

Univariate 1-Nearest Neighbor

Given datapoints (x_1, y_1) (x_2, y_2) .. (x_N, y_N) , where we assume $y_i = f(x_i)$ for some unknown function f.

Given query point x_q , your job is to predict $\hat{y} \approx f(x_q)$ Nearest Neighbor:

1. Find the closest x_i in our set of datapoints

$$i(nn) = \operatorname{argmin} | x_i - x_q |$$

2. Predict $\hat{y} = y_{i(nn)}$ Here's a dataset with one input, one output and four datapoints.

1-Nearest Neighbor is an example of.... Instance-based learning

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.

Four things make a memory based learner:

- A distance metric
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to fit with the local points?

©2005-2007 Carlos Guestrin

1-Nearest Neighbor

Four things make a memory based learner:

- 1. A distance metric
 - **Euclidian (and many more)**
- 2. How many nearby neighbors to look at?
- 3. A weighting function (optional)

 Unused
- 4. How to fit with the local points?

 Just predict the same output as the nearest neighbor.

©2005-2007 Carlos Guestrin

7

Multivariate 1-NN examples

Regression

Classification

2005-2007 Carlos Guestrin

Multivariate distance metrics

Suppose the input vectors $x_1, x_2, ...x_n$ are two dimensional:

$$\boldsymbol{x}_{1} = \left(\; \boldsymbol{x}_{11} \; , \; \boldsymbol{x}_{12} \; \right) \; , \; \boldsymbol{x}_{2} = \left(\; \boldsymbol{x}_{21} \; , \; \boldsymbol{x}_{22} \; \right) \; , \; \ldots \boldsymbol{x}_{N} = \left(\; \boldsymbol{x}_{N1} \; , \; \boldsymbol{x}_{N2} \; \right) .$$

One can draw the nearest-neighbor regions in input space.

$$Dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2}$$
 $Dist(\mathbf{x}_{i}, \mathbf{x}_{i}) = (x_{i1} - x_{j1})^{2} + (3x_{i2} - 3x_{i2})^{2}$

The relative scalings in the distance metric affect region shapes

©2005-2007 Carlos Guestrin

Euclidean distance metric

Or equivalently,

$$D(\mathbf{x}, \mathbf{x}') = \sqrt{\sum_{i} \sigma_{i}^{2} (x_{i} - x'_{i})^{2}}$$

where

$$D(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^T \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{x}')}$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_N^2 \end{bmatrix}$$

Other Metrics...

Mahalanobis, Rank-based, Correlation-based,...

©2005-2007 Carlos Guestrin

Consistency of 1-NN

- Consider an estimator f_n trained on n examples
 - □ e.g., 1-NN, neural nets, regression,...
- Estimator is consistent if true error goes to zero as amount of data increases
 - □ e.g., for no noise data, consistent if:

$$\lim_{n\to\infty} MSE(f_n) = 0$$

- Regression is not consistent!
 - □ Representation bias
- 1-NN is consistent (under some mild fineprint)

What about variance???

©2005-2007 Carlos Guestrin

k-Nearest Neighbor

Four things make a memory based learner:

- 1. A distance metric
 - Euclidian (and many more)
- 2. How many nearby neighbors to look at?
- A weighting function (optional)
 Unused
- 2. How to fit with the local points?
 Just predict the average output among the k nearest neighbors.

2005-2007 Carlos Guestrin

4.4

Kernel regression

Four things make a memory based learner:

- A distance metric **Euclidian (and many more)**
- How many nearby neighbors to look at? All of them
- A weighting function (optional) $w_i = \exp(-D(x_i, query)^2 / K_w^2)$

Nearby points to the query are weighted strongly, far points weakly. The K_W parameter is the **Kernel Width**. Very important.

How to fit with the local points? Predict the weighted average of the outputs: predict = $\sum w_i y_i / \sum w_i$

©2005-2007 Carlos Guestrin

17

Weighting functions

 $w_i = \exp(-D(x_i, query)^2 / K_w^2)$

Typically optimize K_w using gradient descent

(Our examples use Gaussian)

18

©2005-2007 Carlos Guestrin

Locally weighted regression

Kernel regression:

Take a very very conservative function approximator called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

©2005-2007 Carlos Guestrin

Locally weighted regression

- Four things make a memory based learner:
- A distance metric

Any

How many nearby neighbors to look at?

All of them

A weighting function (optional)

Kernels

- $wi = \exp(-D(xi, query)^2 / Kw^2)$
- How to fit with the local points?

General weighted regression:

$$\hat{\mathbf{a}} = \underset{\mathbf{a}}{\operatorname{argmin}} \sum_{k=1}^{N} w_k^2 (\mathbf{y}_k - \hat{\mathbf{a}}^T \mathbf{x}_k)^2$$

©2005-2007 Carlos Guestrin

23

How LWR works

Linear regression

Same parameters for all queries

$$\hat{a} = (X^T X)^1 X^T Y$$

Locally weighted regression

 Solve weighted linear regression for each query

$$\hat{\mathbf{a}} = (\mathbf{W}\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{X})^{\mathsf{T}}\mathbf{W}\mathbf{X}^{\mathsf{T}}\mathbf{W}\mathbf{Y}$$

$$W = \begin{pmatrix} w_1 & 0 & 0 & 0 \\ 0 & w_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & w_n \end{pmatrix}$$

2005-2007 Carlos Guestrin

Curse of dimensionality for instance-based learning

- Must store and retreve all data!
 - □ Most real work done during testing
 - □ For every test sample, must search through all dataset very slow!
 - □ We'll see fast methods for dealing with large datasets
- Instance-based learning often poor with noisy or irrelevant features

2005-2007 Carlos Guestrin

What you need to know about instance-based learning k-NN Simplest learning algorithm With sufficient data, very hard to beat "strawman" approach Picking k? Kernel regression Set k to n (number of data points) and optimize weights by gradient descent Smoother than k-NN Locally weighted regression Generalizes kernel regression, not just local average Curse of dimensionality Must remember (very large) dataset for prediction Irrelevant features often killers for instance-based approaches

Acknowledgment

This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:

□ http://www.cs.cmu.edu/~awm/tutorials

©2005-2007 Carlos Guestrin

31

Support Vector Machines Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University February 19th, 2007 e2005-2007 Carlos Guestrin

Linear classifiers — Which line is better?

Data:
$$\left\langle x_1^{(1)}, \dots, x_1^{(m)}, y_1 \right\rangle \\ \vdots \\ \left\langle x_n^{(1)}, \dots, x_n^{(m)}, y_n \right\rangle \\ \vdots \\ \left\langle x_n^{(1)}, \dots, x_n^{(m)}, y_n \right\rangle \\ \vdots \\ \left\langle x_i^{(1)}, \dots, x_i^{(m)} \right\rangle \\ -m \text{ features} \\ y_i \in \{-1, +1\} \\ -\text{ class}$$

w.x = $\sum_j w^{(j)} x^{(j)}$

