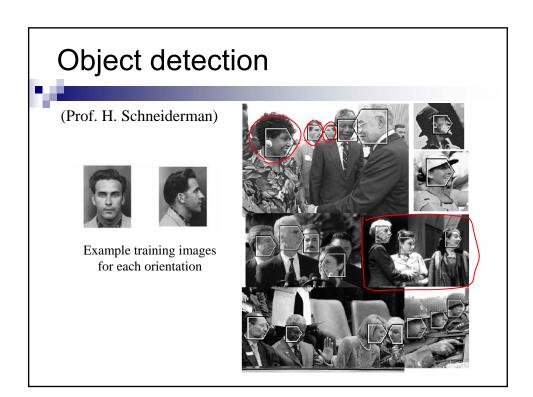


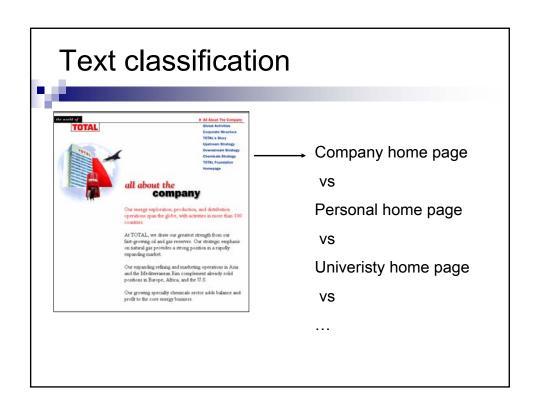
What is Machine Learning?

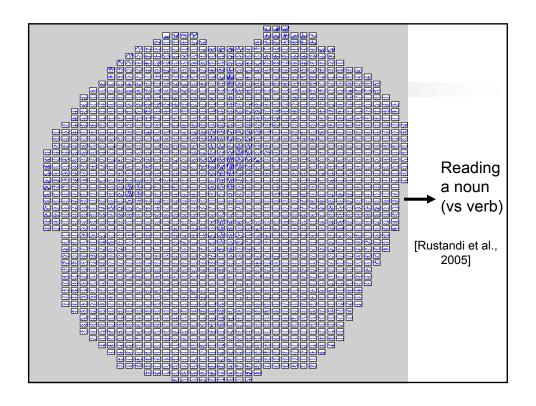
## **Machine Learning**

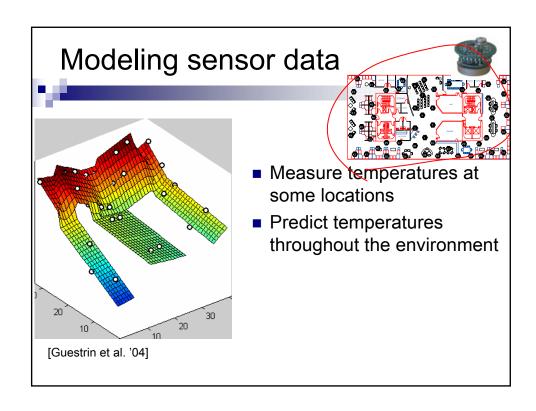


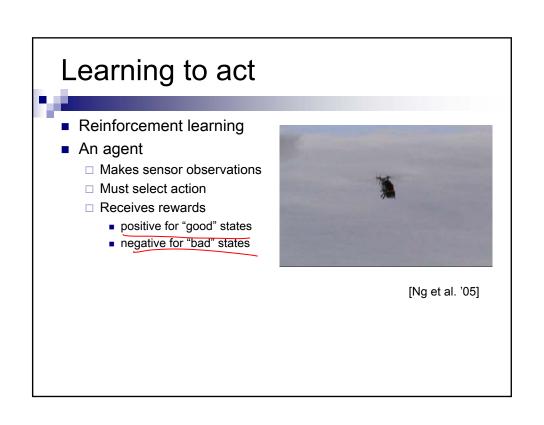
- improve their <u>performance</u>
- at some <u>task</u>
- with <u>experience</u>











#### **Growth of Machine Learning**

- Н
- Machine learning is preferred approach to
  - □ Speech recognition, Natural language processing
  - □ Computer vision
  - ☐ Medical outcomes analysis
  - Robot control
  - □ ...
- This trend is accelerating
  - □ Improved machine learning algorithms
  - □ Improved data capture, networking, faster computers
  - □ Software too complex to write by hand
  - □ New sensors / IO devices
  - □ Demand for self-customization to user, environment

#### **Syllabus**



- Covers a wide range of Machine Learning techniques — from basic to state-of-the-art
- You will learn about the methods you heard about:
  - Naïve Bayes, logistic regression, nearest-neighbor, decision trees, boosting, neural nets, overfitting, regularization, dimensionality reduction, PCA, error bounds, VC dimension, SVMs, kernels, margin bounds, K-means, EM, mixture models, semi-supervised learning, HMMs, graphical models, active learning, reinforcement learning...
- Covers algorithms, theory and applications
- It's going to be fun and hard work ©

#### **Prerequisites**



- Probabilities
  - □ Distributions, densities, marginalization...
- Basic statistics
  - ☐ Moments, typical distributions, regression...
- Algorithms
  - □ Dynamic programming, basic data structures, complexity...
- Programming
  - ☐ Mostly your choice of language, but Matlab will be very useful
- We provide some background, but the class will be fast paced
  - Ability to deal with "abstract mathematical concepts"

#### **Review Sessions**



- Very useful!
  - □ Review material
  - □ Present background
  - □ Answer questions
- Thursdays, 5:30-6:50 in Wean Hall 5409
- First recitation is tomorrow
  - □ Review of probabilities
- Special recitation on Matlab
  - □ Jan. 24 Wed. 5:30-6:50pm NSH 1305

## Staff



- Four Great TAs: Great resource for learning, interact with them!
  - □ Andy Carlson, acarlson@cs
  - ☐ Jonathan Huang, jch1@cs
  - □ Purna Sarkar, psarkar@cs
  - □ Brian Ziebart, bziebart@cs
- Administrative Assistant
  - ☐ Monica Hopes, x8-5527, meh@cs

#### First Point of Contact for HWs



- To facilitate interaction, a TA will be assigned to each homework question This will be your "first point of contact" for this question
  - □ But, you can always ask any of us
- For e-mailing instructors, always use:
  - □ 10701-instructors@cs.cmu.edu
- For announcements, subscribe to:
  - □ 10701-announce@cs
  - □ https://mailman.srv.cs.cmu.edu/mailman/listinfo/10701-announce

#### **Text Books**



- Required Textbook:
  - □ Pattern Recognition and Machine Learning; Chris Bishop
- Optional Books:
  - □ Machine Learning; Tom Mitchell
  - ☐ The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Trevor Hastie, Robert Tibshirani, Jerome Friedman
  - Information Theory, Inference, and Learning Algorithms; David MacKay

### Grading



- 5 homeworks (30%)
  - ☐ First one goes out 1/24
    - Start early, Start early
- Final project (20%)
  - ☑ Details out Feb 26<sup>th</sup>
- Midterm (20%)
  - ☐ March 7<sup>th</sup> in class
- Final (30%)
  - □ May 15th, 1-4 p.m.

#### Homeworks



- Homeworks are hard, start early ©
- Due in the beginning of class
- 3 late days for the semester
- After late days are used up:
  - ☐ Half credit within 48 hours
  - □ Zero credit after 48 hours
- All homeworks must be handed in, even for zero credit
- Late homeworks handed in to Monica Hopes, WEH 4619
- Collaboration
  - You may discuss the questions
  - □ Each student writes their own answers
  - □ Write on your homework anyone with whom you collaborate
  - Don't Look for answers on the web or from last oprevious samesters (lass, etc...

#### Sitting in & Auditing the Class



- Due to new departmental rules, every student who wants to sit in the class (not take it for credit), must register officially for auditing
- To satisfy the auditing requirement, you must either:
  - Do \*two\* homeworks, and get at least 75% of the points in each;
     or
  - □ Take the final, and get at least 50% of the points; or
  - □ Do a class project and do \*one\* homework, and get at least 75% of the points in the homework;
    - Only need to submit project proposal and present poster, and get at least 80% points in the poster.
- Please, send us an email saying that you will be auditing the class and what you plan to do.
- If you are not a student and want to sit in the class, please get authorization from the instructor

## Enjoy!



- ML is becoming ubiquitous in science, engineering and beyond
- This class should give you the basic foundation for applying ML and developing new methods
- The fun begins...

#### Your first consulting job



- A billionaire from the suburbs of Seattle asks you a question:
  - ☐ He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
  - ☐ You say: Please flip it a few times:



- □ You say: The probability is: 60%
- ■He says: Why???
- ☐ You say: Because...

#### Thumbtack - Binomial Distribution

- P(Heads) =  $\theta$ , P(Tails) =  $1-\theta$  [Model]  $\int \int \int \nabla \nabla \int \theta = \frac{3}{5}$ P(HH  $\tau\tau$ H) =  $\theta\theta(1-\theta)(1-\theta)\theta = \theta^3(1-\theta)^2$ 
  - Flips are i.i.d.:
    - □ Independent events
    - □ Identically distributed according to Binomial distribution
  - Sequence D of  $\alpha_H$  Heads and  $\alpha_T$  Tails  $\bigcirc$



$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

#### Maximum Likelihood Estimation

- **Data:** Observed set *D* of  $\alpha_H^3$  Heads and  $\alpha_T^2$  Tails
- **Hypothesis:** Binomial distribution
- Learning  $\theta$  is an optimization problem
  - P(HHTTHIO) ☐ What's the objective function?  $P(\mathfrak{I}|\theta)$
- MLE: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \underline{\ln} P(\mathcal{D} \mid \theta)$$

Your first learning algorithm 
$$\frac{1}{\ln \alpha^{1} = \ln \alpha + \ln b}{\ln \alpha^{2} = b \ln \alpha}$$

$$\widehat{\theta} = \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln \theta^{\alpha_{H}} (1 - \theta)^{\alpha_{T}}$$

• Set derivative to zero:  $\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$ 

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

$$\frac{d}{d\theta} \ln P(\mathcal{$$

#### How many flips do I need?

$$\hat{\theta}_{\text{rus}} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

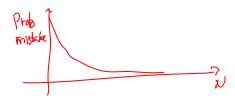
- Billionaire says: I flipped 3 heads and 2 tails.
- You say: θ = 3/5, I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Humm... The more the merrier???
- He says: Is this why I am paying you the big bucks???

#### Simple bound (based on Hoeffding's inequality)

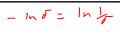
■ For 
$$N = \alpha_H + \alpha_T$$
, and  $\widehat{\theta}_{ML} = \frac{\alpha_H}{\alpha_H + \alpha_T}$ 

eg, E=0.01 ■ Let  $\underline{\theta}^*$  be the true parameter, for any  $\varepsilon$ >0:

$$P(||\widehat{\theta} - \theta^*|| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$



## **PAC Learning**





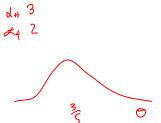
■ Billionaire says: I want to know the thumbtack parameter  $\theta$ , within  $\epsilon$  = 0.1, with probability at least  $1-\delta = 0.95$ . How many flips?

$$P(||\widehat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$

#### What about prior



- Billionaire says: Wait, I know that the thumbtack is "close" to 50-50. What can you?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ, we obtain a distribution over possible values of θ





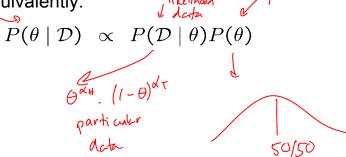
## **Bayesian Learning**



■ Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

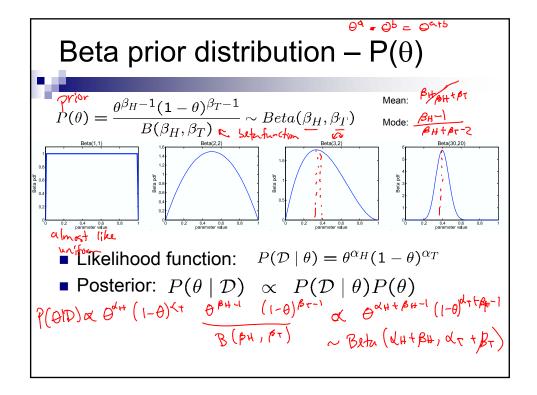


#### Bayesian Learning for Thumbtack

- Posterior  $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$ 
  - Likelihood function is simply Binomial:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What about prior?
  - □ Represent expert knowledge
  - □ Simple posterior form
- Conjugate priors:
  - □ Closed-form representation of posterior
  - ☐ For Binomial, conjugate prior is Beta distribution



# Posterior distribution Prior: $\underline{Beta(\beta_H,\beta_T)}$ Data: $\alpha_H$ heads and $\alpha_T$ tails (binomial)

Posterior distribution:

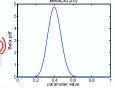
$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$R(\theta) = \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$R(\theta) = \text{Bet$$

## Using Bayesian posterior

P(+D) 1



Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

■ Bayesian inference:

□ No longer single parameter:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

□ Integral is often hard to compute

## MAP: Maximum a posteriori

approximation

approximation 
$$P( heta \mid \mathcal{D}) \sim Beta(eta_H + lpha_H, eta_T + lpha_T)$$
  $E[f( heta)] = \int_0^1 f( heta) P( heta \mid \mathcal{D}) d heta$ 

- As more data is observed, Beta is more certain
- MAP: use most likely parameter:

$$\widehat{\theta}_{\text{NAP}} = \underset{\theta}{\text{arg max}} P(\theta \mid \mathcal{D}) \qquad E[f(\theta)] \approx f(\widehat{\theta})$$

$$= \underset{\text{d.h.t.}}{\underbrace{\text{d.h.t.}}} \qquad \underset{\text{d.h.t.}}{\text{like}} \qquad \underset{\text{d.h.t.}}{\text{MLE}_{\text{l.ips}}}$$

$$= \underset{\text{d.h.t.}}{\underbrace{\text{d.h.t.}}} \qquad \underset{\text{d.h.t.}}{\text{like}} \qquad \underset{\text{d.h.t.}}{\text{l.ips}}$$

#### MAP for Beta distribution

$$P(\theta \mid \mathcal{D}) = rac{ heta^{eta_H + lpha_H - 1}(1 - heta)^{eta_T + lpha_T - 1}}{B(eta_H + lpha_H, eta_T + lpha_T)} \sim Beta(eta_H + lpha_H, eta_T + lpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) = \frac{\sqrt{1 + \beta \mu^{-1}}}{\sqrt{1 + 1 + \beta \mu^{-2}}}$$

- Beta prior equivalent to extra thumbtack flips
- As  $N \rightarrow \infty$ , prior is "forgotten"
- But, for small sample size, prior is important!

## What you need to know



- Go to the recitation on intro to probabilities
  - ☐ And, other recitations too
- Point estimation:

  - Bayesian learning
  - □ MAP