SVMs, Duality and the Kernel Trick (cont.)

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University
February 28th, 2007
SVMs reminder

\[
\begin{align*}
\text{minimize}_{w,b} & \quad w \cdot w + C \sum_j \xi_j \\
\text{subject to} & \quad (w \cdot x_j + b) y_j \geq 1 - \xi_j, \quad \forall j \\
\xi_j & \geq 0, \quad \forall j
\end{align*}
\]

Each point must have margin \(\geq 1 \)
Dual SVM formulation – the non-separable case

\[
\begin{align*}
\text{maximize}_{\alpha} & \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i \cdot x_j \\
\text{subject to} & \quad \sum_i \alpha_i y_i = 0 \\
& \quad C \geq \alpha_i \geq 0
\end{align*}
\]

\[w = \sum_i \alpha_i y_i x_i\]

\[b = y_k - w \cdot x_k\]

for any \(k\) where \(C > \alpha_k > 0\)

compared to the separable case; only difference

\[\alpha_i \leq C\]

intuitively, don’t give me alphas that are too large
Reminder from last time: What if the data is not linearly separable?

Use features of features of features of features....

\[\phi(x) : \mathbb{R}^{m_1} \rightarrow F \]

\[\phi(x) = \begin{pmatrix} x_2 \\ x_1 x_2 \\ x_1^2 \\ \sin(x_1) \\ e^{-x_1/x_2} \end{pmatrix} \]

Feature space can get really large really quickly!
Dual formulation only depends on dot-products, not on w!

\[\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i x_j \]

\[\sum_i \alpha_i y_i = 0 \]

\[C \geq \alpha_i \geq 0 \]

\[\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j) = K(\mathbf{x}_i, \mathbf{x}_j) \]

\[\Phi(\mathbf{x}) = \left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \end{array} \right) \]

\[\Phi(\mathbf{x}_i) = \left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \end{array} \right) \]

\[\Phi(\mathbf{x}_j) = \left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \end{array} \right) \]

\[\phi(\mathbf{x}_i) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_i) \]

\[K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j) \]

\[\sum_i \alpha_i y_i = 0 \]

\[C \geq \alpha_i \geq 0 \]

\[X_i = \left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \end{array} \right) \]

\[X_j = \left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \end{array} \right) \]

\[X_i \cdot X_j = v_1 \mu_1 + v_2 \mu_2 + \cdots + \mu_d \]
Dot-product of polynomials

\[\Phi(u) \cdot \Phi(v) = \text{polynomials of degree } d \]

\[\begin{aligned}
\text{degree } = d & \quad K(M, v) = \Phi(M) \cdot \Phi(v) = (M \cdot v)^d \\
& \approx O(d) \text{ multiplications}
\end{aligned} \]
Finally: the “kernel trick”!

\[
\text{maximize}_\alpha \quad \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j)
\]

\[
K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)
\]

\[
\sum_i \alpha_i y_i = 0
\]

\[
C \geq \alpha_i \geq 0
\]

- Never represent features explicitly
- Compute dot products in closed form
- Constant-time high-dimensional dot-products for many classes of features
- Very interesting theory – Reproducing Kernel Hilbert Spaces
 - Not covered in detail in 10701/15781, more in 10702
Common kernels

- Polynomials of degree d
 \[K(u, v) = (u \cdot v)^d \]

- Polynomials of degree up to d
 \[K(u, v) = (u \cdot v + 1)^d \]

- Gaussian kernels
 \[K(u, v) = \exp \left(- \frac{||u - v||^2}{2\sigma^2} \right) \]

- Sigmoid
 \[K(u, v) = \tanh(\eta u \cdot v + \nu) \]
Overfitting?

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting
What about at classification time

For a new input x, if we need to represent $\Phi(x)$, we are in trouble!

Recall classifier: $\text{sign}(w \cdot \Phi(x) + b)$

Using kernels we are cool!

$$K(u, v) = \Phi(u) \cdot \Phi(v)$$

$$w \cdot \Phi(x) + b = \sum_i \alpha_i y_i \Phi(x_i) \cdot \Phi(x) + b$$

$$b = y_k - w \cdot \Phi(x_k)$$

for any k where $C > \alpha_k > 0$
SVMs with kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_i
- At classification time, compute:

\[
\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)
\]

\[
b = y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i)
\]

for any k where $C > \alpha_k > 0$

Classify as

\[
\text{sign} (\mathbf{w} \cdot \Phi(\mathbf{x}) + b)
\]
Remember kernel regression???

1. \(w_i = \exp(-D(x_i, \text{query})^2 / K_w^2) \)

2. How to fit with the local points?

Predict the weighted average of the outputs:
\[
predict = \frac{\sum w_i y_i}{\sum w_i}
\]
SVMs v. Kernel Regression

SVMs

\[\text{sign} \left(w \cdot \Phi(x) + b \right) \]

or

\[\text{sign} \left(\sum_i \alpha_i y_i K(x, x_i) + b \right) \]

if I say \(b = 0 \)

\[8 \ \forall i \ \alpha_i = 1 \]

then I get kernel regression

\[\Rightarrow \] but, SVM optimizing over \(\alpha_i's \) and

Kernel Regression

\[\text{sign} \left(\frac{\sum_i y_i K(x, x_i)}{\sum_j K(x, x_j)} \right) \]

\[\frac{1}{\sum_j K(x, x_j)} = \alpha(x) \]

\[\text{sign} \left(\sum_i \alpha(x) \cdot y_i K(x, x_i) \right) \]

\[d(x) \geq 0 \]

\[\text{sign} \left(\sum_i y_i K(x, x_i) \right) \]
SVMs v. Kernel Regression

SVMs

\[\text{sign} (w \cdot \Phi(x) + b) \]

or

\[\text{sign} (\sum_i y_i K(x, x_i)) \]

Kernel Regression

Differences:

- **SVMs:**
 - Learn weights \(\alpha_i \) (and bandwidth)
 - Often sparse solution

- **KR:**
 - \(\alpha_i = 1 \)
 - Fixed “weights”, learn bandwidth
 - Solution may not be sparse
 - Much simpler to implement
What’s the difference between SVMs and Logistic Regression?

<table>
<thead>
<tr>
<th></th>
<th>SVMs</th>
<th>Logistic Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High dimensional features with kernels</td>
<td></td>
<td> actually yes...</td>
</tr>
</tbody>
</table>
Kernels in logistic regression

\[P(Y = +1 \mid x, w) = \frac{1}{1 + e^{-(w \cdot \Phi(x) + b)}} \]

- Define weights in terms of support vectors:
 \[w = \sum_i \alpha_i \Phi(x_i) \]

\[P(Y = 1 \mid x, w) = \frac{1}{1 + e^{-(\sum_i \alpha_i \Phi(x_i) \cdot \Phi(x) + b)}} \]

\[K(x, x_i) = \Phi(x_i) \cdot \Phi(x) = \frac{1}{1 + e^{-(\sum_i \alpha_i K(x, x_i) + b)}} \]

- Derive simple gradient descent rule on \(\alpha \),

\[\text{must learn } \alpha_i's \Rightarrow \text{take derivative} \]

©2005-2007 Carlos Guestrin
What's the difference between SVMs and Logistic Regression? (Revisited)

<table>
<thead>
<tr>
<th>Loss function</th>
<th>SVMs</th>
<th>Logistic Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge loss</td>
<td>Hinge loss after zero</td>
<td>Log-loss never zero</td>
</tr>
<tr>
<td>High dimensional features with kernels</td>
<td>Yes!</td>
<td>Yes!</td>
</tr>
<tr>
<td>Many α_i's $= 0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Almost always no! Often yes!

Solution sparse

Real probabilities

Semantics of output

Loss function

Logistic Regression

SVMs
What you need to know

- Dual SVM formulation
 - How it’s derived (intuition)
- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression
Announcements

- Class projects out next week
What now…

- We have explored many ways of learning from data
- But…
 - How good is our classifier, really?
 - How much data do I need to make it “good enough”?
A simple setting…

- Classification
 - m data points
 - Finite number of possible hypothesis (e.g., dec. trees of depth d) on categorical data

- A learner finds a hypothesis \(h \) that is consistent with training data
 - Gets zero error in training – \(\text{error}_{\text{train}}(h) = 0 \)

- What is the probability that \(h \) has more than \(\varepsilon \) true error?
 - \(\text{error}_{\text{true}}(h) \geq \varepsilon \)
How likely is a bad hypothesis to get \(m \) data points right?

- Hypothesis \(h \) that is **consistent** with training data got \(m \) i.i.d. points right

- Prob. \(h \) with \(\text{error}_{\text{true}}(h) \geq \varepsilon \) gets one data point right
 \[
 P(h \text{ gets 1 point right}) \leq 1 - \varepsilon
 \]

- Prob. \(h \) with \(\text{error}_{\text{true}}(h) \geq \varepsilon \) gets \(m \) data points right
 \[
 P(h \text{ gets } m \text{ i.i.d. points right }) \leq (1 - \varepsilon)^m
 \]

If \(h \) has a bad \(\text{error}_{\text{true}}(h) \geq \varepsilon \), then \(P(\text{gets } m \text{ points right}) \) is exponentially small.
But there are many possible hypothesis that are consistent with training data
How likely is learner to pick a bad hypothesis

- Prob. \(h \) with \(\text{error}_{\text{true}}(h) \geq \epsilon \) gets \(m \) data points right
 \[
P(\text{bad } h \text{ gets } m \text{ points right}) \leq (1-3^{-m})
\]

- There are \(k \) hypothesis consistent with data \(= \{h_1, \ldots, h_k\} \)

 How likely is learner to pick a bad one?

\[
P(\text{\(k \) hypothesis consistent with data, } \exists h \text{ in there s.t. } \text{error}_{\text{true}}(h) \geq \epsilon)
\]

\[
= P(\text{error}_f(h_1) \geq \epsilon \lor \text{error}_f(h_2) \geq \epsilon \lor \ldots \lor \text{error}_f(h_k) \geq \epsilon)
\]
Union bound

- $\Pr(A \text{ or } B \text{ or } C \text{ or } D \text{ or } \ldots) \leq \Pr(A) + \Pr(B) + \Pr(C) + \ldots$
How likely is learner to pick a bad hypothesis

- Prob. \(h \) with error \(\text{true}(h) \geq \varepsilon \) gets \(m \) data points right
 \[
 P\left(e_t(h) \geq \varepsilon \text{ and consistent with } m \text{ data points} \right) \leq (1-\varepsilon)^m
 \]

- There are \(k \) hypothesis consistent with data

 How likely is learner to pick a bad one?

 \[
 P\left(e_t(h) \geq \varepsilon \text{ and consistent with } m \text{ data points} \right) \leq k \left(1-\varepsilon \right)^m
 \]

 \[
 \leq |H| \left(1-\varepsilon \right)^m \leq |H| e^{-\varepsilon m}
 \]

 Simplify equation.
Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_{true}(h) \geq \varepsilon) \leq |H| e^{-m\varepsilon}$$

as $m \rightarrow \infty$ increases \implies Prob. make a bad decision decrease exponentially fast

as $|H| \rightarrow \infty$ increases \implies Chances of making a bad decision increase linearly with $|H|$
Using a PAC bound

Typically, 2 use cases:

1: Pick ε and δ, give you m

2: Pick m and δ, give you ε

$P(\text{error}_{true}(h) > \varepsilon) \leq |H|e^{-m\varepsilon}$

I want: $\text{error}_{true}(h) \leq \varepsilon$

guarantee with high prob.

$\text{guarantee with prob.} \geq 1-\delta$

1. Pick ε and δ, give you m

2. Pick m and δ, give you ε

\[\ln \delta \geq |H| - m \varepsilon \]

\[m \geq \frac{1}{\varepsilon} \left(\ln |H| + \ln \frac{1}{\delta} \right) \]

print you need
Review: Generalization error in finite hypothesis spaces [Haussler ’88]

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_{\text{true}}(h) > \varepsilon) \leq |H|e^{-me\varepsilon}$$

Even if h makes zero errors in training data, may make errors in test
Limitations of Haussler ‘88 bound

\[P(\text{error}_{true}(h) > \epsilon) \leq |H|e^{-m\epsilon} \]

- Consistent classifier

- Size of hypothesis space
What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with $\text{error}_{\text{train}}(h)$ in training set?
Simpler question: What’s the expected error of a hypothesis?

- The error of a hypothesis is like estimating the parameter of a coin!

- Chernoff bound: for m i.i.d. coin flips, x_1, \ldots, x_m, where $x_i \in \{0,1\}$. For $0 < \epsilon < 1$:

\[
P \left(\theta - \frac{1}{m} \sum_{i} x_i > \epsilon \right) \leq e^{-2m\epsilon^2}
\]
Using Chernoff bound to estimate error of a single hypothesis

\[P \left(\theta - \frac{1}{m} \sum_{i} x_i > \epsilon \right) \leq e^{-2m\epsilon^2} \]
But we are comparing many hypothesis: **Union bound**

For each hypothesis h_i:

$$P(\text{error}_{\text{true}}(h_i) - \text{error}_{\text{train}}(h_i) > \epsilon) \leq e^{-2m \epsilon^2}$$

What if I am comparing two hypothesis, h_1 and h_2?
Generalization bound for |H| hypothesis

Theorem: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$P(\text{error}_{true}(h) - \text{error}_{train}(h) > \varepsilon) \leq |H|e^{-2m\varepsilon^2}$$
PAC bound and Bias-Variance tradeoff

\[P(\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h) > \epsilon) \leq |H|e^{-2m\epsilon^2} \]

or, after moving some terms around, with probability at least 1-\(\delta\):

\[\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}} \]

- Important: PAC bound holds for all \(h\), but doesn’t guarantee that algorithm finds best \(h\)!!!
What about the size of the hypothesis space?

\[m \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right) \]

- How large is the hypothesis space?
Boolean formulas with n binary features

$$m \geq \frac{1}{2\epsilon^2} \left(\ln |H| + \ln \frac{1}{\delta} \right)$$
Number of decision trees of depth k

Recursive solution

Given n attributes

$H_k =$ Number of decision trees of depth k

$H_0 = 2$

$H_{k+1} =$ (#choices of root attribute) * (# possible left subtrees) * (# possible right subtrees)

$= n * H_k * H_k$

Write $L_k = \log_2 H_k$

$L_0 = 1$

$L_{k+1} = \log_2 n + 2L_k$

So $L_k = (2^k-1)(1+\log_2 n) + 1$
PAC bound for decision trees of depth k

$$m \geq \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \ln \frac{1}{\delta} \right)$$

- Bad!!!
 - Number of points is exponential in depth!

- But, for m data points, decision tree can’t get too big…

Number of leaves never more than number data points
Number of decision trees with k leaves

\[H_k = \text{Number of decision trees with k leaves} \]
\[H_0 = 2 \]

\[H_{k+1} = n \sum_{i=1}^{k} H_i H_{k+1-i} \]

Loose bound:

\[H_k = n^{k-1}(k + 1)^{2k-1} \]

Reminder:

\[|\text{DTs depth } k| = 2 \times (2n)^{2^{k-1}} \]
PAC bound for decision trees with k leaves – Bias-Variance revisited

$$H_k = n^{k-1}(k + 1)^{2k-1}$$

$$\text{error}_{true}(h) \leq \text{error}_{train}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$$

$$\text{error}_{true}(h) \leq \text{error}_{train}(h) + \sqrt{\frac{(k - 1) \ln n + (2k - 1) \ln (k + 1) + \ln \frac{1}{\delta}}{2m}}$$
What did we learn from decision trees?

- Bias-Variance tradeoff formalized

\[
\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \sqrt{\frac{(k - 1) \ln n + (2k - 1) \ln(k + 1) + \ln \frac{1}{\delta}}{2m}}
\]

- Moral of the story:
 Complexity of learning not measured in terms of size hypothesis space, but in maximum *number of points* that allows consistent classification
 - Complexity \(m \) – no bias, lots of variance
 - Lower than \(m \) – some bias, less variance
What about continuous hypothesis spaces?

\[
error_{true}(h) \leq error_{train}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}
\]

- Continuous hypothesis space:
 - \(|H| = 1\)
 - Infinite variance???

- As with decision trees, only care about the maximum number of points that can be classified exactly!
How many points can a linear boundary classify exactly? (1-D)
How many points can a linear boundary classify exactly? (2-D)
How many points can a linear boundary classify exactly? (d-D)
PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves

\[
\text{error}_{true}(h) \leq \text{error}_{train}(h) + \sqrt{\frac{VC(H) \left(\ln \frac{2m}{VC(H)} + 1 \right) + \ln \frac{4}{\delta}}{m}}
\]
Shattering a set of points

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.
VC dimension

Definition: The Vapnik-Chervonenkis dimension, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.
Examples of VC dimension

- Linear classifiers:
 - $\text{VC}(H) = d+1$, for d features plus constant term b

- Neural networks
 - $\text{VC}(H) = \#\text{parameters}$
 - Local minima means NNs will probably not find best parameters

- 1-Nearest neighbor?
PAC bound for SVMs

- SVMs use a linear classifier
 - For \(d \) features, \(VC(H) = d+1 \):

\[
error_{true}(h) \leq error_{train}(h) + \sqrt{\frac{(d + 1) \left(\ln \frac{2m}{d+1} + 1 \right) + \ln \frac{4}{\delta}}{m}}
\]
VC dimension and SVMs: Problems!!!

Doesn’t take margin into account

\[
\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \sqrt{\frac{(d + 1) \left(\ln \frac{2m}{d+1} + 1 \right) + \ln \frac{4}{\delta}}{m}}
\]

- What about kernels?
 - Polynomials: num. features grows really fast = Bad bound
 \[
 \text{num. terms} = \binom{p + n - 1}{p} = \frac{(p + n - 1)!}{p!(n - 1)!}
 \]
 \(n\) – input features
 \(p\) – degree of polynomial
 - Gaussian kernels can classify any set of points exactly
Margin-based VC dimension

- H: Class of linear classifiers: \(\mathbf{w} \cdot \Phi(\mathbf{x}) \) (b=0)
 - Canonical form: \(\min_j |\mathbf{w} \cdot \Phi(\mathbf{x}_j)| = 1 \)
- \(VC(H) = R^2 \mathbf{w} \cdot \mathbf{w} \)
 - Doesn’t depend on number of features!!!
 - \(R^2 = \max_j \Phi(\mathbf{x}_j) \cdot \Phi(\mathbf{x}_j) \) – magnitude of data
 - \(R^2 \) is bounded even for Gaussian kernels! bounded VC dimension

- Large margin, low \(\mathbf{w} \cdot \mathbf{w} \), low VC dimension – Very cool!
Applying margin VC to SVMs?

\[error_{true}(h) \leq error_{train}(h) + \sqrt{\frac{VC(H) \left(\ln \frac{2m}{VC(H)} + 1 \right) + \ln \frac{4}{\delta}}{m}} \]

- VC(H) = \(R^2 \ w.w \)
 - \(R^2 = \max_j \Phi(x_j) \Phi(x_j) \) – magnitude of data, doesn’t depend on choice of w
- SVMs minimize \(w.w \)

- SVMs minimize VC dimension to get best bound?
- Not quite right: 😞
 - Bound assumes VC dimension chosen before looking at data
 - Would require union bound over infinite number of possible VC dimensions…
 - But, it can be fixed!
Structural risk minimization theorem

\[
\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}^\gamma(h) + C\sqrt{\frac{R^2}{\gamma^2} \ln m + \ln \frac{1}{\delta}}
\]

\[
\text{error}_{\text{train}}^\gamma(h) = \text{num. points with margin } < \gamma
\]

- For a family of hyperplanes with margin \(\gamma > 0 \)
 - \(w \cdot w \cdot 1 \)
- SVMs maximize margin \(\gamma + \) hinge loss
 - Optimize tradeoff training error (bias) versus margin \(\gamma \) (variance)
Reality check – Bounds are loose

Bound can be very loose, why should you care?

- There are tighter, albeit more complicated, bounds
- Bounds gives us formal guarantees that empirical studies can’t provide
- Bounds give us intuition about complexity of problems and convergence rate of algorithms
What you need to know

- Finite hypothesis space
 - Derive results
 - Counting number of hypothesis
 - Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case – decision trees
 - Infinite case – VC dimension
- Bias-Variance tradeoff in learning theory
- Margin-based bound for SVM
- Remember: will your algorithm find best classifier?