EM for Bayes Nets

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 16th, 2007

Learning HMMs from fully observable data is easy

$$X_1 = \{a, ...z\}$$
 $X_2 = \{a, ...z\}$ $X_3 = \{a, ...z\}$ $X_4 = \{a, ...z\}$ $X_5 = \{a, ...z\}$

Learn 3 distributions:

$$P(X_1) = (\text{ount (# first letter a}))$$
 sulect training distant whether we a whether we have $P(O_i \mid X_i) = (\text{ount (Pixel 12 was white, Xi=a}))$

$$P(X_i^{\circ \circ} | X_i^{\circ \circ})$$

 $P(X_i^{\bullet}|X_i^{\bullet})$ What if **O** is observed, but **X** is hidden

Log likelihood for HMMs when X is

hidden

- Marginal likelihood O is observed, X is missing
 - ☐ For simplicity of notation, training data consists of only one sequence:

$$\frac{\ell(\theta : \mathcal{D})}{= \log P(\mathbf{o} \mid \theta)}$$

$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

If there were m sequences:

$$\ell(\theta: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o}^{(j)} | \theta)$$

Computing Log likelihood for HMMs when **X** is hidden

The M-step

Maximization step:

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta)$$

- Use expected counts instead of counts:
 - □ If learning requires Count(x,o)
 - \square Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{o})]$

E-step revisited

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

- E-step computes probability of hidden vars x given o
- Must compute:
 - $\square Q(x_t=a|\mathbf{o})$ marginal probability of each position
 - Just forwards-backwards!
 - Q(x_{t+1}=a,x_t=b|**o**) joint distribution between pairs

Exploiting unlabeled data in clustering

- A few data points are labeled
 - <x,o>
- Most points are unlabeled
 - <?,o>
- In the E-step of EM:
 - □ If i'th point is unlabeled:
 - compute Q(X|o_i) as usual
 - ☐ If i'th point is labeled:
 - set $Q(X=x|o_i)=1$ and $Q(X\neq x|o_i)=0$ M-step as usual

20 Newsgroups data – advantage of adding unlabeled data

Data likelihood for BNs

Given structure, log likelihood of fully observed data:

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G})$$

Marginal likelihood

What if S is hidden?

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G})$$

Log likelihood for BNs with hidden data

Marginal likelihood – **O** is observed, **H** is hidden

$$\ell(\theta : \mathcal{D}) = \sum_{j=1}^{m} \log P(\mathbf{o}^{(j)} | \theta)$$
$$= \sum_{j=1}^{m} \log \sum_{\mathbf{h}} P(\mathbf{h}, \mathbf{o}^{(j)} | \theta)$$

E-step for BNs

E-step computes probability of hidden vars h given o

$$Q^{(t+1)}(\mathbf{h} \mid \mathbf{o}) = P(\mathbf{h} \mid \mathbf{o}, \theta^{(t)})$$

Corresponds to inference in BN

The M-step for BNs

Maximization step:

$$\theta^{(t+1)} \leftarrow \arg \max_{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{h} \mid \mathbf{o}) \log P(\mathbf{h}, \mathbf{o} \mid \theta)$$

- Use expected counts instead of counts:
 - □ If learning requires Count(h,o)
 - \square Use $E_{Q(t+1)}[Count(\mathbf{h},\mathbf{o})]$

M-step for each CPT

- M-step decomposes per CPT
 - ☐ Standard MLE:

$$P(X_i = x_i \mid \mathbf{Pa}_{X_i} = \mathbf{z}) = \frac{\mathsf{Count}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{z})}{\mathsf{Count}(\mathbf{Pa}_{X_i} = \mathbf{z})}$$

■ M-step uses expected counts:

$$P(X_i = x_i \mid \mathbf{Pa}_{X_i} = \mathbf{z}) = \frac{\mathsf{ExCount}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{z})}{\mathsf{ExCount}(\mathbf{Pa}_{X_i} = \mathbf{z})}$$

Computing expected counts
$$P(X_i = x_i \mid \text{Pa}_{X_i} = \mathbf{z}) = \frac{\text{ExCount}(X_i = x_i, \text{Pa}_{X_i} = \mathbf{z})}{\text{ExCount}(\text{Pa}_{X_i} = \mathbf{z})}$$

- M-step requires expected counts:
 - □ For a set of vars A, must compute ExCount(A=a)
 - □ Some of A in example j will be observed
 - denote by $\mathbf{A_0} = \mathbf{a_0}^{(j)}$
 - ☐ Some of A will be hidden.
 - denote by A_H
- Use inference (E-step computes expected counts):
 - \square ExCount(t+1)($A_O = a_O^{(j)}, A_H = a_H$) $\leftarrow P(A_H = a_H, A_O = a_O^{(j)} | \theta^{(t)})$

Data need not be hidden in the same way

- When data is fully observed
 - A data point is
- When data is partially observed
 - □ A data point is
- But unobserved variables can be different for different data points
 - □ e.g.,
- Same framework, just change definition of expected counts

What you need to know

- EM for Bayes Nets
- E-step: inference computes expected counts
 - □ Only need expected counts over X_i and Pa_{xi}
- M-step: expected counts used to estimate parameters
- Hidden variables can change per datapoint
- Use labeled and unlabeled data! some data points are complete, some include hidden variables

Co-Training for Semisupervised learning

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 16th, 2007

Redundant information

Professor Faloutsos

my advișor

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Öffice: 3227 A.V. Williams Bldg. Phone: (301) 405-2695 Fax: (301) 405-6707 Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- Fractals for clustering and spatial access methods;
- Data mining;

Redundant information – webpage text

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg. Phone: (301) 405-2695 Fax: (301) 405-6707 Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98; on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- Fractals for clustering and spatial access methods;
- Data mining;

Redundant information – anchor text for hyperlinks

Exploiting redundant information in semi-supervised learning

- Want to predict Y from features X
 - $\Box f(X) \mapsto Y$
 - □ have some labeled data L
 - □ lots of unlabeled data U
- Co-training assumption: X is very expressive
 - $\square \mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$
 - □ can learn
 - $g_1(\mathbf{X}_1) \mapsto Y$
 - $g_2(\mathbf{X}_2) \mapsto Y$

Professor Faloutsos

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU) Office: 3227 A.V. Williams Bldg.

my advisor

Phone: (301) 405-2695

Fax: (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.), B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- Data mining;

Co-Training

- NA.
 - Key idea: Classifier₁ and Classifier₂ must:
 - □ Correctly classify labeled data
 - □ Agree on unlabeled data

Co-Training Algorithm

[Blum & Mitchell '99]


```
Given: labeled data L,
unlabeled data U

Loop:

Train g1 (hyperlink classifier) using L

Train g2 (page classifier) using L

Allow g1 to label p positive, n negative examps from U

Allow g2 to label p positive, n negative examps from U

Add these self-labeled examples to L
```

Co-Training experimental results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: cotraining 5.0%

Co-Training theory

- Want to predict Y from features X
 - \Box f(X) \mapsto Y
- Co-training assumption: X is very expressive
 - \square $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$
 - \square want to learn $g_1(\mathbf{X}_1) \mapsto Y$ and $g_2(\mathbf{X}_2) \mapsto Y$
- Assumption: $\exists g_1, g_2, \forall \mathbf{x} g_1(\mathbf{x}_1) = f(\mathbf{x}), g_2(\mathbf{x}_2) = f(\mathbf{x})$
- Questions:
 - □ Does unlabeled data always help?
 - □ How many labeled examples do I need?
 - □ How many unlabeled examples do I need?

Understanding Co-Training: A simple setting

$$|X_1| = |X_2| = N$$

- No label noise
- Without unlabeled data, how hard is it to learn g_1 (or g_2)?

Co-Training in simple setting – Iteration 0

Co-Training in simple setting – Iteration 1

Co-Training in simple setting – after convergence

Co-Training in simple setting – Connected components

- Suppose infinite unlabeled data
 - Co-training must have at least one labeled example in each connected component of L+U graph
- What's probability of making an error?

My advisor

pages

hyperlinks

For k Connected components, how much labeled data?

$$E[error] = \sum_{j} P(x \in g_{j}) (1 - P(x \in g_{j}))^{m}$$

Where g_i is the jth connected component of graph of L+U, m is number of labeled examples

How much unlabeled data?

Want to assure that connected components in the underlying distribution, G_D , are connected components in the observed sample, G_S

 $O(log(N)/\alpha)$ examples assure that with high probability, G_s has same connected components as G_D [Karger, 94]

N is size of G_D , α is min cut over all connected components of G_D

Co-Training theory

- Want to predict Y from features X
 - \Box f(X) \mapsto Y
- Co-training assumption: X is very expressive
 - \square $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$
 - \square want to learn $g_1(\mathbf{X}_1) \mapsto Y$ and $g_2(\mathbf{X}_2) \mapsto Y$
- Assumption: $\exists g_1, g_2, \forall \mathbf{x} g_1(\mathbf{x}_1) = f(\mathbf{x}), g_2(\mathbf{x}_2) = f(\mathbf{x})$
- One co-training result [Blum & Mitchell '99]
 - □ If
 - $\bullet (X_1 \perp X_2 \mid Y)$
 - g₁ & g₂ are PAC learnable from noisy data (and thus f)
 - □ Then
 - f is PAC learnable from weak initial classifier plus unlabeled data

What you need to know about cotraining

- Unlabeled data can help supervised learning (a lot) when there are (mostly) independent redundant features
- One theoretical result:
 - □ If $(\mathbf{X}_1 \perp \mathbf{X}_2 \mid \mathbf{Y})$ and $\mathbf{g}_1 \& \mathbf{g}_2$ are PAC learnable from noisy data (and thus f)
 - □ Then f is PAC learnable from weak initial classifier plus unlabeled data
 - □ Disagreement between g₁ and g₂ provides bound on error of final classifier
- Applied in many real-world settings:
 - Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99],
 [Jones 05]
 - □ Web page classification [Blum, Mitchell 99]
 - □ Word sense disambiguation [Yarowsky 95]
 - □ Speech recognition [de Sa, Ballard 98]
 - □ Visual classification of cars [Levin, Viola, Freund 03]

Acknowledgement

I would like to thank Tom Mitchell for some of the material used in this presentation of cotraining