

Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

Adventures of our BN hero

- Compact representation for probability distributions
- Fast inference
- Fast learning

1. Naïve Bayes

But... Who are the most popular kids?
Z and S.
Hidden Markov mode Kalman Filters
A Kide Hum with

2 and 3. Hidden Markov models (HMMs) Kalman Filters & a Hidda HMM with Ganssins S Kulmen Filter with discrete

Handwriting recognition

Character recognition, e.g., kernel SVMs

©2005-2007 Carlos Guestrin

Understanding the HMM Semantics

HMMs semantics: Details

Just 3 distributions:

 $P(X_1)$

 $P(X_i \mid X_{i-1})$ $P(O_i \mid X_i)$

HMMs semantics: Joint distribution

$P(X_1, \dots, X_n \mid o_1, \dots, o_n) = P(X_{1:n} \mid o_{1:n})$ \$\approx P(X_1)P(o_1 \mid X_1) \prod_{i=2}^n P(X_i \mid X_{i-1})P(o_i \mid X_i)\$

 $P(O_i \mid X_i)$

 $P(X_i \mid X_{i-1})$

Possible inference tasks in an HMM

Marginal probability of a hidden variable:

Viterbi decoding – most likely trajectory for hidden vars:

Variable elimination order?

Example:

What if I want to compute $P(X_i|o_{1:n})$ for each i? $(x_1 = \{a,...z\}) \rightarrow (x_2 = \{a,...z\}) \rightarrow (x_4 = \{a,...z\}) \rightarrow (x_5 = \{a,...z\}) \rightarrow (x_{10} = a_{10}) \rightarrow (x_{10} = a_{$

Variable elimination for each i?

Variable elimination for each i, what's the complexity?

Reusing computation

The forwards-backwards algorithm

$$f_{1} = \{a, ..., 2\} + k_{2} = \{a, ..., 2\} + k_{4} = \{a, ..., 2\} + k_{5} =$$

For i = n-1 to 1

 \Box Generate a backwards factor by eliminating X_{i+1}

$$\beta_i(X_i) = \sum_{x_{i+1}} P(o_{i+1} \mid x_{i+1}) P(x_{i+1} \mid X_i) \beta_{i+1}(x_{i+1})$$

$$\forall i, \text{ probability is: } P(X_i \mid o_{1..n}) \propto \alpha_i(X_i) \beta_i(X_i)$$

Variable elimination order?

Example:

The Viterbi algorithm

$$(a_{i}, a_{i}) + (a_{i}, a_{i}$$

$$x_i^* = \operatorname{argmax}_{x_i} P(x_{i+1}^* \mid x_i) \alpha_i(x_i)$$

What you'll implement 1: multiplication

 $\alpha_i(X_i) = \max_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$

What you'll implement 2: max & argmax

 $\alpha_i(X_i) = \max_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$

Higher-order HMMs

Add dependencies further back in time \rightarrow better representation, harder to learn

What you need to know

- Hidden Markov models (HMMs)
 - □ Very useful, very powerful!
 - □ Speech, OCR,...
 - □ Parameter sharing, only learn 3 distributions
 - \Box Trick reduces inference from O(n²) to O(n)
 - □ Special case of BN

Bayesian Networks – (Structure) Learning

Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

Review

Bayesian Networks

- Compact representation for probability distributions
- Exponential reduction in number of parameters
- Fast probabilistic inference using variable elimination
 - □ Compute P(X|e)
 - Time exponential in tree-width, not number of variables
- Today
 - Learn BN structure

Learning Bayes nets

Learning the CPTs

Information-theoretic interpretation of maximum likelihood

Nose

Headache

Given structure, log likelihood of data: $\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G})$

Information-theoretic interpretation of maximum likelihood

Nose

Headache

Given structure, log likelihood of data:

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_i = x_i^{(j)} \mid \mathsf{Pa}_{X_i} = \mathbf{x}^{(j)} \left[\mathsf{Pa}_{X_i}\right]\right)$$

Decomposable score

Log data likelihood

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$$

Decomposable score:

Decomposes over families in BN (node and its parents)

□ Will lead to significant computational efficiency!!!

 $\Box \text{ Score}(G : D) = \sum_{i} \text{ FamScore}(X_{i} | \mathbf{Pa}_{X_{i}} : D)$

How many trees are there?

Nonetheless – Efficient optimal algorithm finds best tree

Scoring a tree 1: equivalent trees

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$$

Scoring a tree 2: similar trees

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$$

Chow-Liu tree learning algorithm 1

For each pair of variables X_i, X_j Compute empirical distribution: $\hat{P}(x_i, x_j) = \frac{\text{Count}(x_i, x_j)}{m}$

Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{P(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

Define a graph

- \Box Nodes X_1, \dots, X_n
- \Box Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$

Chow-Liu tree learning algorithm 2

 $\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$

Optimal tree BN

- Compute maximum weight spanning tree
- Directions in BN: pick any node as root, breadth-firstsearch defines directions

Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
 - Naïve Bayes model overcounts, because correlation between features not considered
 - □ Same as Chow-Liu, but score edges with:

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
 - □ [Narasimhan & Bilmes '04]
 - \Box But, O(n^{k+1})...
 - and more subtleties

What you need to know about learning BN structures so far

- Decomposable scores
 - Maximum likelihood
 - □ Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))

Scoring general graphical models – Model selection problem

What's the best structure?

 $<x_1^{(1)},...,x_n^{(1)}>$... $<x_1^{(m)},...,x_n^{(m)}>$

The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...

Maximum likelihood overfits!

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$$

Information never hurts:

Adding a parent always increases score!!!

Bayesian score avoids overfitting

• Given a structure, distribution over parameters $\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$

■ Difficult integral: use Bayes information criterion (BIC) approximation (equivalent as $M \rightarrow \infty$) $\log P(D | G) \approx \log P(D | G, \theta_G) - \frac{\text{NumberParams}(G)}{2} \log M + O(1)$

- Note: regularize with MDL score
- Best BN under BIC still. N.B. E. Hardin

How many graphs are there?

 $\sum_{k=1}^{n} \binom{n}{k} = 2^{n} - 1$

Structure learning for general graphs

In a tree, a node only has one parent

Theorem:

The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d≥2

- Most structure learning approaches use heuristics
 - Exploit score decomposition
 - Quickly) Describe two heuristics that exploit decomposition in different ways

Learn BN structure using local search

Starting from Chow-Liu tree

Local search,

possible moves:

- Add edge
- Delete edge
- Invert edge

Score using BIC

What you need to know about learning BNs

Learning BNs

Maximum likelihood or MAP learns parameters

- Decomposable score
- □ Best tree (Chow-Liu)
- Best TAN
- □ Other BNs, usually local search with BIC score