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SVMs reminder
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Dual SVM formulation –
the non-separable case
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Reminder from last time: What if the 
data is not linearly separable?

Use features of features 
of features of features….

Feature space can get really large really quickly!
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Dual formulation only depends on 
dot-products, not on w!
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Dot-product of polynomials
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Finally: the “kernel trick”!

Never represent features explicitly
Compute dot products in closed form

Constant-time high-dimensional dot-
products for many classes of features

Very interesting theory – Reproducing 
Kernel Hilbert Spaces

Not covered in detail in 10701/15781, 
more in 10702
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Common kernels

Polynomials of degree d

Polynomials of degree up to d

Gaussian kernels

Sigmoid
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Overfitting?

Huge feature space with kernels, what about 
overfitting???

Maximizing margin leads to sparse set of support 
vectors 
Some interesting theory says that SVMs search for 
simple hypothesis with large margin
Often robust to overfitting
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What about at classification time

For a new input x, if we need to represent Φ(x), 
we are in trouble!
Recall classifier: sign(w.Φ(x)+b)
Using kernels we are cool!
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SVMs with kernels

Choose a set of features and kernel function
Solve dual problem to obtain support vectors αi

At classification time, compute:

Classify as
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Remember kernel regression

Remember kernel regression???
1. wi = exp(-D(xi, query)2 / Kw

2)
2. How to fit with the local points?

Predict the weighted average of the outputs:
predict = Σwiyi / Σwi
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SVMs v. Kernel Regression

SVMs Kernel Regression

or
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SVMs v. Kernel Regression

SVMs Kernel Regression

or

Differences:
SVMs:

Learn weights αi (and bandwidth)
Often sparse solution

KR:
Fixed “weights”, learn bandwidth
Solution may not be sparse
Much simpler to implement
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What’s the difference between 
SVMs and Logistic Regression?

High dimensional 
features with 
kernels

Loss function

NoYes!

Log-lossHinge loss

Logistic
Regression

SVMs
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Kernels in logistic regression

Define weights in terms of support vectors:

Derive simple gradient descent rule on αi
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What’s the difference between SVMs
and Logistic Regression? (Revisited)

Almost always no!Often yes!Solution sparse

Yes!Yes!High dimensional 
features with 
kernels

Real probabilities“Margin”Semantics of 
output

Loss function Log-lossHinge loss

Logistic
Regression

SVMs
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What you need to know

Dual SVM formulation
How it’s derived (intuition)

The kernel trick
Derive polynomial kernel
Common kernels
Kernelized logistic regression
Differences between SVMs and logistic regression
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Announcements

Class projects out next week
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PAC-learning, VC 
Dimension and 
Margin-based Bounds
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What now…

We have explored many ways of learning from 
data
But…

How good is our classifier, really?
How much data do I need to make it “good enough”?



©2005-2007 Carlos Guestrin 22

A simple setting…

Classification
m data points
Finite number of possible hypothesis (e.g., dec. trees 
of depth d)

A learner finds a hypothesis h that is consistent
with training data

Gets zero error in training – errortrain(h) = 0
What is the probability that h has more than ε
true error?

errortrue(h) ¸ ε
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How likely is a bad hypothesis to 
get m data points right?

Hypothesis h that is consistent with training data !
got m i.i.d. points right
Prob. h with errortrue(h) ¸ ε gets one data point right

Prob. h with errortrue(h) ¸ ε gets m data points right
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But there are many possible hypothesis 
that are consistent with training data
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How likely is learner to pick a bad 
hypothesis

Prob. h with errortrue(h) ¸ ε gets m data points right

There are k hypothesis consistent with data
How likely is learner to pick a bad one?
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Union bound

P(A or B or C or D or …)
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How likely is learner to pick a bad 
hypothesis

Prob. h with errortrue(h) ¸ ε gets m data points right

There are k hypothesis consistent with data
How likely is learner to pick a bad one?
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Review: Generalization error in 
finite hypothesis spaces [Haussler ’88]

Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data:
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Using a PAC bound

Typically, 2 use cases:
1: Pick ε and δ, give you m
2: Pick m and δ, give you ε
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Review: Generalization error in 
finite hypothesis spaces [Haussler ’88]

Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h that is consistent on the training data:

Even if h makes zero errors in training data, may make errors in test
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Limitations of Haussler ‘88 bound

Consistent classifier

Size of hypothesis space
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What if our classifier does not have 
zero error on the training data?

A learner with zero training errors may make 
mistakes in test set
What about a learner with errortrain(h) in training set? 



©2005-2007 Carlos Guestrin 33

Simpler question: What’s the 
expected error of a hypothesis?
The error of a hypothesis is like estimating the 
parameter of a coin!

Chernoff bound: for m i.i.d. coin flips, x1,…,xm, 
where xi 2 {0,1}. For 0<ε<1:
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Using Chernoff bound to estimate 
error of a single hypothesis
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But we are comparing many 
hypothesis: Union bound

For each hypothesis hi:

What if I am comparing two hypothesis, h1 and h2?
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Generalization bound for |H| 
hypothesis

Theorem: Hypothesis space H finite, dataset D
with m i.i.d. samples, 0 < ε < 1 : for any learned 
hypothesis h:



©2005-2007 Carlos Guestrin 37

PAC bound and Bias-Variance 
tradeoff 

Important: PAC bound holds for all h, 
but doesn’t guarantee that algorithm finds best h!!!

or, after moving some terms around,
with probability at least 1-δ:



©2005-2007 Carlos Guestrin 38

What about the size of the 
hypothesis space?

How large is the hypothesis space?
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Boolean formulas with n binary features
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Number of decision trees of depth k

Recursive solution 
Given n attributes
Hk = Number of decision trees of depth k
H0 =2
Hk+1 = (#choices of root attribute) *

(# possible left subtrees) *
(# possible right subtrees)

= n * Hk * Hk

Write Lk = log2 Hk
L0 = 1
Lk+1 = log2 n + 2Lk
So Lk = (2k-1)(1+log2 n) +1
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PAC bound for decision trees of 
depth k

Bad!!!
Number of points is exponential in depth!

But, for m data points, decision tree can’t get too big…

Number of leaves never more than number data points
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Number of decision trees with k leaves

Hk = Number of decision trees with k leaves
H0 =2

Loose bound: Reminder:
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PAC bound for decision trees with k 
leaves – Bias-Variance revisited
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What did we learn from decision trees?

Bias-Variance tradeoff formalized

Moral of the story:
Complexity of learning not measured in terms of size 
hypothesis space, but in maximum number of points that 
allows consistent classification

Complexity m – no bias, lots of variance
Lower than m – some bias, less variance
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What about continuous hypothesis 
spaces?

Continuous hypothesis space: 
|H| = 1
Infinite variance???

As with decision trees, only care about the 
maximum number of points that can be 
classified exactly!
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How many points can a linear 
boundary classify exactly? (1-D)



©2005-2007 Carlos Guestrin 47

How many points can a linear 
boundary classify exactly? (2-D)
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How many points can a linear 
boundary classify exactly? (d-D)
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PAC bound using VC dimension

Number of training points that can be 
classified exactly is VC dimension!!!

Measures relevant size of hypothesis space, as 
with decision trees with k leaves
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Shattering a set of points
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VC dimension



©2005-2007 Carlos Guestrin 52

Examples of VC dimension

Linear classifiers: 
VC(H) = d+1, for d features plus constant term b

Neural networks
VC(H) = #parameters
Local minima means NNs will probably not find best 
parameters

1-Nearest neighbor?
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PAC bound for SVMs

SVMs use a linear classifier
For d features, VC(H) = d+1:
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VC dimension and SVMs: Problems!!!

What about kernels?
Polynomials: num. features grows really fast = Bad bound

Gaussian kernels can classify any set of points exactly

Doesn’t take margin into account

n – input features
p – degree of polynomial



©2005-2007 Carlos Guestrin 55

Margin-based VC dimension

H: Class of linear classifiers: w.Φ(x)  (b=0)
Canonical form: minj |w.Φ(xj)| = 1

VC(H) = R2 w.w
Doesn’t depend on number of features!!!
R2 = maxj Φ(xj).Φ(xj) – magnitude of data
R2 is bounded even for Gaussian kernels ! bounded VC 
dimension

Large margin, low w.w, low VC dimension – Very cool!
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Applying margin VC to SVMs?

VC(H) = R2 w.w
R2 = maxj Φ(xj).Φ(xj) – magnitude of data, doesn’t depend on choice of w

SVMs minimize w.w

SVMs minimize VC dimension to get best bound?
Not quite right: 

Bound assumes VC dimension chosen before looking at data
Would require union bound over infinite number of possible VC 
dimensions…
But, it can be fixed!
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Structural risk minimization theorem

For a family of hyperplanes with margin γ>0
w.w · 1

SVMs maximize margin γ + hinge loss
Optimize tradeoff training error (bias) versus margin γ
(variance)
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Reality check – Bounds are loose

Bound can be very loose, why should you care?
There are tighter, albeit more complicated, bounds
Bounds gives us formal guarantees that empirical studies can’t provide
Bounds give us intuition about complexity of problems and convergence rate of 
algorithms

ε

m (in 105)

d=2000

d=200

d=20

d=2
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What you need to know

Finite hypothesis space
Derive results
Counting number of hypothesis
Mistakes on Training data

Complexity of the classifier depends on number of 
points that can be classified exactly

Finite case – decision trees
Infinite case – VC dimension

Bias-Variance tradeoff in learning theory
Margin-based bound for SVM
Remember: will your algorithm find best classifier?


