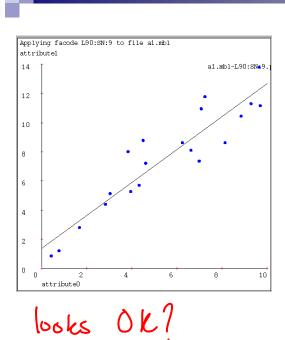
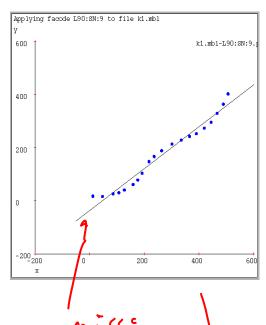
Instance-based Learning

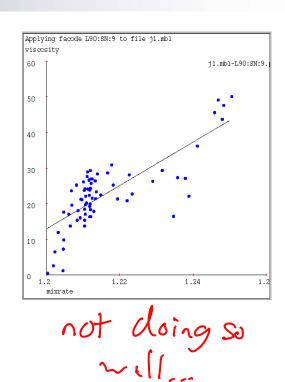
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 19th, 2007

Why not just use Linear Regression?







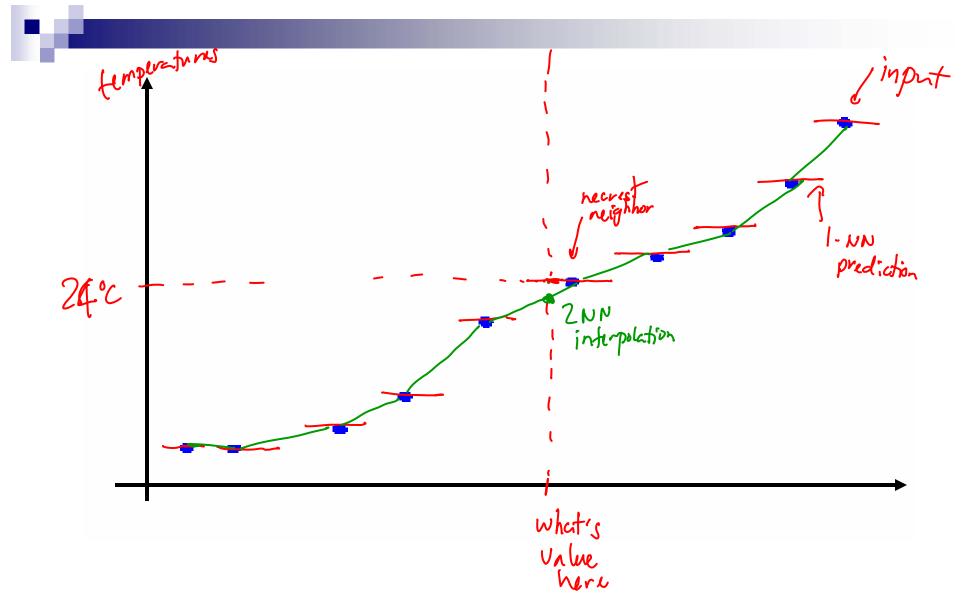
missing

add more basis fors.

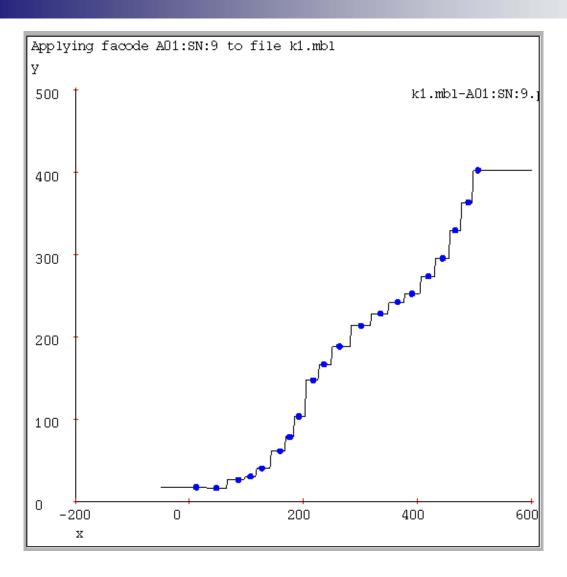
of non-linear regression

©2005-2007 Carlos Guestrin

Using data to predict new data



Nearest neighbor



Univariate 1-Nearest Neighbor

Given datapoints (x_1,y_1) $(x_2,y_2)...(x_N,y_N)$, where we assume $y_i=f(x_i)$ for some unknown function f.

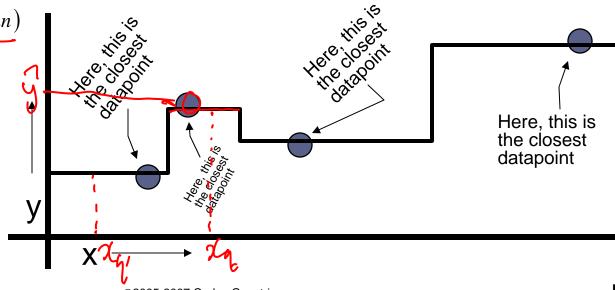
Given query point x_q , your job is to predict $\hat{y} \approx f(x_q)$ Nearest Neighbor:

1. Find the closest x_i in our set of datapoints

$$i(nn) = \underset{i \in \{1, -\gamma, N\}}{\operatorname{argmin}} |x_i - x_q|$$

2. Predict $\hat{y} = y_{i(nn)}$

Here's a dataset with one input, one output and four datapoints.

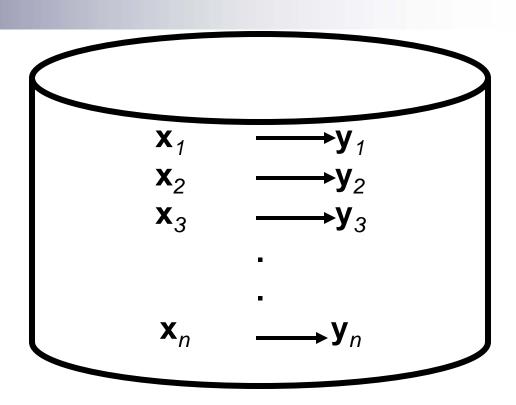


1-Nearest Neighbor is an example of....

Instance-based learning

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.



Four things make a memory based learner:

- ✓ A distance metric
- ✓ How many nearby neighbors to look at?
- ✓A weighting function (optional)
- How to fit with the local points?

1-Nearest Neighbor

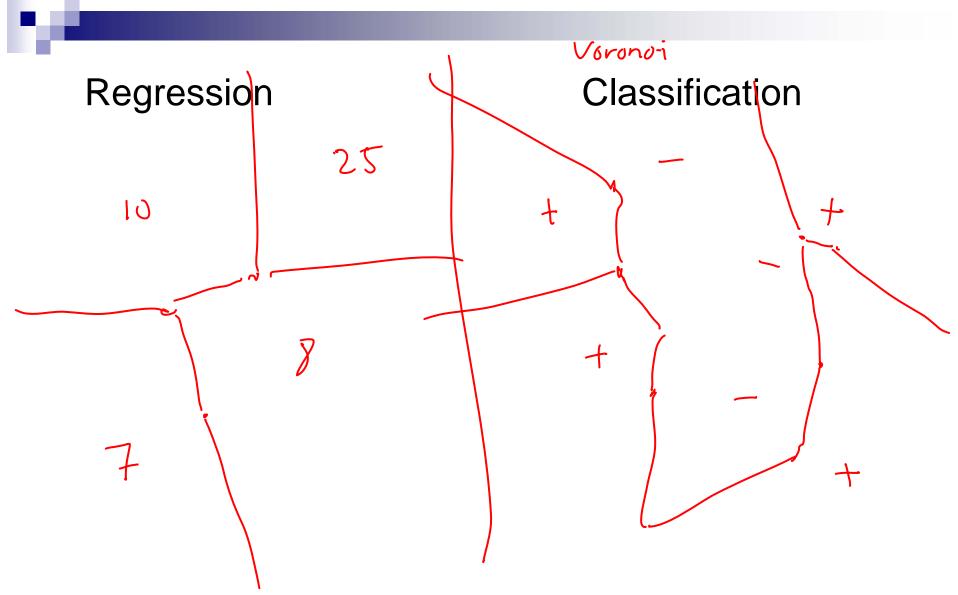
Four things make a memory based learner:

- 1. A distance metric Euclidian (and many more)
- How many nearby neighbors to look at?
- 3. A weighting function (optional)

 Unused
- 4. How to fit with the local points?

 Just predict the same output as the nearest neighbor.

Multivariate 1-NN examples

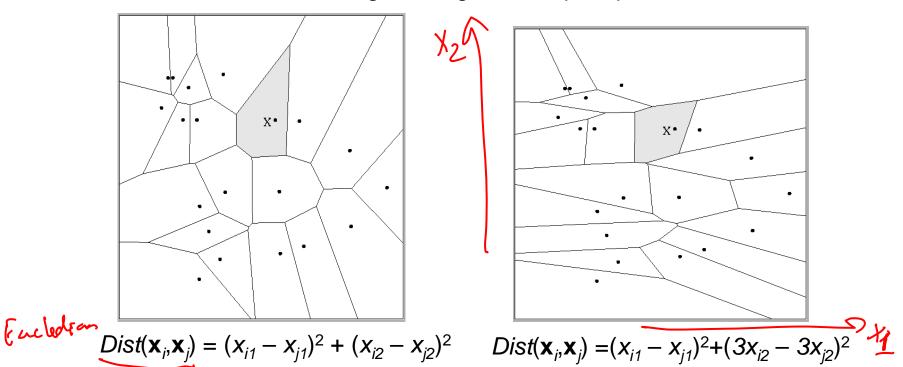


Multivariate distance metrics

Suppose the input vectors $x_1, x_2, ...x_n$ are two dimensional:

$$\mathbf{x}_1 = (x_{11}, x_{12}), \mathbf{x}_2 = (x_{21}, x_{22}), \dots \mathbf{x}_N = (x_{N1}, x_{N2}).$$

One can draw the nearest-neighbor regions in input space.



The relative scalings in the distance metric affect region shapes

Euclidean distance metric

Or equivalently,

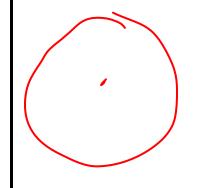
$$D(\mathbf{x}, \mathbf{x'}) = \sqrt{\sum_{i} \sigma_{i}^{2} (x_{i} - x'_{i})^{2}}$$

$$O_1^2 = 1$$

$$O_2^2 = 3$$

$$D(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^T \sum (\mathbf{x} - \mathbf{x}')}$$

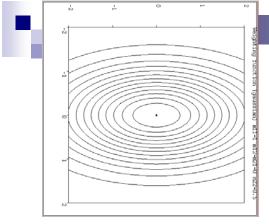
$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_N^2 \end{bmatrix}$$



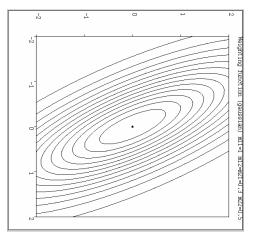
Other Metrics...

Mahalanobis, Rank-based, Correlation-based,...

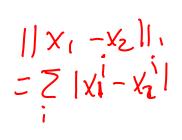
Notable distance metrics (and their level sets)

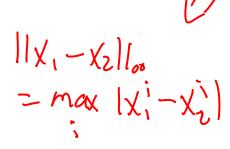


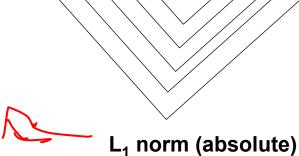
Scaled Euclidian (L₂)

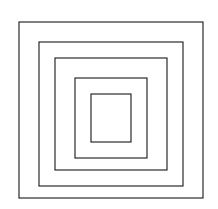


Mahalanobis (here, Σ on the previous slide is not necessarily diagonal, but is symmetric



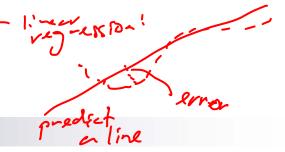






L∞ (max) norm

Consistency of 1-NN



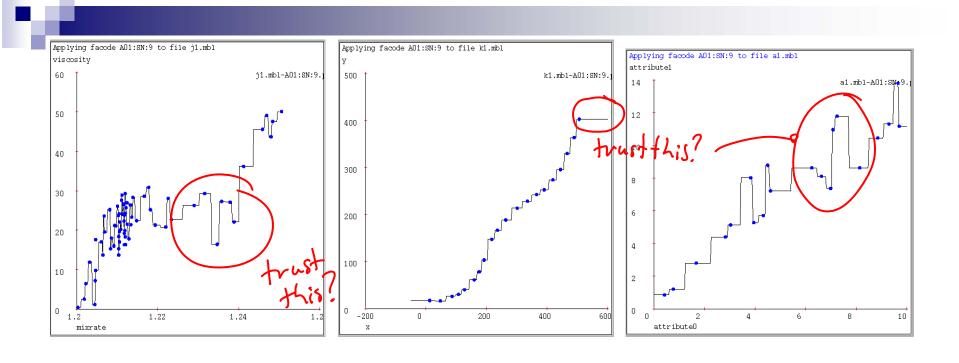
- Consider an estimator f_n trained on n examples
 - □ e.g., 1-NN, neural nets, regression,...
- Estimator is consistent if true error goes to zero as amount of data increases
 - □ e.g., for no noise data, consistent if:

$$\lim_{n\to\infty} MSE(f_n) = 0$$

- Regression is not consistent!
 - Representation bias
- 1-NN is consistent (under some mild fineprint)

What about variance???

1-NN overfits?



k-Nearest Neighbor

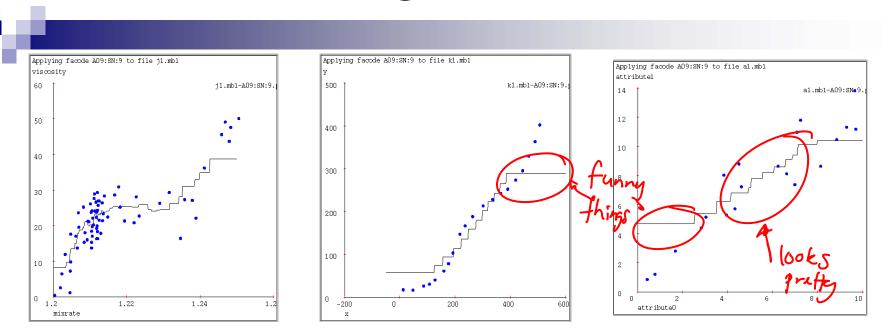
Four things make a memory based learner:

- 1. A distance metric

 Euclidian (and many more)
- 2. How many nearby neighbors to look at? **k**
- 1. A weighting function (optional)

 Unused
- 2. How to fit with the local points?Just predict the average output among the k nearest neighbors.

k-Nearest Neighbor (here k=9)

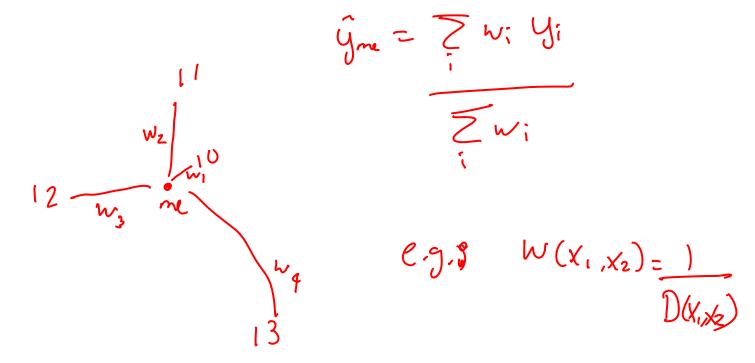


K-nearest neighbor for function fitting smoothes away noise, but there are clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?

Weighted k-NNs

■ Neighbors are not all the same



Kernel regression

Four things make a memory based learner:

- A distance metric 1. **Euclidian (and many more)**
- How many nearby neighbors to look at? 2. All of them on example;
- A weighting function (optional) 3. $w_i = \exp(-D(x_i, query)^2 / K_w^2)$

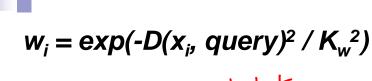
Nearby points to the query are weighted strongly, far points weakly. The K_w parameter is the **Kernel Width**. Very important. wi not a pdf...

How to fit with the local points? 4.

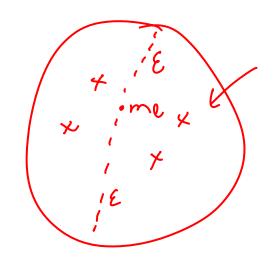
Predict the weighted average of the outputs:

predict =
$$\sum w_i y_i / \sum w_i$$

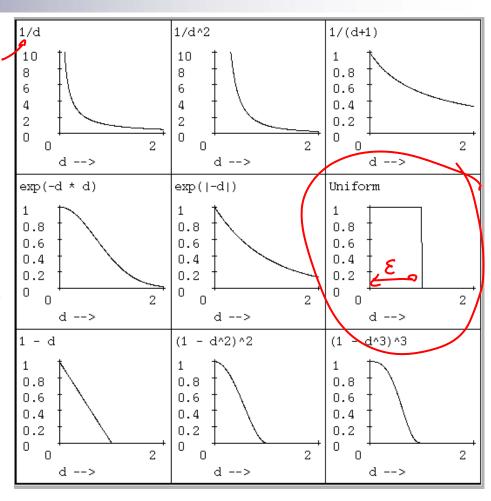
Weighting functions



many possibilities. e.g., Uniform Kernel



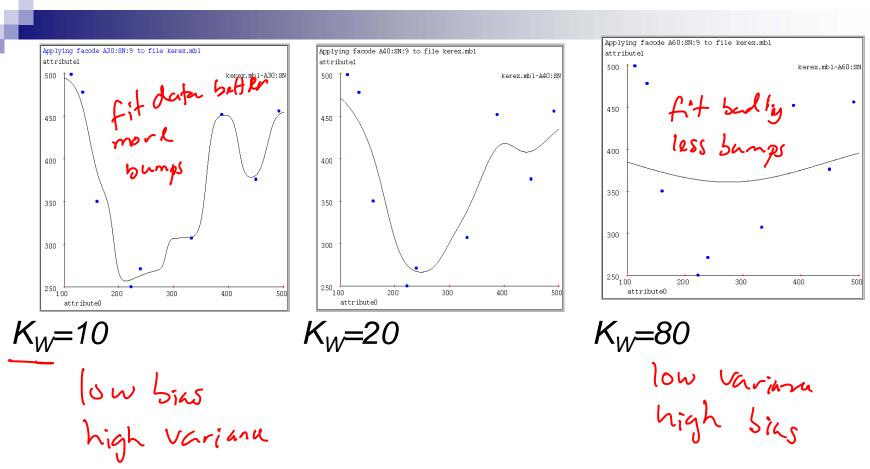
or everyone in the circle



Typically optimize K_w using gradient descent

(Our examples use Gaussian)

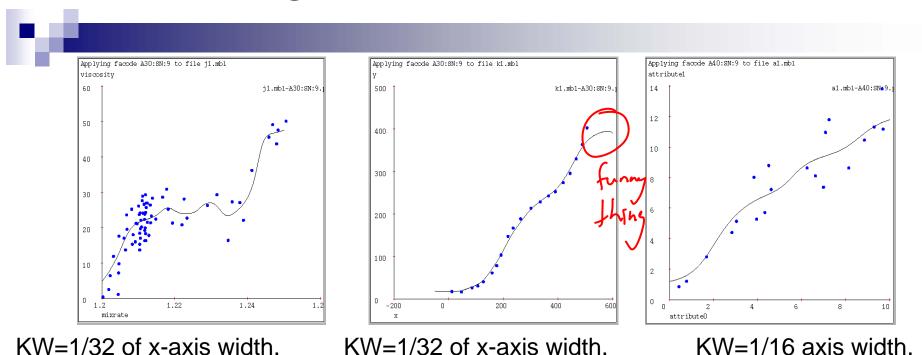
Kernel regression predictions



Increasing the kernel width $K_{\rm w}$ means further away points get an opportunity to influence you.

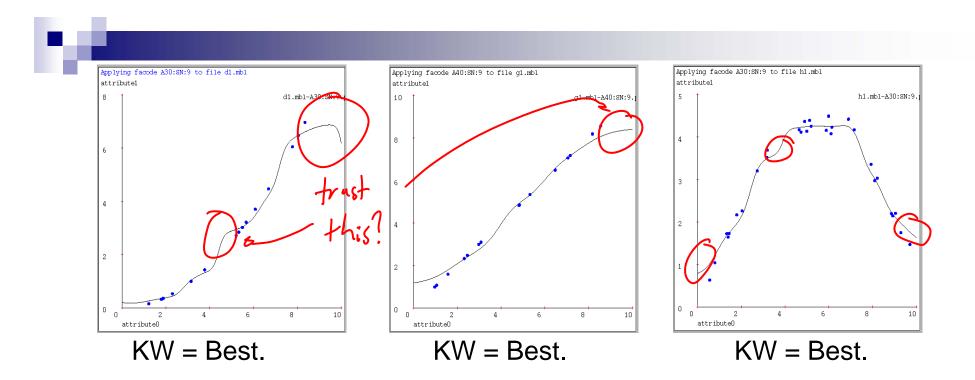
As $K_w \rightarrow \infty$, the prediction tends to the global average.

Kernel regression on our test cases



Choosing a good K_w is important. Not just for Kernel Regression, but for all the locally weighted learners we're about to see.

Kernel regression can look bad



Time to try something more powerful...

Locally weighted regression

Kernel regression: equivalent only using a basis function Take a very very conservative function approximator called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

Locally weighted regression

- Four things make a memory based learner:
- A distance metric

Any

How many nearby neighbors to look at?

All of them

A weighting function (optional)

Kernels

$$\square \ell \cdot \gamma_j \quad wi = \exp(-D(xi, query)^2 / Kw^2)$$

How to fit with the local points?

General weighted regression:

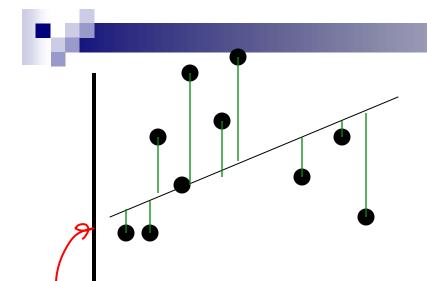
neral weighted regression:
$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{k=1}^{N} w_k^2 (y_k - \beta^T x_k)^2$$

$$\underset{\beta}{\operatorname{wigh}} p_{ints} \qquad \hat{y} = \beta^T \times_k$$

$$\underset{\beta}{\operatorname{wigh}} p_{ints} \qquad \hat{y} = \beta^T \times_k$$

$$\underset{\beta}{\operatorname{wigh}} p_{ints} \qquad \hat{y} = \beta^T \times_k$$

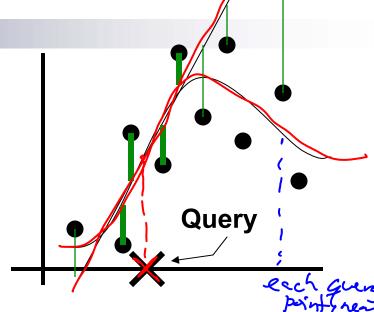
How LWR works



Linear regression

Same parameters for all queries

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y}$$



Locally weighted regression

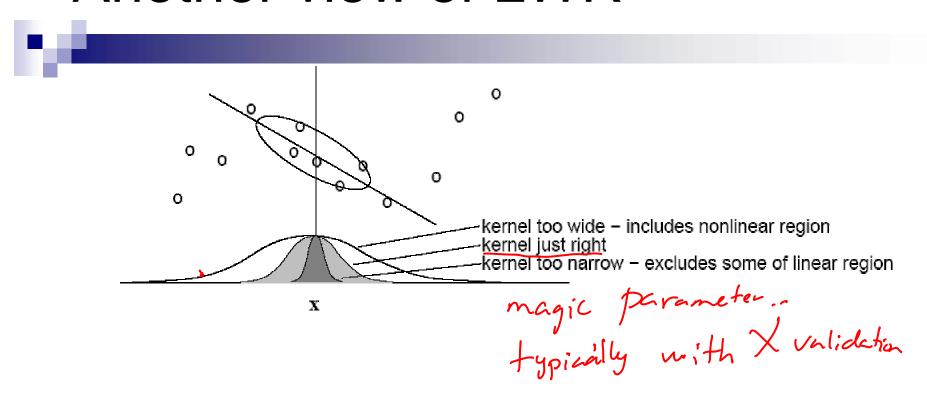
 Solve weighted linear regression for each query

for each query
$$\hat{\beta} = \left(WX^TWX\right)^{-1}WX^TWY$$

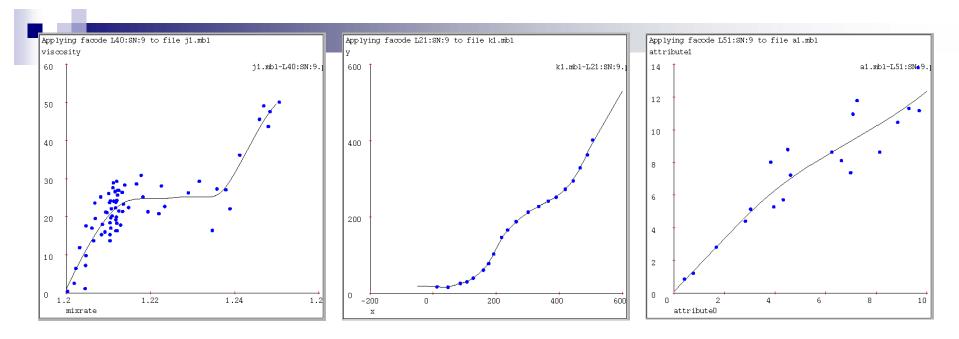
$$W = \begin{pmatrix} w_1 & 0 & 0 & 0 \\ 0 & w_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & w_n \end{pmatrix}$$
or Carlos Guestrin

©2005-2007 Carlos Guestrin

Another view of LWR



LWR on our test cases

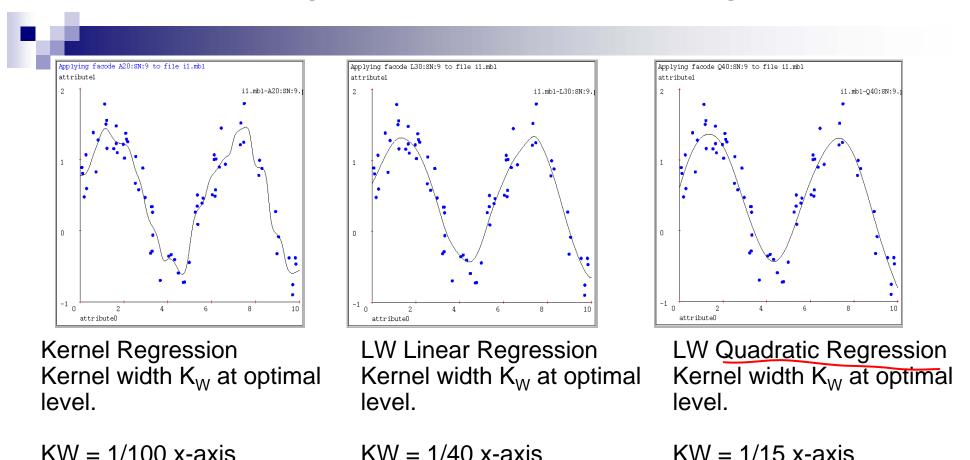


KW = 1/16 of x-axis width.

KW = 1/32 of x-axis width.

KW = 1/8 of x-axis width.

Locally weighted polynomial regression

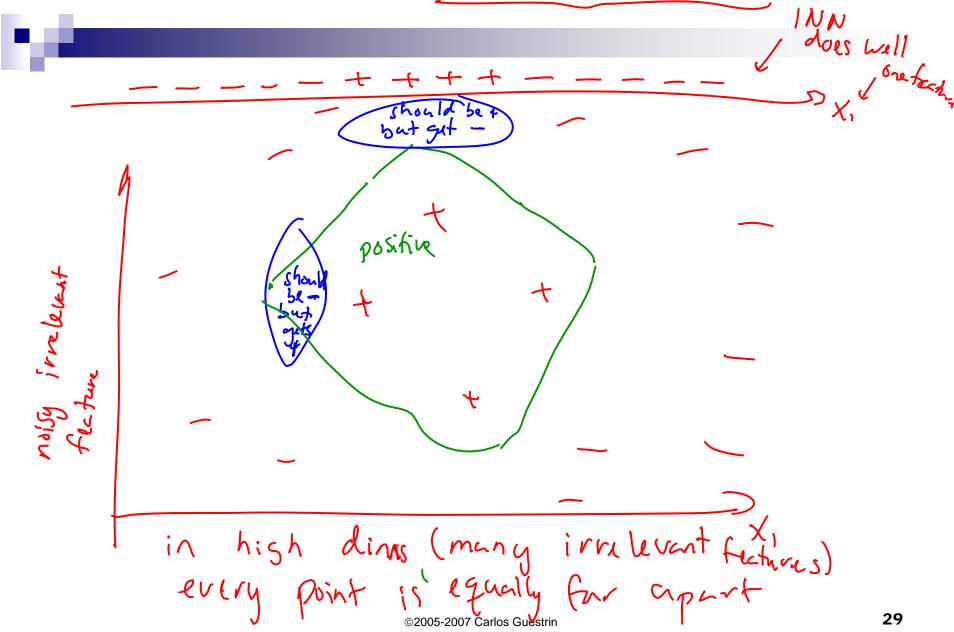


Local quadratic regression is easy: just add quadratic terms to the WXTWX matrix. As the regression degree increases, the kernel width can increase without introducing bias.

Curse of dimensionality for instance-based learning

- Must store and retreve all data!
 - Most real work done during testing
 - For every test sample, must search through all dataset very slow!
 - □ We'll see fast methods for dealing with large datasets KD-+
- Instance-based learning often poor with noisy or irrelevant, features

Curse of the irrelevant feature



What you need to know about instance-based learning

- k-NN
 - Simplest learning algorithm
 - With sufficient data, very hard to beat "strawman" approach
 - □ Picking k?
- Kernel regression
 - □ Set k to n (number of data points) and optimize weights by gradient descent
 PICK
 Kw
 - □ Smoother than k-NN
- Locally weighted regression
 - □ Generalizes kernel regression, not just local average
- Curse of dimensionality
 - Must remember (very large) dataset for prediction
 - □ Irrelevant features often killers for instance-based approaches

Acknowledgment

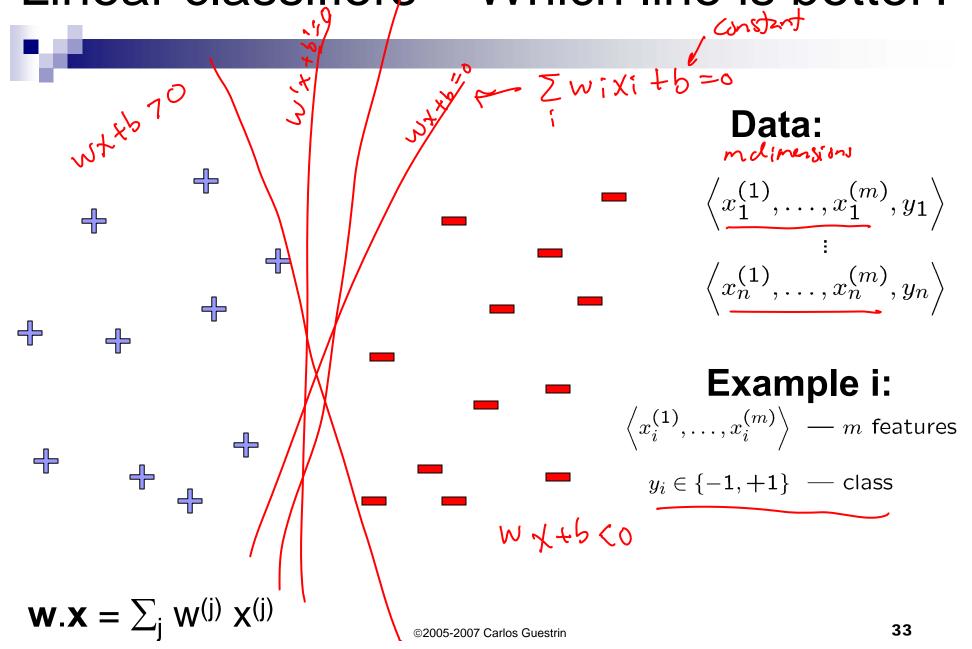
- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

Support Vector Machines

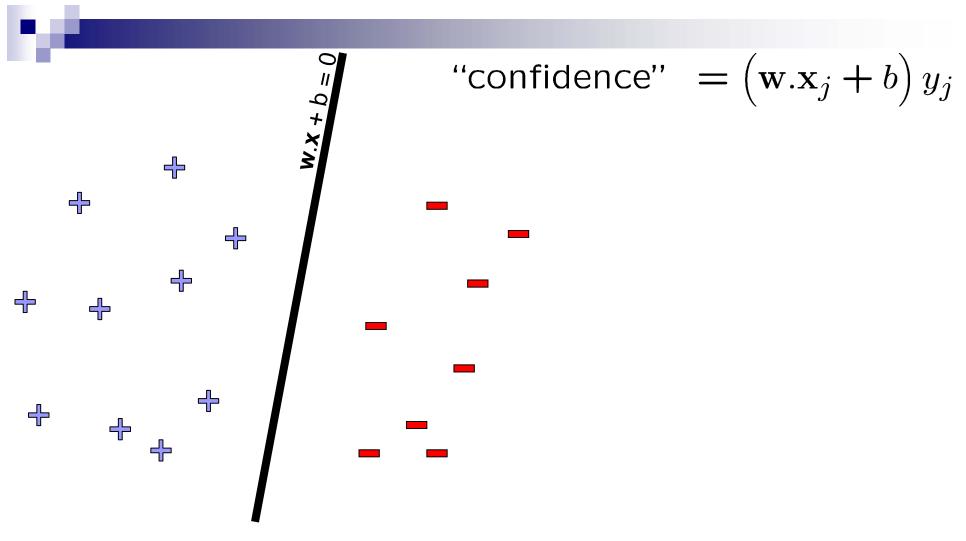
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 19th, 2007

Linear classifiers – Which line is better?

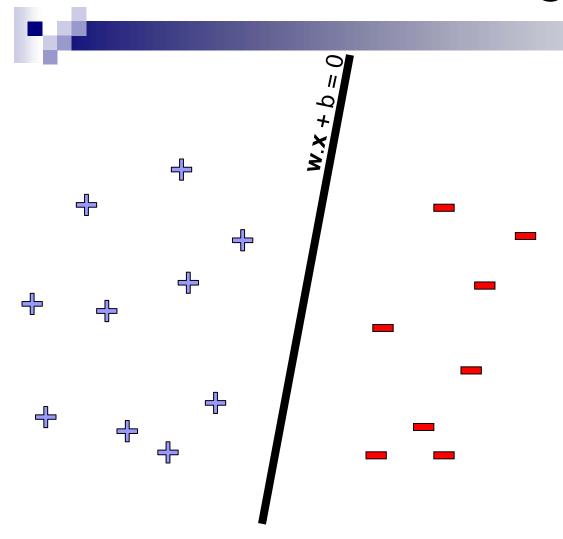


Pick the one with the largest margin!

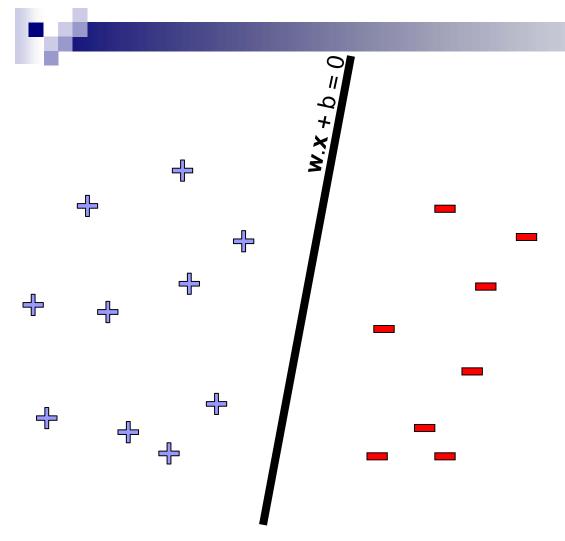


$$\mathbf{w}.\mathbf{x} = \sum_{j} \mathbf{w}^{(j)} \mathbf{x}^{(j)}$$

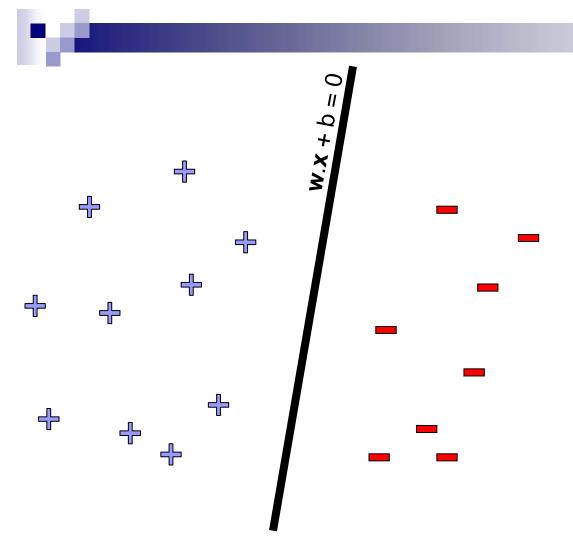
Maximize the margin



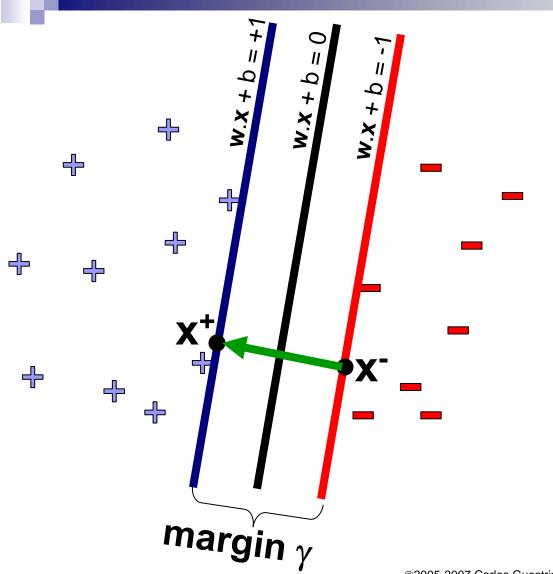
But there are a many planes...



Review: Normal to a plane

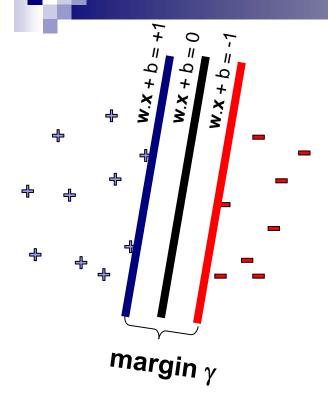


Normalized margin – Canonical hyperplanes



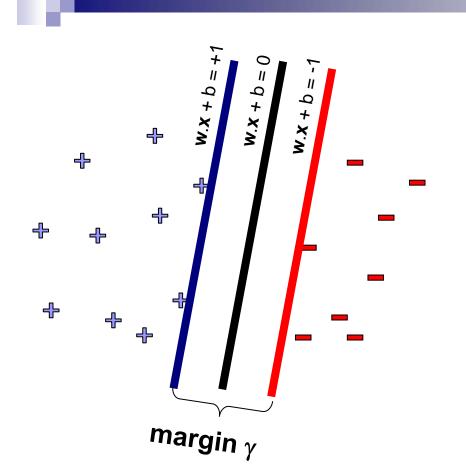
$$\gamma = \frac{2}{\sqrt{\mathbf{w}.\mathbf{w}}}$$

Margin maximization using canonical hyperplanes



minimize_w w.w
$$(\mathbf{w}.\mathbf{x}_j + b)y_j \ge 1, \ \forall j \in \text{Dataset}$$

Support vector machines (SVMs)



$$\min_{\left(\mathbf{w}.\mathbf{x}_{j}+b\right)} \mathbf{y}_{j} \geq \mathbf{1}, \ \forall j$$

- Solve efficiently by quadratic programming (QP)
 - □ Well-studied solution algorithms
- Hyperplane defined by support vectors