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Why not just use Linear Regression?
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Using data to predict new data
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Nearest neighbor
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Univariate 1-Nearest Neighbor

Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume yi=f(xi) for some
unknown function f.
Given query point xq, your job is to predict
Nearest Neighbor:
1.   Find the closest xi in our set of datapoints
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Here’s a
dataset with
one input, one
output and four
datapoints.
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1-Nearest Neighbor is an example of….
 Instance-based learning

Four things make a memory based learner:
 A distance metric
 How many nearby neighbors to look at?
 A weighting function (optional)
 How to fit with the local points?

x1                 y1
x2                 y2
x3                 y3

.

.
xn                yn

A function approximator
that has been around
since about 1910.

To make a prediction,
search database for
similar datapoints, and fit
with the local points.
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1-Nearest Neighbor

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

One
3. A weighting function (optional)

Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.
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Multivariate 1-NN examples

Regression Classification
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Multivariate distance metrics
Suppose the input vectors x1, x2, …xn are two dimensional:
x1 = ( x11 , x12 ) , x2 = ( x21 , x22 ) , …xN = ( xN1 , xN2 ).
One can draw the nearest-neighbor regions in input space.

Dist(xi,xj) =(xi1 – xj1)2+(3xi2 – 3xj2)2

The relative scalings in the distance metric affect region shapes

Dist(xi,xj) = (xi1 – xj1)2 + (xi2 – xj2)2
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Euclidean distance metric

Other Metrics…
 Mahalanobis, Rank-based, Correlation-based,…
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Notable distance metrics
(and their level sets)

L1 norm (absolute)

L1 (max) norm

Scaled Euclidian (L2)

Mahalanobis 
(here, Σ on the previous
slide is not necessarily
diagonal, but is symmetric
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Consistency of 1-NN

 Consider an estimator fn trained on n examples
 e.g., 1-NN, neural nets, regression,...

 Estimator is consistent if true error goes to zero as
amount of data increases
 e.g., for no noise data, consistent if:

 Regression is not consistent!
 Representation bias

 1-NN is consistent (under some mild fineprint)

What about variance???
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1-NN overfits?
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k-Nearest Neighbor

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

k
1. A weighting function (optional)

Unused

2. How to fit with the local points?
Just predict the average output among the k nearest neighbors.
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k-Nearest Neighbor (here k=9)

K-nearest neighbor for function fitting smoothes away noise, but there are
clear deficiencies.
What can we do about all the discontinuities that k-NN gives us?
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Weighted k-NNs

 Neighbors are not all the same
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Kernel regression

Four things make a memory based learner:
1. A distance metric

Euclidian (and many more)
2. How many nearby neighbors to look at?

All of them
3. A weighting function (optional)

wi = exp(-D(xi, query)2 / Kw
2)

Nearby points to the query are weighted strongly, far points
weakly. The KW parameter is the Kernel Width. Very
important.

4. How to fit with the local points?
Predict the weighted average of the outputs:
predict = Σwiyi / Σwi
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Weighting functions

wi = exp(-D(xi, query)2 / Kw
2)

Typically optimize Kw
using gradient descent

(Our examples use Gaussian)
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Kernel regression predictions

Increasing the kernel width Kw means further away points get an
opportunity to influence you.
As Kw1, the prediction tends to the global average.

KW=80KW=20KW=10
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Kernel regression on our test cases

KW=1/16 axis width.KW=1/32 of x-axis width.KW=1/32 of x-axis width.

Choosing a good Kw is important. Not just for Kernel Regression, but
for all the locally weighted learners we’re about to see.
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Kernel regression can look bad

KW = Best.KW = Best.KW = Best.

Time to try something more powerful…
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Locally weighted regression

Kernel regression:
Take a very very conservative function approximator
called AVERAGING. Locally weight it.

Locally weighted regression:
Take a conservative function approximator called
LINEAR REGRESSION. Locally weight it.
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Locally weighted regression

 Four things make a memory based learner:
 A distance metric

Any
 How many nearby neighbors to look at?

All of them
 A weighting function (optional)

Kernels
 wi = exp(-D(xi, query)2 / Kw2)

 How to fit with the local points?
General weighted regression:
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How LWR works

Query

Linear regression
 Same parameters for 
   all queries

Locally weighted regression
 Solve weighted linear regression
   for each query
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Another view of LWR

Image from  Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145.
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LWR on our test cases

KW = 1/8 of x-axis width.KW = 1/32 of x-axis
width.

KW = 1/16 of x-axis
width.
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Locally weighted polynomial regression

LW Quadratic Regression
Kernel width KW at optimal
level.

KW = 1/15 x-axis

LW Linear Regression
Kernel width KW at optimal
level.

KW = 1/40 x-axis

Kernel Regression
Kernel width KW at optimal
level.

KW = 1/100 x-axis

Local quadratic regression is easy: just add quadratic terms to the
WXTWX matrix. As the regression degree increases, the kernel width
can increase without introducing bias.
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Curse of dimensionality for
instance-based learning

 Must store and retreve all data!
 Most real work done during testing
 For every test sample, must search through all dataset – very slow!
 We’ll see fast methods for dealing with large datasets

 Instance-based learning often poor with noisy or irrelevant
features
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Curse of the irrelevant feature
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What you need to know about
instance-based learning

 k-NN
 Simplest learning algorithm
 With sufficient data, very hard to beat “strawman” approach
 Picking k?

 Kernel regression
 Set k to n (number of data points) and optimize weights by

gradient descent
 Smoother than k-NN

 Locally weighted regression
 Generalizes kernel regression, not just local average

 Curse of dimensionality
 Must remember (very large) dataset for prediction
 Irrelevant features often killers for instance-based approaches
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Support Vector
Machines
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Linear classifiers – Which line is better?

Data:

Example i:

w.x = ∑j w(j) x(j)
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Pick the one with the largest margin!

w.x = ∑j w(j) x(j)

w
.x

 +
 b

 =
 0
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Maximize the margin

w
.x

 +
 b

 =
 0
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But there are a many planes…

w
.x

 +
 b

 =
 0
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w
.x

 +
 b

 =
 0

Review: Normal to a plane
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Normalized margin – Canonical
hyperplanes
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Margin maximization using
canonical hyperplanes
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Support vector machines (SVMs)

w
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w
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w
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margin γ

 Solve efficiently by quadratic
programming (QP)
 Well-studied solution algorithms

 Hyperplane defined by support
vectors


