

Maximum Likelihood Estimation

- **Data**: Observed set *D* of α_{H} Heads and α_{T} Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
 - $\hfill\square$ What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg max}} P(\mathcal{D} \mid \theta)$$

$$= \underset{\theta}{\operatorname{arg max}} \ln P(\mathcal{D} \mid \theta)$$

Bayesian Learning for Thumbtack

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Likelihood function is simply Binomial:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What about prior?
 - □ Represent expert knowledge
 - ☐ Simple posterior form
- Conjugate priors:
 - □ Closed-form representation of posterior
 - ☐ For Binomial, conjugate prior is Beta distribution

Posterior distribution

■ Prior: $Beta(\beta_H, \beta_T)$

■ Data: α_H heads and α_T tails

Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: Maximum a posteriori approximation $P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter:

$$\hat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) \quad E[f(\theta)] \approx f(\hat{\theta})$$

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Some properties of Gaussians

- affine transformation (multiplying by scalar and adding a constant)
 - $\square X \sim N(\mu, \sigma^2)$
 - \square Y = aX + b \rightarrow Y ~ $N(a\mu+b,a^2\sigma^2)$
- Sum of Gaussians
 - $\square X \sim N(\mu_X, \sigma^2_X)$
 - \square Y ~ $N(\mu_{Y}, \sigma^{2}_{Y})$
 - $\hfill \square$ Z = X+Y \to Z ~ $\textit{N}(\mu_{\text{X}}\text{+}\mu_{\text{Y}},~\sigma^2_{\text{X}}\text{+}\sigma^2_{\text{Y}})$

©Carlos Guestrin 2005-2007

Learning a Gaussian

- Collect a bunch of data
 - $\hfill\square$ Hopefully, i.i.d. samples
 - □ e.g., exam scores
- Learn parameters
 - □ Mean
 - □ Variance

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

MLE for Gaussian

■ Prob. of i.i.d. samples $D=\{x_1,...,x_N\}$:

$$P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

■ Log-likelihood of data:

$$\ln P(\mathcal{D} \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right]$$
$$= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$

Your second learning algorithm: MLE for mean of a Gaussian

■ What's MLE for mean?

$$\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

MLE for variance

Again, set derivative to zero:

$$\frac{d}{d\sigma} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$
$$= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

©Carlos Guestrin 2005-2007

Learning Gaussian parameters

MLE:

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

- BTW. MLE for the variance of a Gaussian is biased
 - □ Expected result of estimation is **not** true parameter!
 - ☐ Unbiased variance estimator:

$$\widehat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

Bayesian learning of Gaussian parameters

- Conjugate priors
 - □ Mean: Gaussian prior
 - □ Variance: Wishart Distribution
- Prior for mean:

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

©Carlos Guestrin 2005-2007

MAP for mean of Gaussian

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}} \qquad P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$
$$\frac{d}{d\mu} \left[\ln P(\mathcal{D} \mid \mu) P(\mu) \right] = \frac{d}{d\mu} \left[\ln P(\mathcal{D} \mid \mu) + \ln P(\mu) \right]$$

Prediction of continuous variables

- Billionaire says: Wait, that's not what I meant!
- You says: Chill out, dude.
- He says: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- You say: I can regress that...

©Carlos Guestrin 2005-2007

The regression problem

- Instances: <x_j, t_j>
- Learn: Mapping from x to t(x)
- Hypothesis space:
 - □ Given, basis functions□ Find coeffs **w**={w₁,...,w_k}

$$H = \{h_1, \dots, h_K\}$$

$$\underline{t(\mathbf{x})} \approx \hat{f}(\mathbf{x}) = \sum_i w_i h_i(\mathbf{x})$$

- ☐ Why is this called linear re_data
 - model is linear in the parameters
- Precisely, minimize the residual squared error:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

The regression problem in matrix notation

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

$$\mathbf{H} = \begin{array}{|c|c|} \hline h_1 \dots h_K \\ \hline \\ \mathbf{Sensor} \\ \mathbf{W} \\ \hline \\ \mathbf{K} \text{ basis functions} \\ \hline \\ \mathbf{W} \\ \mathbf{w$$

Regression solution = simple matrix operations

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

solution:
$$\mathbf{w}^* = \underbrace{(\mathbf{H}^T \mathbf{H})^{-1}}_{\mathbf{A}^{-1}} \underbrace{\mathbf{H}^T \mathbf{t}}_{\mathbf{b}} = \mathbf{A}^{-1} \mathbf{b}$$

where
$$\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} \mathbf{b} \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix}$$
 $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{b} \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix}$ where $\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} \mathbf{b} \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix}$ $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{b} \\ \mathbf{k} \\ \mathbf{k} \end{bmatrix}$

But, why?

- Billionaire (again) says: Why sum squared error???
- You say: Gaussians, Dr. Gateson, Gaussians...
- Model: prediction is linear function plus Gaussian noise \Box t = $\sum_{i} w_{i} h_{i}(\mathbf{x}) + \varepsilon$
- Learn w using MLE $P(t \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-\left[t \sum_{i} w_{i} h_{i}(\mathbf{x})\right]^{2}}{2\sigma^{2}}}$

Maximizing log-likelihood

Maximize:
$$\ln P(\mathcal{D} \mid \mathbf{w}, \sigma) = \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{\frac{-\left[t_j - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}{2\sigma^2}}$$

Least-squares Linear Regression is MLE for Gaussians!!!

Applications Corner 1 Predict stock value over time from past values other relevant vars e.g., weather, demands, etc.

Applications Corner 3

- - Predict when a sensor will fail
 - □ based several variables
 - age, chemical exposure, number of hours used,...

©Carlos Guestrin 2005-200

Announcements

- Readings associated with each class
 - ☐ See course website for specific sections, extra links, and further details
 - □ Visit the website frequently
- Recitations
 - □ Thursdays, 5:30-6:50 in Wean Hall 5409
- Special recitation on Matlab
 - ☐ Jan. 24 Wed. 5:30-6:50pm NSH 1305

Bias-Variance tradeoff - Intuition

- lacktriangle Model too "simple" o does not fit the data well
 - □ A biased solution
- \blacksquare Model too complex \to small changes to the data, solution changes a lot
 - □ A high-variance solution

©Carlos Guestrin 2005-2007

(Squared) Bias of learner

- Given dataset D with m samples, learn function h(x)
- If you sample a different datasets, you will learn different h(x)
- **Expected hypothesis**: $E_D[h(x)]$
- Bias: difference between what you expect to learn and truth
 - ☐ Measures how well you expect to represent true solution
 - □ Decreases with more complex model \phi

$$bias^2 = \int_x (E_D[h(x)] - t(x))^2 p(x) dx$$

(Squared) Bias of learner

- ٠,
- Given dataset D with m samples, learn function h(x)
- If you sample a different datasets, you will learn different h(x)
- **Expected hypothesis**: $E_D[h(x)]$
- Bias: difference between what you expect to learn and truth
 - □ Measures how well you expect to represent true solution
 - □ Decreases with more complex model

$$bias^2 = \int_x \{E_D[h(x)] - t(x)\}^2 p(x) dx$$

©Carlos Guestrin 2005-2007

Variance of learner

- - Given a dataset D with m samples, you learn function h(x)
 - If you sample a different datasets, you will learn different h(x)
 - Variance: difference between what you expect to learn and what you learn from a from a particular dataset
 - □ Measures how sensitive learner is to specific dataset
 - □ Decreases with simpler model

$$\bar{h}(x) = E_D[h(x)]$$

 $variance = \int E_D[(h(x) - \bar{h}(x))^2]p(x)dx$

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - \square More complex class \rightarrow less bias
 - \square More complex class \rightarrow more variance

©Carlos Guestrin 2005-2007

Bias-Variance decomposition of error

■ Consider simple regression problem f:X→T

$$t = f(x) = g(x) + \varepsilon$$
noise ~ N(0,\sigma)

deterministic

Collect some data, and learn a function h(x) What are sources of prediction error?

Sources of error 1 – noise

- What if we have perfect learner, infinite data?
 - \Box If our learning solution h(x) satisfies h(x)=g(x)
 - \square Still have remaining, <u>unavoidable error</u> of σ^2 due to noise ε

$$error(h) = \int_{x} \int_{t} (h(x) - t)^{2} p(f(x) = t|x) p(x) dt dx$$

©Carlos Guestrin 2005-2007

Sources of error 2 - Finite data

- What if we have imperfect learner, or only m training examples?
- What is our expected squared error per example?
 - \square Expectation taken over random training sets D of size m, drawn from distribution P(X,T)

$$E_D\left[\int_x \int_t \{h(x) - t\}^2 p(f(x) = t|x) p(x) dt dx\right]$$

Bias-Variance Decomposition of Error

Bishop Chapter 3

Assume target function: $t = f(x) = g(x) + \varepsilon$

Then expected sq error over fixed size training sets D drawn from P(X,T) can be expressed as sum of three components:

$$E_D\left[\int_x \int_t (h(x)-t)^2 p(t|x)p(x)dtdx\right]$$

$$= unavoidableError + bias^2 + variance$$

Where:

$$unavoidableError = \sigma^{2}$$

$$bias^{2} = \int (E_{D}[h(x)] - g(x))^{2} p(x) dx$$

$$\bar{h}(x) = E_{D}[h(x)]$$

$$variance = \int E_{D}[(h(x) - \bar{h}(x))^{2}] p(x) dx$$

What you need to know

- Gaussian estimation
 - □ MLE
 - □ Bayesian learning
 - □ MAP
- Regression
 - □ Basis function = features
 - □ Optimizing sum squared error
 - □ Relationship between regression and Gaussians
- Bias-Variance trade-off
- Play with Applet