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Maximum Likelihood Estimation
" JE

m Data: Observed set D of o, Heads and o Tails

m Hypothesis: Binomial distribution

m Learning 0 is an optimization problem
What’s the objective function?

m MLE: Choose 6 that maximizes the probability of
observed data:

~

0 = arg meax P(D|0)
= arg meax In P(D | 6)
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Bayesian Learning for Thumbtack
"
P(0|D) x P(D|O)P(H)

m Likelihood function is simply Binomial:
P(D|0) = 6%H(1 — 9)°T

m What about prior?
Represent expert knowledge
Simple posterior form
m Conjugate priors:
Closed-form representation of posterior
For Binomial, conjugate prior is Beta distribution
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Posterior distribution
=

m Prior: Beta(B8y, f7)

m Data: ay heads and o tails

m Posterior distribution:
P(0 | D) ~ Beta(By + oy, Br + ar)

Beta(1,1) Beta(2,2) Beta(3,2) Beta(30,20)
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MAP: Maximum a posteriori : 7™
approximation A
" BN :

P(0 | D) ~ Beta(By + o, B + ar)

1
Blf(O)) = [ FOIP(O| D)ds

m As more data is observed, Beta is more certain

m MAP: use most likely parameter:
0 = arg m@axP(G D) E[f(9)] = f(0)

What about continuous variables?
" JE
m Billionaire says: If | am measuring a continuous
variable, what can you do for me?
m You say: Let me tell you about Gaussians...
1 —@-p?
P(z | p,o) = — e 202

o\ 2T




Some properties of Gaussians
|
A
m affine transformation (multiplying by scalar and
adding a constant)
X~ N(u,0%)
Y =aX +b — Y ~ N(au+b,a20?)

m Sum of Gaussians
X ~ N(uy,0%y)
Y ~ N(uy,0%y)
Z = X+Y — Z ~ N(uy+uy, 0%+0%)

Learning a Gaussian
" JE
m Collect a bunch of data
Hopefully, i.i.d. samples
e.g., exam scores

m Learn parameters

Mean
Variance

1 —@-p?
P(z | p,0) = ——e 202




MLE for Gaussian
* JdE
m Prob. of i.i.d. samples D={x,...,X\}:

1 )N N —(z—p)?

P(Dm,a):((j@

m Log-likelihood of data:

N N —(ej-p)?
InP(D | p,0) = In [( 1 ) ﬁe (202)]

ovV2r) 24

N (r )2
— Ninovar- Y i é‘)
i=1 20
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Your second learning algorithm:
MLE for mean of a Gaussian
" SN

m \What's MLE for mean?

d d N (ay — p)?
—InP(D | u, = — |=NlnoV2r — !
du ( |M o) dp oV 2w Zgl 552




MLE for variance
" J
m Again, set derivative to zero:

d d N (@ — p)?
—In P(D = — |—NlIn 2T —
_—InP(D | p,0) - ov2r — Y

2
=1 20

_ %{—Nlna\/ﬂ}— %i[(wi—ﬂ)j

= do 252

Learning Gaussian parameters
" J

= MLE: - 1 N
AMLE = — Y @
N, =
2 1 X 2
OMLE = N'Z(xi_ﬁ)

1

1

m BTW. MLE for the variance of a Gaussian is biased
Expected result of estimation is not true parameter!

Unbiased variance estimator: N
1
~D _ ~\2
Ounbiased — N — 1@;(331 - M)
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Bayesian learning of Gaussian

_ Earameters

m Conjugate priors
Mean: Gaussian prior
Variance: Wishart Distribution

m Prior for mean:
P ) 1 —(u—277)2
, = ————e 2\
pln N

MAP for mean of Gaussian
"
—(p—n)? 1
P(p|n,A) =

1 B N
e )

S P(D | WPG)] = [N P(D | 1) +1n P()]
I 1




Prediction of continuous variables

m Billionaire says: Wait, that’s not what | meant!
m You says: Chill out, dude.

m He says: | want to predict a continuous variable
for continuous inputs: | want to predict salaries
from GPA.

m You say: | can regress that...

The regression problem

= Instances: <x;, t>
m Learn: Mapping from x to t(x)

m Hypothesis space:
Given, basis functions H=1{hy,....,hg}
Find coeffs w={w,,...,w,} 7 ’

Why is this called linear re data
= model is linear in the parameters

m Precisely, minimize the residual squared error:

2
w* = arg minz <t(xj) — Z wihi(xj))
w . .
J ©C: Guestrin 2005-2007 v
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The regression problem in matrix
notation

w* = arg n}énz ; t(x;) — szhz(x7)>

A\ 7

w* = argmin(Hw —t)" (Hw — t)

Vv

residual error

y

weights measurements
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hy...hg

i

H_/
K basis functions

S10SUDS N

SI0SU3S N
|
1
| E—
[’
auny siseq )

Regression solution = simple matrix

_ ogerations

w* = argmin(Hw —t)" (Hw — t)

A\ 7

Vv

residual error

solution: w* = (H"H) ™'

H't =
—_——
b

o f

kxk matrix kx1 vector
for k basis functions

A~ b

A-1

where A =H'H 2!

©Carlos Guestrin 2005-2007




But, why?
* JdE
m Billionaire (again) says: Why sum squared error???
m You say: Gaussians, Dr. Gateson, Gaussians...

m Model: prediction is linear function plus Gaussian noise

t=2w h(x)+e

m Learn w using MLE
P(t|x,w,0) =
o)
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Maximizing log-likelihood

"
Maximize:

1 >N N[ty wikix)]

In P(D | w,0) = In e 202
@ wa)=tn (-

J=1

Least-squares Linear Regression is MLE for Gaussians!!!
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Applications Corner 1
" S
m Predict stock value over time from

past values

other relevant vars
= e.g., weather, demands, etc.
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® o o
2% o B 5 "> DD

m Measure temperatures at
some locations

m Predict temperatures
throughout the environment

2 2

20 30

1n
[Guestrin et al. ’04]
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Applications Corner 3
" JE
m Predict when a sensor will fail

based several variables
= age, chemical exposure, number of hours used,...
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Announcements
" J
m Readings associated with each class

See course website for specific sections, extra links,
and further details

Visit the website frequently

m Recitations
Thursdays, 5:30-6:50 in Wean Hall 5409

m Special recitation on Matlab
Jan. 24 Wed. 5:30-6:50pm NSH 1305
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Bias-Variance tradeoff — Intuition
" JdE
m Model too “simple” — does not fit the data well
A biased solution

m Model too complex — small changes to the data,
solution changes a lot

A high-variance solution
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(Squared) Bias of learner
" J
Given dataset D with m samples,
learn function h(x)

If you sample a different datasets,
you will learn different h(x)

Expected hypothesis: Ej[h(x)]

m Bias: difference between what you expect to learn and truth

Measures how well you expect to represent true solution
Decreases with more complex model \phi

bias? = / (Eplh(z)] — t(x))p(x)dz
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(Squared) Bias of learner
" JE
m Given dataset D with m samples,

learn function h(x)

m If you sample a different datasets,
you will learn different h(x)

m Expected hypothesis: Ej[h(x)]

m Bias: difference between what you expect to learn and truth

Measures how well you expect to represent true solution
Decreases with more complex model

bias® = [ {Ep[h(@)] - (2)} p(a)da
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Variance of learner
" J
m Given a dataset D with m samples,
you learn function h(x)

m |f you sample a different datasets,
you will learn different h(x)

m Variance: difference between what you expect to learn and
what you learn from a from a particular dataset
Measures how sensitive learner is to specific dataset
Decreases with simpler model

h(z) = Eplh(z)]
variance = /ED[(h(:c)—E(a:))2]p(x)d:U
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Bias-Variance Tradeoff
"
m Choice of hypothesis class introduces learning bias

More complex class — less bias
More complex class — more variance
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Bias—\Variance decomposition of error
" S

m Consider simple regression problem f:X->T
t=1f(x)=g(x)+¢

noise ~ N(0,0)

deterministic

Collect some data, and learn a function h(x)
What are sources of prediction error?
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Sources of error 1 — noise
"
m What if we have perfect learner, infinite data?

If our learning solution h(x) satisfies h(x)=g(x)

Still have remaining, unavoidable error of
o?due to noise ¢

error(h) = /x/t(h(a:) —)2p(f(z) = t|x)p(x)dtde

Sources of error 2 — Finite data
* JE
m What if we have imperfect learner, or only m
training examples?

m What is our expected squared error per example?

Expectation taken over random training sets D of size m, drawn
from distribution P(X,T)

Ep | [ [th@ - 0¥t @) = tl)p(@)dtda
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Bias-Variance Decomposition of Error
Bishop Chapter 3

Ep | [ [(h@) ~ 02p(tl)p(a)dtds

Where:

unavoidable Error = o2
2

h(z) = Eplh(a)]
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Assume target function: t = f(x) = g(x) + ¢

Then expected sq error over fixed size training sets D drawn
from P(X,T) can be expressed as sum of three components:

= unavordable Error + bias? + variance

bias? = [(Eplh(a)] - g(2))*p(a)da

variance = /ED[(h(a:) — R(2))?]p(z)dx

What you need to know
"
m Gaussian estimation
MLE
Bayesian learning
MAP
m Regression
Basis function = features
Optimizing sum squared error
Relationship between regression and Gaussians
m Bias-Variance trade-off
m Play with Applet
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