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Why not just use Linear Regression?
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Using data to predict new data
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Nearest neighbor
" J
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Univariate 1-Nearest Neighbor

Given datapoints (X;,Y) (X5,Y5)..(Xn:Yn),Where we assumfor some
unknown function f. A

Given query point x,, your job is to predict y ~ f (Xq )

Nearest Neighbor: —

1. Find the closest X; in our set of datapoints

i(nn) = argmin‘xi — Xq‘

| 6{‘:"}”‘
2. Predict Y = Yi(m) i
—_— S -
’ @\06’@
Here'sa 4 L% (
dataset with y B
one input, one Here, this is
OUtpUt and four datapoint

datapoints.
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1-Nearest Neighbor is an example of....

Instance-based learning
" J
A function approximator

that has been around
since about 1910.

To make a prediction,
search database for
similar datapoints, and fit
with the local points.

Fo&t things make a memory based learner:
| A distance metric

= “~ How many nearby neighbors to look at?
m A weighting function (optional)

m " How to fit with the local points?
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1-Nearest Neighbor
" J

Four things make a memory based learner:

1. A distance metric
Euclidian (and many more)

2.  How many nearby neighbors to look at?
One

3. A weighting function (optional)
Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.

—

©2005-2007 Carlos Guestrin



Multivariate 1-NN examples

Regression
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Multivariate distance metrics
" A

Suppose the input vectors X,, X,, ...X, are two dimensional:
X = (Xyg 0 X2 ) 3 X = (Xpp 3 Xpp) o - Xy = (Xng » Xz )-
One can draw the nearest-neighbor regions in input space.

E p»c,\s.o*w’“"

. | — .,
Dist(x;,x;) = (Xi; — X)) + (Xip — Xp)? Dist(x;,X;) =(Xi; — X;1)*+(3x%;, — 3%,)* 1

The relative scalings in the distance metric affect region shapes
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Euclidean distance metric
" A
D(x,x') = \/Zcziz(xi_x'i)z g

Or equivalently, G, =1
' T ' d‘;;]
- D(x,x') = /(x-x)" > (x-X)
07 -1 _ L iy
57 = o2 0 --- O
0 0% 0 ,

> ==

Other Metrics...
m Mahalanobis, Rank-based, Correlation-based,...
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Notable distance metrics
(and their level sets) egeolight

Scaled Euclidian (L,)

! ! =) =
) N

Mahalanobis (here,
> on the previous slide is not
necessarily diagonal, but is
symmetric

L, norm (absolute)

(/// uli

Loo (max) norm
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. }f\;’x‘r}?‘ka—b_s‘;‘;}g,‘
Consistency of 1-NN
=

Consider an estimator f trained on n examples
e.g., 1-NN, neural nets, regression,...

Estimator is consistent If true error goes to zero as
amount of data increases
e.g., for no noise data, consistent if:

im MSE(f,) =0

n—00 o

S?vav-c/(

. LVroY .
Regression IS not consistent!

Representation bias

—

1-NN is consistent (under some mild fineprint)

What about variance???
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1-NN overfits?
S

2pplying facode a01:8N:9 to file jl.mbl
viscosity

Epplying faccde 201:8M:8 to file kl.nbl
¥

Epplying faccde 201:5MN:9 to file al.nbl
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K-Nearest Neighbor

-_——

"
Four things make a memory based learner:

1. A distance metric
" Euclidian (and many more)

2. How many nearby neighbors to look at?
/K
1. A weighting function (optional)
v~ Unused

2. How to fit with the local points?
Just predict the average output among the k nearest neighbors.

e

4= 09

\SE ruN( X%\
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k-Nearest Neighbor (here k=9)

2pplying faccde 209:5N:9 to file jl.mbl

vizoosity ¥
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ate

Applying facode 209:8M:9 to file kl.mbl

k1.mbl-20%:5H:9.

Applying facode a09:8N:9 to file al.mbl
attributel

14

al.mbl-A09:SNeS.

K-nearest neighbor for function fitting smoothes away noise, but there are

clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?
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Weighted k-NNs
" J

m Neighbors are not all the same  » «¥= €% = |
Lsm - ? W; ‘{Si
| ‘ ,
k/
W, C Wi
P \
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1.

Kernel regression
Wi
=

Four things make a memory based learner:

A distance metric
Euclidian (and many more)

How¥many nearby neighbors to look at?
All of them
A weighting function (optional) OV Exergle
w; = exp(-D(x;, query)*/ K,2) _
= N—é—arby points to the query are weighted strongly, far points
weakly. The K, parameter is the Kernel Width. Very
important. S

How to fit with the local points? W ’WL N })A\U ,-
Predict the weighted average of the outputs:
predict = Zwy; / Zw,

S w*w\ '\7:'“/
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Welighting functions
" J

1/d 1/d°2 14 (d+1]

w;, = exp(-D(x,, query)?/ K, ?) /’;u : .
& & 0.a

/V\O\rxj r\)o%g{\ﬁllﬁﬁ : ;1 L ;1 I L g-czl l\
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2
d =

Typically optimize K, (Our examples use Gaussian)
using gradient descent
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Kernel regression predictions

Lot b Ly -
IQSS bb\./v\;)_j
K,,=80
[ w Lics t"" l\v”\f?hw
\’\l&‘)l\ VVer( 4nk lbb S 21\5

Increasing the kernel width K, means further away points get an
opportunity to influence you.

As K2 oo, the prediction tends to the global average.
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Kernel regression on our test cases

|
Jal\.\'h ?
L
KW=1/32 of x-axis width. KW=1/32 of x-axis width. KW=1/16 axis width.

Choosing a good K, is important. Not just for Kernel Regression, but
for all the locally weighted learners we’re about to see.
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Kernel regression can look bad

KW = Best. KW = Best. KW = Best.

Time to try something more powerful...
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Locally weighted regression
" J

h LWk Cdnﬁ?m'l‘ S

Kernel regression: Z@("\ ‘/“ler onhj Us§ng o eSS

Take a very very conservatlve function approxmator
called AVERAGING. Locally weight it.

Locally welghted regression:

Take a conservative function approximator called
LINEAR REGRESSION. Locally weight it.

e
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Locally weighted regression
"
O Four things make a memory based learner:
m A distance metric
Any
u How many nearby neighbors to look at?
All of them
o A wéi—ghting function (optional)

Kernels
lg) wi = exp(-D(xi, query)? / Kw?)

am—

m How to fit with the local points?
General weighted regressmn

M (!Z_C-;S’]— S%‘A%R_&
’ el (7
argmanWk (v —=B"x, ) wﬁéﬁu

3 = —
\rdt'\3 /("Mk ‘3 ‘E
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How LWR works

Linear regression
= Same parameters for
all queries

B=(X"X)'X"Y

2R g

P‘C;\"l'i-?f\bv i,
Locally weighted regression
= Solve weighted linear regression

for each query

B= (WXTWX) WX'WY
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Another view of LWR
" S

/kernel too wide - includes nonlinear region

kernel just right _ .
kernel 00 narrow — excludes some of linear region

Image from Cohn, D.A., Ghahramani, Z., and Jorsizapsvbbol89hd< Axtddrinearning with Statistical Models”, JAIR Volume 4, pages 229-145.



LWR on our test cases

Epplying facodse LA0:8N:9 to file jl.mbl Epplying facods L21:8N:9 to file kl.nkl Z2pplying facode L51:8M:9 to file al.nbl
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KW = 1/16 of x-axis KW = 1/32 of x-axis KW = 1/8 of x-axis width.
width. width.
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Locally weighted polynomial regression
"

2pplying faccde 220:8M:9 to file il.mbl
attributel

2

il.mbl-A20:8N:9.

Kernel Regression

Kernel width K,, at optimal

level.

KW = 1/100 x-axis

2pplying faoode L30:8N:9 to file il.mbl
attributel

2 il.nbl-L30:5N: 5.

LW Linear Regression

Kernel width K,, at optimal

level.

KW = 1/40 x-axis

Applying facode Q40:8N:9 to file il.mbl
attributel

2

11.mb1-040:8M:9.

LW Quadratic Regression
Kernel width K, K,y at optimal
level.

KW = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the
WXTWX matrix. As the regression degree increases, the kernel width
can increase without introducing bias.
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Curse of dimensionality for
Instance-based learning
ST

m Must store and retreve all data!
Most real work donf_w_gjgslmg
For every test éjample must search through all dataset — very slow!

We'll see fast methods for dealing with large datasets Kp-+.,;

m Instance-based learning often poor with noisy or |?Fédevam,
features '
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Curse of the irrelevant feature ™
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What you need to know about
Instance-based learning
= JEEmNT

m K-NN
Simplest learning algorithm
With sufficient data, very hard to beat “strawman” approach
Picking K? IR
m Kernel regression

Set k to n (number of data points) and optimize weights by
gradlent descent  Pldk K.,

Smoother than k-NN
m Locally weighted regression
Generalizes kernel regression, not just local average

m Curse of dimensionality
Must remember (very large) dataset for prediction
Irrelevant features often, killers for instance-based approaghes
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m This lecture contains some material from
Andrew Moore’s excellent collection of ML
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Linear classifiers — Which line Is better’?

ConIrT

Data:
ra Lipay i
- <£U§1) ..... a:gm),y1>
o ()
= Example i:
<w§1) ..... azgm)> — m features
- y; € {—1,41} — class
s
W N b <0
w.X ZJ W(J) X(J) ©2005-2007 Carlos Guestrin 33



Pick the one with the largest margin!
" J

O it : n N . .
K confidence” = (w.x]—l—b> Y,
x
S8 =
.:B:. -
:E:. =
.:B:. =
T+
4 T -
I:E:I | |
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Maximize the margin

o0
@)
ll
Q
+
X
s 2
== —
:E:. =
.:B:. -
E:]:I =
Lt
.:E:. =
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But there are a many planes...

S
l

Q

+

X
=
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Review: Normal to a plane

o
o
I
Q
+
v f
.:B:. -
:E:. =
.:B:. -
E:]:I =
.:ﬂ:.
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Normalized margin — Canonical

. galyerplanes

H
+

L
.:B:. =
.:B:. -
T+
) ¢ =
P 4 =
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Margin maximization using

_canonical hxperplanes

+ o ~
~Q ~Q _QI

+ N+
’S XN x
S EH B

Margin ¥

MminiMmizéew W.W
(w X+ b) y] > 1, Vg c Dataset
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Support vector machines (SVMs)

minimizew wW.w
(w.xj + b) yj > 1, Vj
- m Solve efficiently by quadratic

programming (QP)
Well-studied solution algorithms

m Hyperplane defined by support
vectors
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