HMMs

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
March 28 ${ }^{\text {th }}, 2007$
©2005-2007 Carlos Guestrin

Adventures of our BN hero

- Compact representation for probability distributions
- Fast inference

1. Naïve Bayes

- Fast learning

2 and 3.

- But... Who are the most Hidden Markov models (HIMs) popular kids?

Kalman Filters

Kalman Filter with discrete
dist.

Handwriting recognition

Character recognition, e.g., kernel SVMs

©2005-2007 Carlos Guestrin

Understanding the HMM Semantics

HMMs semantics: Details

Just 3 distributions:
$P\left(X_{1}\right)$
$P\left(X_{i} \mid X_{i-1}\right)$
$P\left(O_{i} \mid X_{i}\right)$

HMMs semantics: Joint distribution

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{n} \mid o_{1}, \ldots, o_{n}\right)=P\left(X_{1: n} \mid o_{1: n}\right) \\
& \quad \propto P\left(X_{1}\right) P\left(o_{1} \mid X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid X_{i-1}\right) P\left(o_{i} \mid X_{i}\right)
\end{aligned}
$$

Learning HMMs from fully observable data is easy

Learn 3 distributions:
$P\left(X_{1}\right)$
$P\left(O_{i} \mid X_{i}\right)$
$P\left(X_{i} \mid X_{i-1}\right)$

Possible inference tasks in an HMM

Marginal probability of a hidden variable:

Viterbi decoding - most likely trajectory for hidden vars:

Using variable elimination to compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{o}_{1 \text { - }}\right)$

 Compute:

$X_{1}=\{a$

Variable elimination order?

Example:

What if I want to compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{o}_{1: n}\right)$

 for each i?

Variable elimination for each i?

Variable elimination for each i, what's the complexity?

Reusing computation

The forwards-backwards algorithm

$P\left(X_{i} \mid o_{1 . . n}\right)$

- Initialization: $\alpha_{1}\left(X_{1}\right)=P\left(X_{1}\right) P\left(o_{1} \mid X_{1}\right)$
- For $\mathrm{i}=2$ to n
\square Generate a forwards factor by eliminating $\mathrm{X}_{\mathrm{i}-1}$

$$
\alpha_{i}\left(X_{i}\right)=\sum_{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)
$$

- Initialization: $\beta_{n}\left(X_{n}\right)=1$
- For $\mathrm{i}=\mathrm{n}-1$ to 1
\square Generate a backwards factor by eliminating X_{i+1}

$$
\beta_{i}\left(X_{i}\right)=\sum_{x_{i+1}} P\left(o_{i+1} \mid x_{i+1}\right) P\left(x_{i+1} \mid X_{i}\right) \beta_{i+1}\left(x_{i+1}\right)
$$

- $\forall \mathrm{i}$, probability is: $P\left(X_{i} \mid o_{1 . . n}\right) \propto \alpha_{i}\left(X_{i}\right) \beta_{i}\left(X_{i}\right)$

Variable elimination order?

Example:

The Viterbi algorithm

■ Initialization: $\alpha_{1}\left(X_{1}\right)=P\left(X_{1}\right) P\left(o_{1} \mid X_{1}\right)$

- For $\mathrm{i}=2$ to n
\square Generate a forwards factor by eliminating X_{i-1}

$$
\alpha_{i}\left(X_{i}\right)=\max _{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)
$$

- Computing best explanation: $x_{n}^{*}=\underset{x_{n}}{\operatorname{argmax}} \alpha_{n}\left(x_{n}\right)$
- For $\mathrm{i}=\mathrm{n}-1$ to 1
\square Use argmax to get explanation:

$$
x_{i}^{*}=\underset{x_{i}}{\operatorname{argmax}} P\left(x_{i+1}^{*} \mid x_{i}\right) \alpha_{i}\left(x_{i}\right)
$$

What you'll implement 1 : multiplication

$$
\alpha_{i}\left(X_{i}\right)=\max _{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)
$$

What you'll implement 2 : max \& argmax

$$
\alpha_{i}\left(X_{i}\right)=\max _{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)
$$

Higher-order HMMs

Add dependencies further back in time \rightarrow better representation, harder to learn

What you need to know

- Hidden Markov models (HMMs)
\square Very useful, very powerful!
\square Speech, OCR,...
\square Parameter sharing, only learn 3 distributions
\square Trick reduces inference from $\mathrm{O}\left(\mathrm{n}^{2}\right)$ to $\mathrm{O}(\mathrm{n})$
\square Special case of BN

Bayesian Networks (Structure) Learning

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
March 28 ${ }^{\text {th }}, 2007$
©2005-2007 Carlos Guestrin

Review

- Bayesian Networks
\square Compact representation for probability distributions
\square Exponential reduction in number of parameters
- Fast probabilistic inference using variable elimination
\square Compute $\mathrm{P}(\mathrm{X} \mid \mathrm{e})$
\square Time exponential in tree-width, not number of variables
- Today
\square Learn BN structure

Learning Bayes nets

$\langle A=?, H=f, S=t, F=?, N=t\rangle$
next semester-

Learning the OPTs

For each discrete variable X_{i}
$\underset{\text { learn }}{\text { want to }} P\left(X_{i} \mid P a x_{i}\right)$

$$
P\left(S^{\prime \prime} \mid F A\right)^{\prime \prime}=\frac{\operatorname{Count}(S=t, F=t, A=f)}{\operatorname{Count}(F=t, A=f)}
$$

Maximum
likelihood estimates
set of parents
MLE: $\quad P\left(\underline{X_{i}=x_{i}} \mid \widetilde{X_{j}=x_{j}}\right)=\frac{\operatorname{Count}\left(X_{i}=x_{i}, X_{j}=x_{j}\right)}{\operatorname{Count}\left(X_{j}=x_{j}\right)}$

Information-theoretic interpretation

 of maximum likelihood- Given structure, log likelihood of data:
 $\log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)$

Information-theoretic interpretation

 of maximum likelihood- Given structure, log likelihood of data:

$\log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_{i}=x_{i}^{(j)} \mid \mathbf{P} \mathbf{a}_{X_{i}}=\mathbf{x}^{(j)}\left[\mathbf{P} \mathbf{a}_{X_{i}}\right]\right)$

Information-theoretic interpretation

 of maximum likelihood 2- Given structure, log likelihood of data:

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}} \widehat{P}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right) \log \hat{P}\left(x_{i} \mid \mathbf{P a}_{x_{i}, \mathcal{G}}\right)
$$

Decomposable score

- Log data likelihood
$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)$
- Decomposable score:
\square Decomposes over families in BN (node and its parents)
\square Will lead to significant computational efficiency!!!
$\square \operatorname{Score}(G: D)=\sum_{\mathrm{i}} \operatorname{FamScore}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{xi}_{\mathrm{i}}}: D\right)$

How many trees are there?

 Nonetheless - Efficient optimal algorithm finds best tree
Scoring a tree 1: equivalent trees

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)
$$

Scoring a tree 2: similar trees

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)
$$

Chow-Liu tree learning algorithm 1

- For each pair of variables X_{i}, X_{j}
\square Compute empirical distribution:

$$
\widehat{P}\left(x_{i}, x_{j}\right)=\frac{\operatorname{Count}\left(x_{i}, x_{j}\right)}{m}
$$

\square Compute mutual information:
$\hat{I}\left(X_{i}, X_{j}\right)=\sum_{x_{i}, x_{j}} \hat{P}\left(x_{i}, x_{j}\right) \log \frac{\widehat{P}\left(x_{i}, x_{j}\right)}{\widehat{P}\left(x_{i}\right) \widehat{P}\left(x_{j}\right)}$

- Define a graph
\square Nodes $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
\square Edge (i,j) gets weight $\widehat{I}\left(X_{i}, X_{j}\right)$

Chow-Liu tree learning algorithm 2

- $\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathrm{~Pa}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)$
- Optimal tree BN
\square Compute maximum weight spanning tree
\square Directions in BN: pick any node as root, breadth-firstsearch defines directions

Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
\square Naïve Bayes model overcounts, because correlation between features not considered
\square Same as Chow-Liu, but score edges with:

$$
\hat{I}\left(X_{i}, X_{j} \mid C\right)=\sum_{c, x_{i}, x_{j}} \hat{F}\left(c, x_{i}, x_{j}\right) \log \frac{\hat{P}\left(x_{i}, x_{j} \mid c\right)}{\hat{P}\left(x_{i} \mid c\right) \hat{P}\left(x_{j} \mid c\right)}
$$

Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
\square [Narasimhan \& Bilmes '04]
\square But, $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}+1}\right) \ldots$
- and more subtleties

What you need to know about learning BN structures so far

- Decomposable scores
\square Maximum likelihood
\square Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in $\mathrm{O}\left(\mathrm{N}^{\mathrm{k}+1}\right)$)

Scoring general graphical models Model selection problem

What's the best structure?

Data
$<x _1^{\wedge}\{(1)\}, \ldots, x _n^{\wedge}\{(1)\}>$
$<x _1^{\wedge}\{(m)\}, \ldots, x _n^{\wedge}\{(m)\}>$

The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...

Maximum likelihood overfits!

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)
$$

- Information never hurts:
- Adding a parent always increases score!!!

Bayesian score avoids overfitting

- Given a structure, distribution over parameters
$\log P(D \mid \mathcal{G})=\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$
- Difficult integral: use Bayes information criterion (BIC) approximation (equivalent as $\mathrm{M} \rightarrow \infty$)
$\log P(D \mid \mathcal{G}) \approx \log P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right)-\frac{\text { NumberParams }(\mathcal{G})}{2} \log M+\mathcal{O}(1)$
- Note: regularize with MDL score
- Best BN under BIC stillooseror chard

How many graphs are there?

$$
\sum_{k=1}^{n}\binom{n}{k}=2^{n}-1
$$

Structure learning for general graphs

- In a tree, a node only has one parent
- Theorem:
\square The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) $d \geq 2$
- Most structure learning approaches use heuristics
\square Exploit score decomposition
\square (Quickly) Describe two heuristics that exploit decomposition in different ways

Learn BN structure using local search

Starting from Chow-Liu tree

Local search, possible moves:

- Add edge
- Delete edge
- Invert edge

Score using BIC

What you need to know about learning BNs

- Learning BNs
\square Maximum likelihood or MAP learns parameters
\square Decomposable score
\square Best tree (Chow-Liu)
\square Best TAN
\square Other BNs, usually local search with BIC score

