SVMs, Duality and the Kernel Trick

Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

1

SVMs reminder

Today's lecture

- Learn one of the most interesting and exciting recent advancements in machine learning
 - □ The "kernel trick"
 - □ High dimensional feature spaces at no extra cost!
- But first, a detour
 - Constrained optimization!

Lagrange multipliers – Dual variables

s.t.
$$x \ge b$$

 $min_{x} r^{2}$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Solve: $\min_x \max_\alpha L(x, \alpha)$ s.t. $\alpha \ge 0$

Lagrange multipliers – Dual variables

Dual SVM derivation (1) – the linearly separable case

$$\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j} \geq \mathbf{1}, \ \forall j \end{array}$$

Dual SVM derivation (2) – the linearly separable case

$$L(\mathbf{w}, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$
$$\alpha_{j} \ge 0, \ \forall j$$
$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$
$$\underset{\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} \ge 1, \ \forall j}{\text{minimize}_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w} \cdot \mathbf{w}}$$
$$\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} \ge 1, \ \forall j$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

for any k where $\alpha_k > 0$

Dual SVM interpretation

Dual SVM formulation – the linearly separable case

$$\begin{array}{l} \text{maximize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j} \\ \\ \sum_{i} \alpha_{i} y_{i} = 0 \\ \alpha_{i} \geq 0 \end{array} \\ \begin{array}{l} \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\ \\ b = y_{k} - \mathbf{w} \cdot \mathbf{x}_{k} \\ \\ \text{for any } k \text{ where } \alpha_{k} > 0 \end{array}$$

©2005-2007 Carlos Guestrin

Dual SVM derivation – the non-separable case

$$\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} + C\sum_{j}\xi_{j} \\ \left(\mathbf{w}.\mathbf{x}_{j} + b\right)y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \xi_{j} \geq 0, \ \forall j \end{array}$$

Dual SVM formulation – the non-separable case

$$\begin{array}{l} \text{maximize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j} \\ \\ \sum_{i} \alpha_{i} y_{i} = 0 \\ C \geq \alpha_{i} \geq 0 \end{array} \\ \hline \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \\ \\ b = y_{k} - \mathbf{w} \cdot \mathbf{x}_{k} \\ \\ \text{for any } k \text{ where } C > \alpha_{k} > 0 \end{array}$$

Announcements

Class projects out later this week

Why did we learn about the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal
- But, more importantly, the "**kernel trick**"!!!

Another little detour...

Reminder from last time: What if the data is not linearly separable?

Use features of features of features of features.... $\Phi(\mathbf{x}) : R^m \mapsto F$

Feature space can get really large really quickly!

Higher order polynomials

Dual formulation only depends on dot-products, not on w!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$
 $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$
 $\mathbb{C} \ge \alpha_{i} \ge 0$
 $\mathbb{C} \ge \alpha_{i} \ge 0$

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = polynomials of degree d$

Finally: the "kernel trick"!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$
 $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$ $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$

- Never represent features explicitly
 Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- Very interesting theory Reproducing Kernel Hilbert Spaces
 - Not covered in detail in 10701/15781, more in 10702

 $b = y_k - \mathbf{w}. \Phi(\mathbf{x}_k)$ for any k where $C > \alpha_k > 0$

Polynomial kernels

All monomials of degree d in O(d) operations: $\Phi(\mathbf{u})\cdot\Phi(\mathbf{v}) = (\mathbf{u}\cdot\mathbf{v})^d = \text{polynomials of degree d}$

How about all monomials of degree up to d?
 Solution 0:

Better solution:

Common kernels

Polynomials of degree d

$$K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

• Gaus
$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Signation
$$\mathbf{v}$$
 is $\mathbf{v} = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||}{2\sigma^2}\right)$

$$K(\mathbf{u},\mathbf{v}) = tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

©2005-2007 Carlos Guestrin

Overfitting?

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about at classification time

- For a new input x, if we need to represent Φ(x), we are in trouble!
- Recall classifier: sign(w.Φ(x)+b)

Using kernels we are cool!

 $K(\mathbf{u},\mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$

$$\mathbf{w} = \sum_{i} lpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$

 $b = y_{k} - \mathbf{w} \cdot \Phi(\mathbf{x}_{k})$
for any k where $C > lpha_{k} > 0$

SVMs with kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_i
- At classification time, compute:

$$\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})$$

$$b = y_{k} - \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{k}, \mathbf{x}_{i})$$

for any k where $C > \alpha_{k} > 0$
Classify as sign ($\mathbf{w} \cdot \Phi(\mathbf{x}) + b$)

What's the difference between SVMs and Logistic Regression?

	SVMs	Logistic Regression
Loss function		
High dimensional features with kernels		

Kernels in logistic regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of support vectors:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

Derive simple gradient descent rule on α_i

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

What you need to know

- Dual SVM formulation How it's derived
- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression