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Maximum Likelihood Estimation
" JE

m Data: Observed set D of o, Heads and o Tails

m Hypothesis: Binomial distribution

m Learning 0 is an optimization problem
What’s the objective function?

m MLE: Choose 6 that maximizes the probability of

observed data:

6 = arg max P(D|0) = Aw

= arg meax In P(D | 6)
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Bayesian Learning for Thumbtack
"
P(0| D) x P(D|O)P(H)

m Likelihood function is simply Binomial:
P(D|0) =0%H(1 —0)°T

m What about prior?
Represent expert knowledge
Simple posterior form
m Conjugate priors:
Closed-form representation of posterior
For Binomial, conj@grgﬁtﬁn%gor Is Beta distribution

Posterior distribution
= JEE

m Prior: Beta(38y, 87)

m Data: ay heads and oy tails

m Posterior distribution:

P(0 | D) :;ﬁ:f\?eta(ﬁﬂ +am, Br + Oé;ﬁ)

Beta(1,1)

G) ool i 4
‘ Beta(2,2) Beta(3,2) Beta(30,20)
1
1.4 a0 5|




Beta(30,20)

MAP: Maximum a posteriori :
aEBroximation //\

P(0| D) ~ Beta(Sy + oy, B + ar)

1
E[f(0)] = /O F(O)P(6 | D)do

m As more data is observed, Beta is more certain

m MAP: use most likely parameter:
0 = arg max P(o| D) FE[f(0)]~ f(6)
-
B kel ?ﬁj& MJFW
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What about continuous variables?
" JAE
m Billionaire says: If | am measuring a continuous
variable, what can you do for me?

m You say: Let me tell you about Gaussians...

1 ()2

P(x , O ) = ———€ 202
(x| 1o)==
@ 5% = \Ursionte




Some properties of Gaussians
“ JEE
m affine transformation (multiplying by scalar and

adding a constant)

d\mf\ Varian (o
X~ N(u,0%) A e

Y =aX+b — Y~ N(autb,a?c?)

m Sum of Gaussians

~ 2

\)S; N(MX’GZX) Jer S
Y-Nuor)

@= X+Y — Z ~ N(uythy, 6%+c2y)

NS o

99

Learning a Gaussian 99
" S mm/ 12

= Collect a bunch of data 18

Hopefully, i.i.d. samples 72

e€.g., exam scores ‘T‘X

m Learn parameters gl\
Mean = 2 ¥

K M
Variance = ...

1 —@—p?

Pz |p,o0)=—=e 20°




MLE for Gaussian

" J \/?&;\}A,b’\
m Prob. of i.i.d. samples D={xy,...,X\}:

1 )N N —(zj—p)?

P(Dm,o):(am

=1

m Log-likelihood of data:

In P(D c) = In o T e_(g;icr_;)2
(D | p,0o) 11

oV2r) 4
N L 2
= —Nlnov?2 —Z(ml ;)
_ = 20
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Your second learning algorithm 2
. .MLE for mean of a Gaussian {L[ d

s 7@
m What's MLE for mean? (u): - zﬁc_(%m @‘j
dilnP(D\u,a) { Ninov2r — Z (xz “)
il ;
o

N
- ~2(Xi’/") o = Nm* 2 kS

o)) //\: ZNy X




~NlnsVlss = -Uloys -/u%;‘:

pY
MLE for variancé’

[A F= |
%“)3 T
"
m Again, set derivative to zero:
d d | o N (wi— w)?)]
ZInP(D|u,U) = Z|—N|n0\/27r— — ‘
_d Nod [(@—w?]
= E[—Nma\/zﬂ—i;% Ean bt
/ N
—p _ i~(71:—/5‘ ,;> ot- 7 (DL.-/,QZ
- T 53 Y
0- /—/
rJ

m BTW. MLE for the variance of a Gaussian is biased
Expected result of estimation is not true parameter!

Unbiased variance estim : N
2 _ 1 _\2
Ounbiased — Z (Tz - .“')
N — 12‘ 1




Bayesian learning of Gaussian

_ garameters

m Conjugate priors P {p) = .

)

Mean: Gaussian prior o
_—
Variance: Wishart Distribution

m Prior for mean:

MAP for mean of Ga SS

la
_ )Oé,\?/A 1. 0l p,s)
PMOw B 1 —(M—277)2 » bﬁﬁkwé 1 )N N e—(:;gQu)Q
Pluln )= e 2 @lno=(-7) 1l o
d R
—-[In P(D| wP)] = — [In P(D | u) +In P(u)]:o""‘
@ dy

Q( N

AR A Y
x )

S M :[’z"ﬁ%wtm
T \

D g L(f%)*? ucs *Lﬁv} @

N5

DR mede (3 Same. as }\1({
bt N< @

Alhan b"mj glmgw
Close, 4o




Prediction of continuous variables
" A

m Billionaire says: Wait, that’s not what | meant!

m You says: Chill out, dude.

m He says: | want to predict a continuous variable
for continuous inputs: | want to predict salaries
from GPA.

m You say | can regress that

Vs

The regression problem
1 /(G?A 0301 Em. ,\’s:/@)

= Instances: <x;, t> _ €]
m Learn: Mapplng fromxto t(x) 4200 , a2 1So g}
\— ¢

m Hypothesis space: VXX ¥ I
Given, basis functions 7 — 1, py L Ondx

Find coeffs w={w,,...,w,}

Co$fyerants @ ~ f(X) — Ez wih; <X> 1\“ (KB

. . . - Tt
Why is this called linear re  data t"\h"c"‘*“é('l—ud\‘a-s
= model is linear in the parameters I'\'l nef- (;M

Wkﬂ\"s' DADLS //t; Wu\p

m Precisely, minimize the residual squared error:
nSidue\

2
X
w* = argmmZ( Zw, XJ) \s%uﬂﬂﬂA

Guesirin




The regression problem |r; mat IX
notation

2
= argrr‘lnilnz t(Xj) - szhz(xj))
jzt i

S
w* = argmin(Hw — t)T (Hw — t)
W . o~

residual error

WSS hy. .. hg
i 1 ¥ 0\ AG{?,«?M'\'#

AT U H ¥,

Weights measurements
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|

auny siseq )

—
K basis functions

Regression solution = simple matrix

ogerations
. +°‘k‘ d‘-y"‘*ﬂq

w* = argmin(Hw —t)" (Hw — t) 4 b g,
residual error
solution: — (H'H) '"H't=A""b
————
(g\ ol A-1 b
’Y\c\-ﬁv,,( Ot

where A = H’ H_{ ] b—HTt—H

kxk matrix kx1 vector
for k basis functions
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But, why?
“ JEE
m Billionaire (again) says: Why sum squared error???
m You say: Gaussians, Dr. Gateson, Gaussians...

m Model: prediction is linear function plus Gaussian noise
_ é / Ve ~ian~te
t=Y w h(x) +e¢

“\M\S&ﬁc/ Ne, s )

I\)(Z“’ /‘52

m | earn w using MLE —[t—Z-w-h-(x)]Q
P(t|x,w,0) =

©Carlos Guestrin 2005:2007

L. L e £
Maximizing log-likelihood - - .. ¢«
" S

Maximize: LN N [y wiiep)?
InP(D|w,o)=1In e 202
(D] ) (J\/Q?T) »1:[1
N B ...]L]_ .
- lh(/L\ £ In r o U 7“’""% resida)
- G\HR— (X 3‘31 J Lvvosp
- th Wi hi
Infa) - ? S~ Z
? W I i
S B e R
Rk

Least-squares Linear Regression is MLE for Gaussians!!!

LeStrin2005-2007
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Applications Corner 1
" EEESSS——

m Predict stock value over time from
past values

other relevant vars
= eg, weather, demands, etc.

©Carlos Guestrin 2005:2007

Applications Corner 2 i
B e & e
" JEE = e
m Measure temperatures at
some locations

m Predict temperatures
throughout the
environment

: = . 0,
2 \“\}.““

: PR G,
e 2

W
L
D

[Guestrin et al. '04]
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Applications Corner 3
= J
m Predict when a sensor will fail

based several variables
= age, chemical exposure, number of hours used,...

©Carlos Guestrin 2005:2007

Announcements
" JE
m Readings associated with each class

See course website for specific sections, extra links,
and further details

Visit the website frequently

m Recitations
Thursdays, 5:30-6:50 in Wean Hall 5409

m Special recitation on Matlab
Jan. 24 Wed. 5:30-6:50pm NSH 1305

©Carlos Guestrin 2005-200;
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Bias-Variance tradeoff — Intuition
= JE
m Model too “simple” — does not fit the data well
A biased solution

solution changes a lot

A high-va lution

(Squared) Bias of learner
" e
Given dataset D with m samples, ~ ’
learn function h(x)

If you sample a different datasets,
you will learn different h(x)

Expected hypothesis: Eg[h(x)]
=RPELIEY TIYPPATES v

Awmaufj(_ L\ Ly

el posscble D

Bias: difference between what you expect to learn and truth
——
Measures how well you expect to represent true solution

Decreases with more complex model>gk
_@)(’Pa,d“-bif\/n Z "]‘r 1\

AN

bias? = / (Eplh(z)] — t(z))2p(z)dz

©Carlos Guestrin 2005-200;
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(Squared) Bias of learner
“ JEE
m Given dataset D with m samples,

learn function h(x)

m If you sample a different datasets,
you will learn different h(x)

m Expected hypothesis: Ep[h(x)]

m Bias: difference between what you expect to learn and truth

Measures how well you expect to represent true solution
Decreases with more complex model

bias® = [ {Eplh(a)] - @)}? p(a)da

©Carlos Guestrin 2005:2007

Variance of learner

" £

= Given a dataset D with m samples, "
you learn function h(x)

m If you sample a different datasets, »\v\b)M
you will learn different h(x) Ver

T < \
m Variance: difference between what you expect to learn and
what you learn from a from a particular dataset
Measures how sensitive learner is to specific dataset
Decreases with simpler model

Whed 700 (tern On
@) = Eplh(=)]  / o

variance = /ED[(h%‘x) — h{(2))?]p(z)dx
n \eern l\‘u
whe - st L ;(’éj;‘;\’
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Bias-Variance Tradeoff
“ JEE
] Ch0|ce of hypothesis class introduces learning bias

More c m“f’éx class — less bias M

More complex class — more variance

Bias—Variance decomposition of error
" JE
m Consider simple regression problem f:X->T
t= /f(X) =g(x)+e

rth noise ~ N(0,5)

T

deterministic

v, £

Collect some data, and learn a function h(x)
What are sources of prediction error?

15



Sources of error 1 — nOISeHx;:ﬂ&)%

=

m What if we have perfect learner, infinite data?
If our learning solution_h(x) satisfies t\_(=x_)=g(x)
Still have remaining, unavoidable error of
c?due to noise ¢

error(h) = / /(h(w) —t)zp(f(x) = t|z)p(z)dtdx

. as H" joiee ¢ o N(o,Y)
<§ SL 23 P (KDL “o"

L ML Vara o

Sources of error 2 — Finite data

rz/}\ Fhe o -ﬁm[j O"\C‘/‘[é

m What if we have imperfect learner, or only m
training examples?

m What is our expected squared error per example?

Expectation taken over random training sets D of size m, drawn
from distribution P(X,T)

U /{h(@ —t}°p(f(z) = t\x)p(ac)dtda;]

R

aw\uﬂ\ | \"[;
S s ehboudso 05.
(L QYO" d\gh%‘\’h’) 6’?4
S a lpoieg given
74
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Bias-Variance Decomposition of Error
Bishop Chapter 3 Assume target function: t = f(x) = g(x) + ¢
“ JEE
Then expected sq error over fixed size training sets D drawn
from P(X,T) can be expressed as sum of three components:

Ep | [ [(h@) = )2p(tla)p(a)dtds

= unavoidable Error + bias? + variance
%

Where: o ;ZA N Wvizace
unavoidable Error = o2
bias> = [(Eplh(a)] - g(2))p(x)da
h(z) = Eplh(=)]

variance = /ED[(h(as) — h(z))3]p(z)dx

200

What you need to know
" JE
m Gaussian estimation
MLE

Bayesian learning
MAP

= Regression :
Basis function ‘g@
Optimizing sum squared error\

Relationship between regression and Gaussians
m Bias-Variance trade-off

m Play with Applet
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