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Maximum Likelihood Estimation

 Data: Observed set D of αH Heads and αT Tails
 Hypothesis: Binomial distribution
 Learning θ is an optimization problem

 What’s the objective function?

 MLE: Choose θ that maximizes the probability of
observed data:
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Bayesian Learning for Thumbtack

 Likelihood function is simply Binomial:

 What about prior?
 Represent expert knowledge
 Simple posterior form

 Conjugate priors:
 Closed-form representation of posterior
 For Binomial, conjugate prior is Beta distribution
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Posterior distribution

 Prior:
 Data: αH heads and αT tails

 Posterior distribution:
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MAP: Maximum a posteriori
approximation

 As more data is observed, Beta is more certain

 MAP: use most likely parameter:
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What about continuous variables?

 Billionaire says: If I am measuring a continuous
variable, what can you do for me?

 You say: Let me tell you about Gaussians…
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Some properties of Gaussians

 affine transformation (multiplying by scalar and
adding a constant)
 X ~ N(µ,σ2)
 Y = aX + b ! Y ~ N(aµ+b,a2σ2)

 Sum of Gaussians
 X ~ N(µX,σ2

X)
 Y ~ N(µY,σ2

Y)
 Z = X+Y ! Z ~ N(µX+µY, σ2

X+σ2
Y)
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Learning a Gaussian

 Collect a bunch of data
 Hopefully, i.i.d. samples
 e.g., exam scores

 Learn parameters
 Mean
 Variance
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MLE for Gaussian

 Prob. of i.i.d. samples D={x1,…,xN}:

 Log-likelihood of data:
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Your second learning algorithm:
MLE for mean of a Gaussian

 What’s MLE for mean?
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MLE for variance

 Again, set derivative to zero:
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Learning Gaussian parameters

 MLE:

 BTW. MLE for the variance of a Gaussian is biased
 Expected result of estimation is not true parameter!
 Unbiased variance estimator:
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Bayesian learning of Gaussian
parameters

 Conjugate priors
 Mean: Gaussian prior
 Variance: Wishart Distribution

 Prior for mean:
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MAP for mean of Gaussian
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Prediction of continuous variables

 Billionaire says: Wait, that’s not what I meant!
 You says: Chill out, dude.
 He says: I want to predict a continuous variable

for continuous inputs: I want to predict salaries
from GPA.

 You say: I can regress that…
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The regression problem
 Instances: <xj, tj>
 Learn: Mapping from x to t(x)
 Hypothesis space:

 Given, basis functions
 Find coeffs w={w1,…,wk}

 Why is this called linear regression???
 model is linear in the parameters

 Precisely, minimize the residual squared error:
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The regression problem in matrix
notation

N
 sensors

K basis functions

N
 sensors

measurementsweights

K basis func
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Regression solution = simple matrix
operations

where

k×k matrix 
for k basis functions 

k×1 vector
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 Billionaire (again) says: Why sum squared error???
 You say: Gaussians, Dr. Gateson, Gaussians…

 Model: prediction is linear function plus Gaussian noise
 t = ∑i wi hi(x) + ε

 Learn w using MLE

But, why?
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Maximizing log-likelihood

Maximize:

Least-squares Linear Regression is MLE for Gaussians!!!
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Applications Corner 1

 Predict stock value over time from
 past values
 other relevant vars

 e.g., weather, demands, etc.
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Applications Corner 2

 Measure temperatures at
some locations

 Predict temperatures
throughout the environment

[Guestrin et al. ’04] 
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Applications Corner 3

 Predict when a sensor will fail
 based several variables

 age, chemical exposure, number of hours used,…
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Announcements

 Readings associated with each class
 See course website for specific sections, extra links,

and further details
 Visit the website frequently

 Recitations
 Thursdays, 5:30-6:50 in Wean Hall 5409

 Special recitation on Matlab
 Jan. 24 Wed. 5:30-6:50pm NSH 1305
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Bias-Variance tradeoff – Intuition

 Model too “simple” ! does not fit the data well
 A biased solution

 Model too complex ! small changes to the data,
solution changes a lot
 A high-variance solution
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(Squared) Bias of learner

 Given dataset D with m samples,
learn function h(x)

 If you sample a different datasets,
you will learn different h(x)

 Expected hypothesis: ED[h(x)]

 Bias: difference between what you expect to learn and truth
 Measures how well you expect to represent true solution
 Decreases with more complex model \phi
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(Squared) Bias of learner

 Given dataset D with m samples,
learn function h(x)

 If you sample a different datasets,
you will learn different h(x)

 Expected hypothesis: ED[h(x)]

 Bias: difference between what you expect to learn and truth
 Measures how well you expect to represent true solution
 Decreases with more complex model
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Variance of learner

 Given a dataset D with m samples,
you learn function h(x)

 If you sample a different datasets,
you will learn different h(x)

 Variance: difference between what you expect to learn and
what you learn from a from a particular dataset
 Measures how sensitive learner is to specific dataset
 Decreases with simpler model
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Bias-Variance Tradeoff

 Choice of hypothesis class introduces learning bias
 More complex class → less bias
 More complex class → more variance
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Bias–Variance decomposition of error

 Consider simple regression problem f:XT
t = f(x) = g(x) + ε

Collect some data, and learn a function h(x)
What are sources of prediction error?

noise ~ N(0,σ)

deterministic
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Sources of error 1 – noise

 What if we have perfect learner, infinite data?
 If our learning solution h(x) satisfies h(x)=g(x)
 Still have remaining, unavoidable error of
σ2 due to noise ε
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Sources of error 2 – Finite data

 What if we have imperfect learner, or only m
training examples?

 What is our expected squared error per example?
 Expectation taken over random training sets D of size m, drawn

from distribution P(X,T)
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Bias-Variance Decomposition of Error
Assume target function: t = f(x) = g(x) + ε

Then expected sq error over fixed size training sets D drawn
from P(X,T) can be expressed as sum of three components:

Where:

Bishop Chapter 3
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What you need to know

 Gaussian estimation
 MLE
 Bayesian learning
 MAP

 Regression
 Basis function = features
 Optimizing sum squared error
 Relationship between regression and Gaussians

 Bias-Variance trade-off
 Play with Applet


