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SVMs reminder
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Today’s lecture

 Learn one of the most interesting and exciting
recent advancements in machine learning
 The “kernel trick”
 High dimensional feature spaces at no extra cost!

 But first, a detour
 Constrained optimization!
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Constrained optimization
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Lagrange multipliers – Dual variables

Moving the constraint to objective function
Lagrangian:

Solve:
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Lagrange multipliers – Dual variables

Solving:
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Dual SVM derivation (1) –
the linearly separable case
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Dual SVM derivation (2) –
the linearly separable case
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Dual SVM interpretation
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Dual SVM formulation –
the linearly separable case
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Dual SVM derivation –
the non-separable case
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Dual SVM formulation –
the non-separable case
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Announcements

 Class projects out later this week
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Why did we learn about the dual
SVM?

 There are some quadratic programming
algorithms that can solve the dual faster than the
primal

 But, more importantly, the “kernel trick”!!!
 Another little detour…
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Reminder from last time: What if the
data is not linearly separable?

Use features of features 
of features of features….

Feature space can get really large really quickly!
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Higher order polynomials

number of input dimensions
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m – input features
d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms
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Dual formulation only depends on
dot-products, not on w!
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Dot-product of polynomials
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Finally: the “kernel trick”!

 Never represent features explicitly
 Compute dot products in closed form

 Constant-time high-dimensional dot-
products for many classes of features

 Very interesting theory – Reproducing
Kernel Hilbert Spaces
 Not covered in detail in 10701/15781,

more in 10702
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Polynomial kernels

 All monomials of degree d in O(d) operations:

 How about all monomials of degree up to d?
 Solution 0:

 Better solution:
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Common kernels

 Polynomials of degree d

 Polynomials of degree up to d

 Gaussian kernels

 Sigmoid
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Overfitting?

 Huge feature space with kernels, what about
overfitting???
 Maximizing margin leads to sparse set of support

vectors
 Some interesting theory says that SVMs search for

simple hypothesis with large margin
 Often robust to overfitting
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What about at classification time

 For a new input x, if we need to represent Φ(x),
we are in trouble!

 Recall classifier: sign(w.Φ(x)+b)
 Using kernels we are cool!
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SVMs with kernels

 Choose a set of features and kernel function
 Solve dual problem to obtain support vectors αi

 At classification time, compute:

Classify as
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What’s the difference between
SVMs and Logistic Regression?

High dimensional
features with
kernels

Loss function

NoYes!

Log-lossHinge loss

Logistic
Regression

SVMs
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Kernels in logistic regression

 Define weights in terms of support vectors:

 Derive simple gradient descent rule on αi
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What’s the difference between SVMs
and Logistic Regression? (Revisited)

Almost always no!Often yes!Solution sparse

Yes!Yes!High dimensional
features with
kernels

Real probabilities“Margin”Semantics of
output

Loss function Log-lossHinge loss

Logistic
Regression

SVMs
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What you need to know

 Dual SVM formulation
 How it’s derived

 The kernel trick
 Derive polynomial kernel
 Common kernels
 Kernelized logistic regression
 Differences between SVMs and logistic regression


