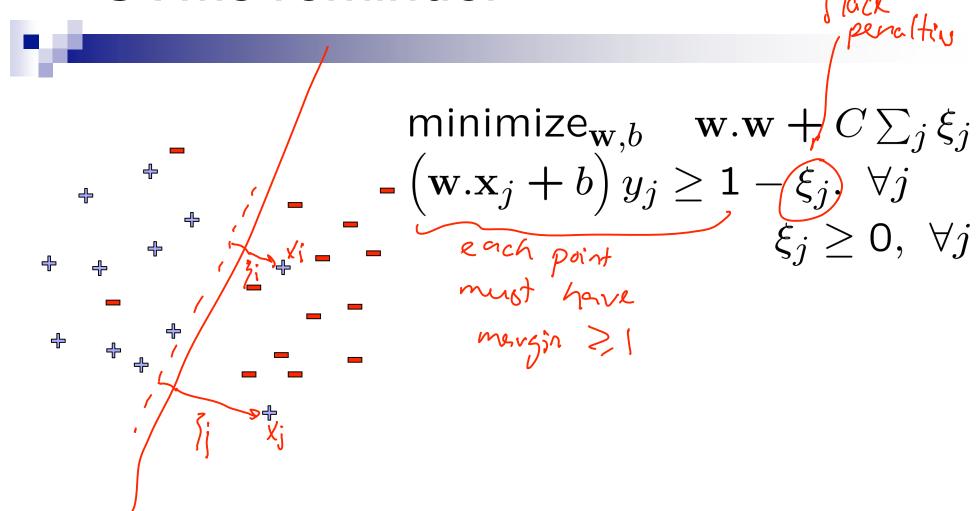
# SVMs, Duality and the Kernel Trick (cont.)

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 28th, 2007

#### SVMs reminder



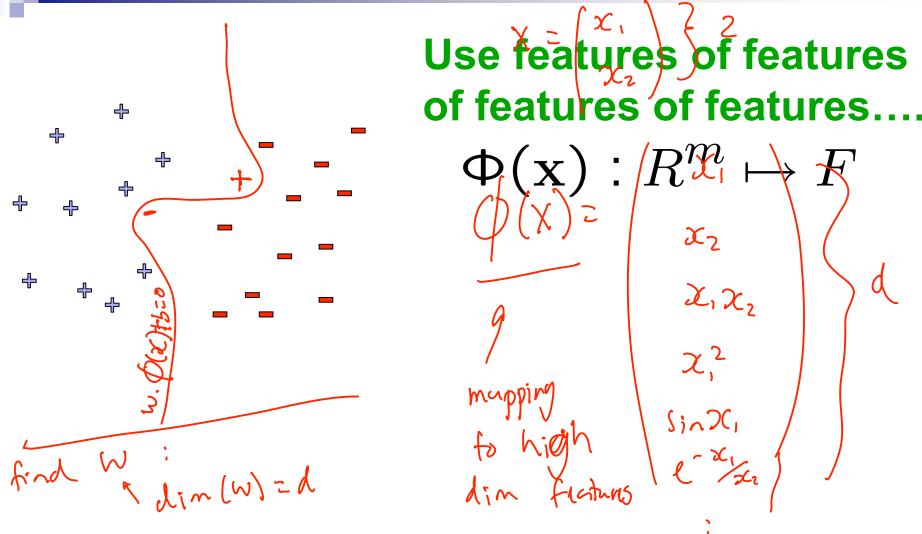
## Dual SVM formulation – the non-separable case

compared to Separable case: only difference di < C  $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ 

 $b = y_k - \mathbf{w}.\mathbf{x}_k$  for any k where  $C > \alpha_k > 0$ 

intuitively, don't give me alphas that

## Reminder from last time: What if the data is not linearly separable?



Feature space can get really large really quickly!

Dual formulation only depends on dot-products, not on w!

$$\max \min_{\boldsymbol{z} \in \boldsymbol{\alpha}} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$$
 
$$\sum_{i} \alpha_{i} y_{i} = 0$$
 
$$C \geq \alpha_{i} \geq 0$$
 
$$\phi(\mathbf{x}_{i}) = \begin{cases} \mathbf{x}_{i} \\ \mathbf{y}_{i} \\ \mathbf{y}_{i} \\ \mathbf{y}_{i} \end{cases}$$
 how many terms? 
$$\sum_{i} \alpha_{i} \mathbf{y}_{i} = 0$$
 
$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
 
$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \underbrace{\phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}_{j})}_{\sum_{i} \alpha_{i} y_{i}} = 0$$
 
$$C \geq \alpha_{i} \geq 0$$
 
$$\sum_{\mathbf{y} \geq 0 \in \mathbb{Z}007 \text{ Carlos Guestrin}} 5$$

# Dot-product of polynomials

$$M = \begin{pmatrix} u_1 \\ h_2 \end{pmatrix}$$

$$V = \begin{pmatrix} V_1 \\ v_2 \end{pmatrix}$$

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree d}$ 

$$d=1$$
  $\phi(\mu)=\mu$ 

$$\frac{d^{2}}{d^{2}} = \frac{d(u)^{2}}{d(u)^{2}} = \frac{d(u)^{2$$

degree 
$$=d$$
  $K(\mu,\nu) = \phi(\mu). \phi(\nu) = (\mu,\nu)^d$   
 $= o(d)$  multiplications

### Finally: the "kernel trick"!

maximize
$$_{\alpha}$$
  $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$ 

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C \ge \alpha_i \ge 0$$

- Never represent features explicitly
  - Compute dot products in closed form
- Co pro

Constant-time high-dimensional dotproducts for many classes of features

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

for any k where  $C > \alpha_k > 0$ 

- Very interesting theory Reproducing Kernel Hilbert Spaces
  - □ Not covered in detail in 10701/15781, more in 10702

#### Common kernels



Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d 
$$(\mathbf{u} \cdot \mathbf{v} + \mathbf{1})^d K(\mathbf{u} \cdot \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + \mathbf{1})^d$$

Gaussian kernels

Gaussian Kernels

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{|\mathbf{u} - \mathbf{v}|}{2\sigma^2}\right) \ell$$

equivalent to equ

dimensionality

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

### Overfitting?



- Huge feature space with kernels, what about overfitting???
  - Maximizing margin leads to sparse set of support vectors
  - Some interesting theory says that SVMs search for simple hypothesis with large margin
  - □ Often robust to overfitting

#### What about at classification time



- For a new input  $\mathbf{x}$ , if we need to represent  $\Phi(\mathbf{x})$ , we are in trouble!
- Recall classifier: sign(w.Φ(x)+b)
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
  $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$  for any  $k$  where  $C > lpha_k > 0$ 

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

#### SVMs with kernels



- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors  $\alpha_i$
- At classification time, compute:

$$\mathbf{w}\cdot\Phi(\mathbf{x})=\sum_i lpha_i y_i K(\mathbf{x},\mathbf{x}_i)$$
 
$$b=y_k-\sum_i lpha_i y_i K(\mathbf{x}_k,\mathbf{x}_i)$$
 for any  $k$  where  $C>lpha_k>0$ 

### Remember kernel regression



#### Remember kernel regression???

- 1.  $w_i = \exp(-D(x_i, query)^2 / K_w^2)$
- 2. How to fit with the local points?

  Predict the weighted average of the outputs:  $\Sigma w_i y_i / \Sigma w_i$

### SVMs v. Kernel Regression



#### **SVMs**

$$sign\left(\mathbf{w}\cdot\Phi(\mathbf{x})+b\right)$$

or

$$sign\left(\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b\right)$$

#### **Kernel Regression**

$$sign\left(\frac{\sum_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})}{\sum_{j} K(\mathbf{x}, \mathbf{x}_{j})}\right)$$

### SVMs v. Kernel Regression



#### **SVMs**

$$sign\left(\mathbf{w}\cdot\Phi(\mathbf{x})+b\right)$$

or

#### **Kernel Regression**

$$sign\left(\frac{\sum_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})}{\sum_{i} K(\mathbf{x}, \mathbf{x}_{i})}\right)$$

sign

#### **Differences:**

- SVMs:
  - $\square$  Learn weights  $\alpha_i$  (and bandwidth)
  - □ Often sparse solution
- KR:
  - □ Fixed "weights", learn bandwidth
  - □ Solution may not be sparse
  - Much simpler to implement

## What's the difference between SVMs and Logistic Regression?

|                                        | SVMs | Logistic<br>Regression |
|----------------------------------------|------|------------------------|
| Loss function                          |      |                        |
| High dimensional features with kernels |      |                        |

### Kernels in logistic regression



$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of support vectors:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

lacksquare Derive simple gradient descent rule on  $lpha_{
m i}$ 

### What's the difference between SVMs and Logistic Regression? (Revisited)

|                                        | SVMs       | Logistic<br>Regression |
|----------------------------------------|------------|------------------------|
| Loss function                          | Hinge loss | Log-loss               |
| High dimensional features with kernels | Yes!       | Yes!                   |
|                                        |            |                        |
|                                        |            |                        |

### What you need to know

- Ŋ.
  - Dual SVM formulation
    - □ How it's derived (intuition)
  - The kernel trick
  - Derive polynomial kernel
  - Common kernels
  - Kernelized logistic regression
  - Differences between SVMs and logistic regression

### Announcements



Class projects out next week

### PAC-learning, VC Dimension and Margin-based Bounds

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 28th, 2007

#### What now...



- We have explored many ways of learning from data
- But...
  - □ How good is our classifier, really?
  - □ How much data do I need to make it "good enough"?

### A simple setting...



- Classification
  - □ m data points
  - Finite number of possible hypothesis (e.g., dec. trees of depth d)
- A learner finds a hypothesis h that is consistent with training data
  - □ Gets zero error in training error<sub>train</sub>(h) = 0
- What is the probability that h has more than ε true error?
  - $\square$  error<sub>true</sub> $(h) \ge \varepsilon$

# How likely is a bad hypothesis to get *m* data points right?

- Hypothesis h that is consistent with training data → got m i.i.d. points right
- Prob. h with error<sub>true</sub>(h)  $\geq \varepsilon$  gets one data point right

■ Prob. h with error<sub>true</sub>(h)  $\geq \varepsilon$  gets m data points right

## But there are many possible hypothesis that are consistent with training data

## How likely is learner to pick a bad hypothesis

- Prob. h with error<sub>true</sub>(h)  $\geq \varepsilon$  gets m data points right
- There are k hypothesis consistent with data
  - □ How likely is learner to pick a bad one?

### Union bound



■ P(A or B or C or D or ...)

## How likely is learner to pick a bad hypothesis

- Prob. h with error<sub>true</sub>(h)  $\geq \varepsilon$  gets m data points right
- There are *k* hypothesis consistent with data
  - □ How likely is learner to pick a bad one?

## Review: Generalization error in finite hypothesis spaces [Haussler '88]

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, 0 < ε < 1 : for any learned hypothesis h that is consistent on the training data:</p>

$$P(\text{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

### Using a PAC bound

- Typically, 2 use cases:  $P(\text{error}_{true}(h) > \epsilon) \leq |H|e^{-m\epsilon}$ 
  - □ 1: Pick ε and δ, give you m
  - $\square$  2: Pick m and  $\delta$ , give you  $\epsilon$

## Review: Generalization error in finite hypothesis spaces [Haussler '88]

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples,  $0 < \varepsilon < 1$ : for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_{true}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

©2005-2007 Carlos Guestrin

#### Limitations of Haussler '88 bound



Consistent classifier

Size of hypothesis space

## What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with  $error_{train}(h)$  in training set?

# Simpler question: What's the expected error of a hypothesis?

The error of a hypothesis is like estimating the parameter of a coin!

■ Chernoff bound: for m i.i.d. coin flips,  $x_1,...,x_m$ , where  $x_i \in \{0,1\}$ . For  $0 < \epsilon < 1$ :

$$P\left(\theta - \frac{1}{m}\sum_{i} x_{i} > \epsilon\right) \leq e^{-2m\epsilon^{2}}$$

## Using Chernoff bound to estimate error of a single hypothesis

$$P\left(\theta - \frac{1}{m}\sum_{i} x_{i} > \epsilon\right) \leq e^{-2m\epsilon^{2}}$$

# But we are comparing many hypothesis: **Union bound**

For each hypothesis h<sub>i</sub>:

$$P\left(\text{error}_{true}(h_i) - \text{error}_{train}(h_i) > \epsilon\right) \le e^{-2m\epsilon^2}$$

What if I am comparing two hypothesis, h<sub>1</sub> and h<sub>2</sub>?

## Generalization bound for |H| hypothesis

■ **Theorem**: Hypothesis space *H* finite, dataset *D* with *m* i.i.d. samples, 0 < ε < 1 : for any learned hypothesis *h*:

$$P\left(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon\right) \le |H|e^{-2m\epsilon^2}$$

### PAC bound and Bias-Variance tradeoff

$$P\left(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon\right) \le |H|e^{-2m\epsilon^2}$$

or, after moving some terms around,

with probability at least 1-
$$\delta$$
:  $error_{true}(h) \leq error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$ 

Important: PAC bound holds for all h, but doesn't guarantee that algorithm finds best h!!!

# What about the size of the hypothesis space?

$$m \ge \frac{1}{2\epsilon^2} \left( \ln|H| + \ln\frac{1}{\delta} \right)$$

How large is the hypothesis space?

### Boolean formulas with *n* binary features



$$m \ge \frac{1}{2\epsilon^2} \left( \ln|H| + \ln\frac{1}{\delta} \right)$$

### Number of decision trees of depth k



$$m \geq \frac{1}{2\epsilon^2} \left( \ln|H| + \ln\frac{1}{\delta} \right)$$

Recursive solution

# PAC bound for decision trees of depth k

$$m \ge \frac{\ln 2}{2\epsilon^2} \left( (2^k - 1)(1 + \log_2 n) + 1 + \ln \frac{1}{\delta} \right)$$

- Bad!!!
  - □ Number of points is exponential in depth!

■ But, for *m* data points, decision tree can't get too big...

### Number of decision trees with k leaves



H<sub>k</sub> = Number of decision trees with k leaves

$$H_0 = 2$$

$$H_{k+1} = n \sum_{i=1}^{k} H_i H_{k+1-i}$$

#### Loose bound:

$$H_k = n^{k-1}(k+1)^{2k-1}$$

#### **Reminder:**

$$|\mathsf{DTs}| = 2 * (2n)^{2^k - 1}$$

# PAC bound for decision trees with k leaves – Bias-Variance revisited

$$H_k = n^{k-1}(k+1)^{2k-1} \qquad \text{error}_{true}(h) \leq \text{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln(k+1) + \ln\frac{1}{\delta}}{2m}}$$

#### What did we learn from decision trees?



Bias-Variance tradeoff formalized

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln(k+1) + \ln\frac{1}{\delta}}{2m}}$$

Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum *number of points* that allows consistent classification

- $\square$  Complexity m no bias, lots of variance
- $\square$  Lower than m some bias, less variance

# What about continuous hypothesis spaces?

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

- Continuous hypothesis space:
  - $\Box$   $|H| = \infty$
  - □ Infinite variance???
- As with decision trees, only care about the maximum number of points that can be classified exactly!

# How many points can a linear boundary classify exactly? (1-D)

# How many points can a linear boundary classify exactly? (2-D)

# How many points can a linear boundary classify exactly? (d-D)

# PAC bound using VC dimension



- Number of training points that can be classified exactly is VC dimension!!!
  - Measures relevant size of hypothesis space, as with decision trees with k leaves

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

# Shattering a set of points



Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

#### VC dimension



Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then  $VC(H) \equiv \infty$ .

### Examples of VC dimension

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

- Linear classifiers:
  - $\square$  VC(H) = d+1, for *d* features plus constant term *b*
- Neural networks
  - □ VC(H) = #parameters
  - Local minima means NNs will probably not find best parameters
- 1-Nearest neighbor?

#### PAC bound for SVMs



- SVMs use a linear classifier
  - □ For *d* features, VC(H) = d+1:

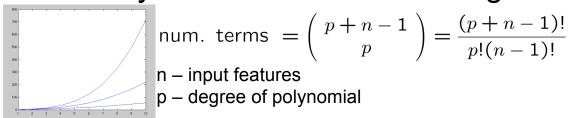
$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(d+1)\left(\ln\frac{2m}{d+1}+1\right) + \ln\frac{4}{\delta}}{m}}$$

#### VC dimension and SVMs: Problems!!!



$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(d+1)\left(\ln\frac{2m}{d+1}+1\right) + \ln\frac{4}{\delta}}{m}}$$

- What about kernels?
  - □ Polynomials: num. features grows really fast = Bad bound

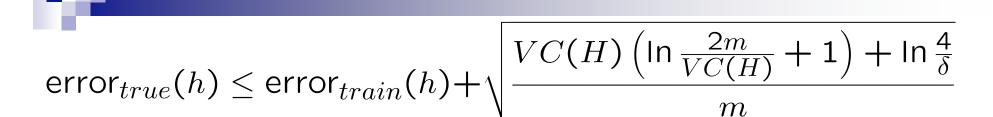


□ Gaussian kernels can classify any set of points exactly

## Margin-based VC dimension

- H: Class of linear classifiers:  $\mathbf{w}.\Phi(\mathbf{x})$  (b=0)
  - $\square$  Canonical form: min<sub>j</sub> |**w**. $\Phi$ (**x**<sub>j</sub>)| = 1
- Arr VC(H) = R<sup>2</sup> w.w
  - □ Doesn't depend on number of features!!!
  - $\square$  R<sup>2</sup> = max<sub>i</sub>  $\Phi(\mathbf{x}_i)$ . $\Phi(\mathbf{x}_i)$  magnitude of data
  - $\ \square$  R<sup>2</sup> is bounded even for Gaussian kernels  $\rightarrow$  bounded VC dimension
- Large margin, low w.w, low VC dimension Very cool!

# Applying margin VC to SVMs?



- $VC(H) = R^2 \mathbf{w.w}$ 
  - $\square$  R<sup>2</sup> = max<sub>i</sub>  $\Phi(\mathbf{x}_i)$ . $\Phi(\mathbf{x}_i)$  magnitude of data, doesn't depend on choice of  $\mathbf{w}$
- SVMs minimize w.w
- SVMs minimize VC dimension to get best bound?
- Not quite right: ⊗
  - Bound assumes VC dimension chosen before looking at data
  - Would require union bound over infinite number of possible VC dimensions...
  - □ But, it can be fixed!

#### Structural risk minimization theorem

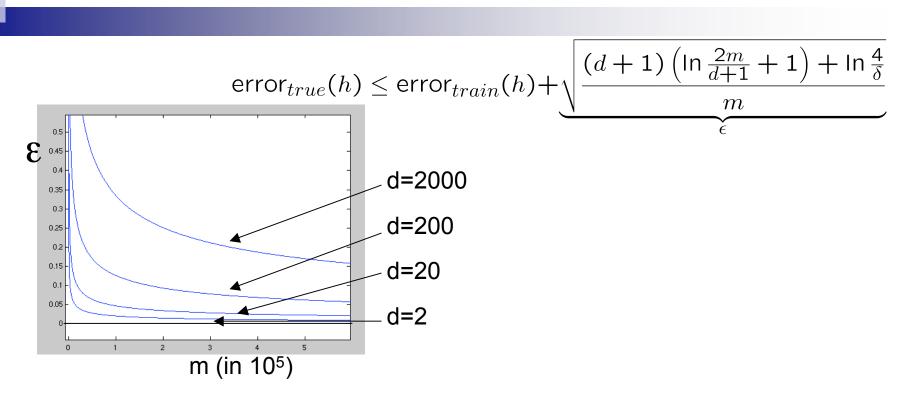


$$\operatorname{error}_{true}^{\gamma}(h) \leq \operatorname{error}_{train}^{\gamma}(h) + C\sqrt{\frac{\frac{R^2}{\gamma^2} \ln m + \ln \frac{1}{\delta}}{m}}$$

 $\operatorname{error}_{train}^{\gamma}(h) = \operatorname{num.} \text{ points with margin } < \gamma$ 

- For a family of hyperplanes with margin  $\gamma$ >0
  - $\square$  w.w  $\leq 1$
- SVMs maximize margin γ + hinge loss
  - Optimize tradeoff training error (bias) versus margin γ (variance)

# Reality check – Bounds are loose



- Bound can be very loose, why should you care?
  - ☐ There are tighter, albeit more complicated, bounds
  - □ Bounds gives us formal guarantees that empirical studies can't provide
  - Bounds give us intuition about complexity of problems and convergence rate of algorithms

### What you need to know

- Ŋ4
  - Finite hypothesis space
    - Derive results
    - □ Counting number of hypothesis
    - Mistakes on Training data
  - Complexity of the classifier depends on number of points that can be classified exactly
    - □ Finite case decision trees
    - □ Infinite case VC dimension
  - Bias-Variance tradeoff in learning theory
  - Margin-based bound for SVM
  - Remember: will your algorithm find best classifier?