
2. How to fit with the local points?

Predict the weighted average of the outputs:
predict = Σwiyi / Σwi
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SVMs v. Kernel Regression

SVMs Kernel Regression

or
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SVMs v. Kernel Regression

SVMs Kernel Regression

or

Differences:
 SVMs:

 Learn weights αi (and bandwidth)
 Often sparse solution

 KR:
 Fixed “weights”, learn bandwidth
 Solution may not be sparse
 Much simpler to implement
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What’s the difference between
SVMs and Logistic Regression?

High dimensional
features with
kernels

Loss function

NoYes!

Log-lossHinge loss

Logistic
Regression

SVMs
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Kernels in logistic regression

 Define weights in terms of support vectors:

 Derive simple gradient descent rule on αi
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What’s the difference between SVMs
and Logistic Regression? (Revisited)

Almost always no!Often yes!Solution sparse

Yes!Yes!High dimensional
features with
kernels

Real probabilities“Margin”Semantics of
output

Loss function Log-lossHinge loss

Logistic
Regression

SVMs
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What you need to know

 Dual SVM formulation
 How it’s derived (intuition)

 The kernel trick
 Derive polynomial kernel
 Common kernels
 Kernelized logistic regression
 Differences between SVMs and logistic regression
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Announcements

 Class projects out next week
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PAC-learning, VC
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What now…

 We have explored many ways of learning from
data

 But…
 How good is our classifier, really?
 How much data do I need to make it “good enough”?
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A simple setting…

 Classification
 m data points
 Finite number of possible hypothesis (e.g., dec. trees

of depth d)
 A learner finds a hypothesis h that is consistent

with training data
 Gets zero error in training – errortrain(h) = 0

 What is the probability that h has more than ε
true error?
 errortrue(h) ¸ ε
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How likely is a bad hypothesis to
get m data points right?

 Hypothesis h that is consistent with training data !
got m i.i.d. points right

 Prob. h with errortrue(h) ¸ ε  gets one data point right

 Prob. h with errortrue(h) ¸ ε  gets m data points right
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But there are many possible hypothesis
that are consistent with training data
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How likely is learner to pick a bad
hypothesis

 Prob. h with errortrue(h) ¸ ε  gets m data points right

 There are k hypothesis consistent with data
 How likely is learner to pick a bad one?
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Union bound

 P(A or B or C or D or …)
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How likely is learner to pick a bad
hypothesis

 Prob. h with errortrue(h) ¸ ε  gets m data points right

 There are k hypothesis consistent with data
 How likely is learner to pick a bad one?
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Review: Generalization error in
finite hypothesis spaces [Haussler ’88]

 Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned
hypothesis h that is consistent on the training data:
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Using a PAC bound

 Typically, 2 use cases:
 1: Pick ε and δ, give you m
 2: Pick m and δ, give you ε
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Review: Generalization error in
finite hypothesis spaces [Haussler ’88]

 Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned
hypothesis h that is consistent on the training data:

Even if h makes zero errors in training data, may make errors in test
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Limitations of Haussler ‘88 bound

 Consistent classifier

 Size of hypothesis space
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What if our classifier does not have
zero error on the training data?

 A learner with zero training errors may make
mistakes in test set

 What about a learner with errortrain(h) in training set?
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Simpler question: What’s the
expected error of a hypothesis?

 The error of a hypothesis is like estimating the
parameter of a coin!

 Chernoff bound: for m i.i.d. coin flips, x1,…,xm,
where xi 2 {0,1}. For 0<ε<1:
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Using Chernoff bound to estimate
error of a single hypothesis
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But we are comparing many
hypothesis: Union bound

For each hypothesis hi: 

What if I am comparing two hypothesis, h1 and h2? 
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Generalization bound for |H|
hypothesis

 Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned
hypothesis h:
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PAC bound and Bias-Variance
tradeoff

 Important: PAC bound holds for all h,
but doesn’t guarantee that algorithm finds best h!!!

or, after moving some terms around,
with probability at least 1-δ:
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What about the size of the
hypothesis space?

 How large is the hypothesis space?
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Boolean formulas with n binary features
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Number of decision trees of depth k

Recursive solution
Given n attributes
Hk = Number of decision trees of depth k
H0 =2
Hk+1 = (#choices of root attribute) *

(# possible left subtrees) *
(# possible right subtrees)

   = n * Hk * Hk

Write Lk = log2 Hk
L0 = 1
Lk+1 = log2 n + 2Lk
So Lk = (2k-1)(1+log2 n) +1
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PAC bound for decision trees of
depth k

 Bad!!!
 Number of points is exponential in depth!

 But, for m data points, decision tree can’t get too big…

Number of leaves never more than number data points
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Number of decision trees with k leaves

Hk = Number of decision trees with k leaves
H0 =2

Loose bound: Reminder:
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PAC bound for decision trees with k
leaves – Bias-Variance revisited
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What did we learn from decision trees?

 Bias-Variance tradeoff formalized

 Moral of the story:
Complexity of learning not measured in terms of size
hypothesis space, but in maximum number of points that
allows consistent classification
 Complexity m – no bias, lots of variance
 Lower than m – some bias, less variance
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What about continuous hypothesis
spaces?

 Continuous hypothesis space:
 |H| = 1
 Infinite variance???

 As with decision trees, only care about the
maximum number of points that can be
classified exactly!
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How many points can a linear
boundary classify exactly? (1-D)
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How many points can a linear
boundary classify exactly? (2-D)
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How many points can a linear
boundary classify exactly? (d-D)
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PAC bound using VC dimension

 Number of training points that can be
classified exactly is VC dimension!!!
 Measures relevant size of hypothesis space, as

with decision trees with k leaves
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Shattering a set of points
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VC dimension
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Examples of VC dimension

 Linear classifiers:
 VC(H) = d+1, for d features plus constant term b

 Neural networks
 VC(H) = #parameters
 Local minima means NNs will probably not find best

parameters

 1-Nearest neighbor?
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PAC bound for SVMs

 SVMs use a linear classifier
 For d features, VC(H) = d+1:
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VC dimension and SVMs: Problems!!!

 What about kernels?
 Polynomials: num. features grows really fast = Bad bound

 Gaussian kernels can classify any set of points exactly

Doesn’t take margin into account

n – input features
p – degree of polynomial
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Margin-based VC dimension

 H: Class of linear classifiers: w.Φ(x)  (b=0)
 Canonical form: minj |w.Φ(xj)| = 1

 VC(H) = R2 w.w
 Doesn’t depend on number of features!!!
 R2 = maxj Φ(xj).Φ(xj) – magnitude of data
 R2 is bounded even for Gaussian kernels ! bounded VC

dimension

 Large margin, low w.w, low VC dimension – Very cool!
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Applying margin VC to SVMs?

 VC(H) = R2 w.w
 R2 = maxj Φ(xj).Φ(xj) – magnitude of data, doesn’t depend on choice of w

 SVMs minimize w.w

 SVMs minimize VC dimension to get best bound?
 Not quite right: 

 Bound assumes VC dimension chosen before looking at data
 Would require union bound over infinite number of possible VC

dimensions…
 But, it can be fixed!
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Structural risk minimization theorem

 For a family of hyperplanes with margin γ>0
 w.w · 1

 SVMs maximize margin γ + hinge loss
 Optimize tradeoff training error (bias) versus margin γ

(variance)
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Reality check – Bounds are loose

 Bound can be very loose, why should you care?
 There are tighter, albeit more complicated, bounds
 Bounds gives us formal guarantees that empirical studies can’t provide
 Bounds give us intuition about complexity of problems and convergence rate of

algorithms

ε

m (in 105)

d=2000

d=200

d=20

d=2
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What you need to know

 Finite hypothesis space
 Derive results
 Counting number of hypothesis
 Mistakes on Training data

 Complexity of the classifier depends on number of
points that can be classified exactly
 Finite case – decision trees
 Infinite case – VC dimension

 Bias-Variance tradeoff in learning theory
 Margin-based bound for SVM
 Remember: will your algorithm find best classifier?


