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Learning HMMSs from fully
observable data is easy

Learn 3 distributions: s > L e
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Log Ilkellhood for H|\/||\/|S when X is
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m Marginal likelihood — O is observed, X is missing
For simplicity of notation, training data consists of only one sequence:

\/()5&“’\/;9(
¢(0:D) = logP(o]|0)
= log)» P(x,0]0)
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If there were m sequences:

((0 . D) = i IogZP(x,o(j) | 0)
j=1 X
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Computing Log likelihood for

H|\/||\/|S when Xis hldden
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The M-step

m Maximization step:

p(t+1)  arg m@axZQ(H'l)(x | 0) log P(x,0 | 6)

—_——
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m Use expected counts instead of counts:

If learning requires @unt(x,o)
Use Eq.qy[Count(x,0)] % Q ()lcch,a;\\@@) El
I )
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E-step revisited w16y = x| o.00)

m E-step computes probability of hidden vars x
given o
m Must compute:
Q(x;=alo) — marginal probability of each position
m Just forwards-backwards!
Q(x,4=a,X;=b|o) — joint distribution between pairs

—_—

of positions . o iy ox
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Exploiting unlabeled data in

] Clustering

=

Auton”s Graphics [l

m A few data points are labeled .

<x,0>

m Most points are unlabeled
<?,0>

m |In the E-step of EM:

If i'th point is unlabeled:
= compute Q(X]o;) as usual

If i'th point is labeled:
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» set Q(X=x|o0,)=1 and Q(X=x|0,)=0
ot [l N

m M-step as usual AT
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20 Newsgroups data — advantage

i of addinﬁ unlabeled data
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Data likelihood for BNs
@ <>
" A .‘/.
m Given structure, log likelihood of fully
observed data:

log P(D | 0g,G)
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Marginal likelihood

" A
m \What if S is hidden?

log P(D | 0g,G)
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Log likelihood for BNs with hidden

data
m Marginal likelihood — O is observed, H is hidden
m -\ A Headache
00:D) = Y logP(ol) | 0) & =
=1

= ) IogZP(h,o(j) | 6)
=1 h
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E-step for BNs =,
"

m E-step computes probability of hidden vars h given o

QUTY(h|o) = P(h]o,0W)
m Corresponds to inference in BN

12
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S
The M-step for BNs “.
" I

m Maximization step:

p(t+1)  arg m@axZQ(H'l)(h | 0)log P(h,o0 | 6)

m Use expected counts instead of counts:

If learning requires Count(h,0)
Use Eq.q)[Count(h,0)]
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M-step for each CPT

" A
m M-step decomposes per CPT
Standard MLE:

Count(X; =z;,Pay. =z
P(X,L‘IZI?Z'|P8.XZ.=Z)= (X; = X; )

Count(Pay, = z)

M-step uses expected counts:
ExCount(Xi = x;, PaXZ. = Z)
ExCount(Pax, = z)

P(X;=uz;| Pax, =z) =

14
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S
Computlng expected countsci‘.\“.

_ eeeeeeee

ExCount(X; = =;, Pay;, =
P(X;=x; | Pay. =2z) =
’ ExCount(Pay, = z)

m M-step requires expected counts:
For a set of vars A, must compute ExCount(A=a)
Some of A in example j will be observed
= denote by Ay = agl
Some of A will be hidden
= denote by A,

m Use inference (E-step computes expected counts):
ExCount®*N(Ag = agl), Ay = ay) < P(Ay =ay, Ag = apl|el)

15
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Data need not be hidden in <=2,
the same way SN
= _EEeS

m \When data is fully observed
A data point is

m \When data is partially observed
A data point is

m But unobserved variables can be different for different data points

e.d.,

m  Same framework, just change definition of expected counts
ExCount*)(Ag = agl), A, =a,) < P(Ay =a, , Ag =agl|em)
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What you need to know
" J
m EM for Bayes Nets

m E-step: inference computes expected counts
Only need expected counts over X, and Pa,;

m M-step: expected counts used to estimate
parameters

m Hidden variables can change per datapoint

m Use labeled and unlabeled data ! some data
points are complete, some include hidden
variables

17
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Redundant information
" I

Professor Faloutsos my advisor
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Untversity of Maryland

College Park, D 20742
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Office: 2227 A V. Williams Bldg.
Phone: (301) 405-2695

Fax: (301) 405-6707

Email: christosi@ecs.umd edu

Christos Faloutsos

Current Position: Assoc. Profzsser of Corrputer Science. (97-98: on leave at ChLID
Join Appointment: Institute for Systems Eesearch (ISE).
Academic Degrees: Ph.D. and M Sc. (University of Torento.), B.Sc. Mat. Tech. U. Ath

Research Interests:

= Query by content in multimedia databases,
e Fractals for clustering end spatal access methods;

® Data mining;
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Redundant information — webpage

text
« B

T1.S. mail address:

Departmen: of Computer Science
University of Maryland

Colege Park, MD 20742
(97-59: on leave at CMT)
Office: 2227 A V. Williams Bldg.
Phone: (301) 405-2695

Fax: (301) 405-6707

Email: christosi@ecs. umd edu

Christos Faloutsos

Current Position: Assoc. Profzssor of Corrputer Science. (97-98: on leave at ChLID
Join Appointment: Institate for Systems Eesearch (ISE).
Academic Degrees: Ph.D. and M Sc. (University of Torento.), B.Sc. Mat. Tech. U. Ath

Research Interests:

= Query by content in multimedia databases;
e Fractals for clustering end spatal access methods;

® Data mining;
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Redundant information — anchor

_ text for hxgerlinks

Professor Faloutsos my advisor

\
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Exploiting redundant information in

semi-sugervised learning

. Wa nt to prediCt Y from Professor Faloutsos my advisor
features X .-
f(X) — Y

have some labeled data L
lots of unlabeled data U C,,;W.w;,b

[ n [ [ Cmon P tion: Assoc. Pre 6= of C urS:ien:e. (87-98: on ] t ChT)
m Co-trainin mption: X | e T
- dmlthl PDmiM (U fT te.), B.Sc. Mat. Tech. U, Athi

Research Interests:

very expressive

® Fractals for clustering end spatal access methods;

X = (X,X3) -
can learn

= gy(Xy) > Y

m g, (X;) > Y

1.8 mail address:

Department of Compwer Science
University of Maryland

Colege Park, MD 20742

§7-8%:on Ieave at CI\

Office: 2227 AV, ”\Jﬂham Bldg,
Phon ( ]) 4[]

Fax: ( 01 ) 05 07

Email: chris cs.umd. edu
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Co-Training
" J
m Key idea: Classifier, and Classifier, must:
Correctly classify labeled data
Agree on unlabeled data

Answer, Answer,
&

Classifier, Classifier,




Co-Training Algorithm
[Blum & Mitchell '99]
" I

Given: labeled data L,
unlabeled data U
Loop:
Train gl (hyperlink classifier) using L
Train g2 (page classifier) using L
Allow g1 to label p positive, n negative examps from U
Allow g2 to label p positive, n negative examps from U

Add these self-labeled examples to L

©2005-2007 Carlos Guestrin
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Co-Training experimental results
"

« begin with 12 labeled web pages (academic course)
« provide 1,000 additional unlabeled web pages

« average error: learning from labeled data 11.1%;

« average error: cotraining 5.0%
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Co-Training theory
"

m Want to predict Y from features X
f(X) > Y

m Co-training assumption: X is very expressive
X = (X1, X,)
want to learn g,(X,) = Y and g,(X,) — Y

m Assumption: 3 g4, 95, V X g4(Xx4) = f(X), g,(X5) = f(x)
m Questions:
Does unlabeled data always help?

How many labeled examples do | need?
How many unlabeled examples do | need?

26
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Understanding Co-Training: A

] simgle setting

m Suppose X, and X, are discrete
X4 =1X,] =N
m No label noise
m Without unlabeled data, how hard is it to learn g, (or g,)?

27
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Co-Training in simple setting —
_ lteration O
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Co-Training in simple setting —
lteration 1

hyperlinks I
 t @t
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Co-Training in simple setting — after

_ Converﬁence

30
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Co-Training in simple setting —
Connected components
I

m  Suppose infinite unlabeled data My advisor

Co-training must have at least one labeled
example in each connected component of L+U
graph

m What's probability of making an error?
O

O

E[@r;{)}‘] = ZP(X S gj)(l —P(xe g ))m

m For k Connected com pone nts ’ how much Where g 1s the jth connected component of graph
labeled data? of L+U." m is number of labeled examples

31
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How much unlabeled data?
" I

Want to assure that connected components in the underlying

distribution, G, are connected components 1n the observed
sample. G

VANV

O(log(N)/a) examples assure that with high probability, G¢ has same
connected components as Gp, [Karger, 94]

N 1s s1ze of Gy, o 1s min cut over all connected components of G

©2005-2007 Carlos Guestrin
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Co-Training theory
"

m Want to predict Y from features X
f(X) Y

m Co-training assumption: X is very expressive
X = (X1, X,)
want to learn g,(X,) = Y and g,(X,) — Y

m Assumption: 3 g4, 95, V X g4(Xx4) = f(X), g,(X5) = f(x)
m One co-training result [Blum & Mitchell *99]

If

= (X L X ]Y)

= g, & g, are PAC learnable from noisy data (and thus f)
Then

m fis PAC learnable from weak initial classifier plus unlabeled data

33
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What you need to know about co-

] traininﬁ

m Unlabeled data can help supervised learning (a lot) when
there are (mostly) independent redundant features

m One theoretical result:

If (X, L X,|Y)and g, & g, are PAC learnable from noisy data
(and thus f)

Then fis PAC learnable from weak initial classifier plus
unlabeled data

Disagreement between g, and g, provides bound on error of final
classifier

m Applied in many real-world settings:

Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99],
[Jones 03]

Web page classification [Blum, Mitchell 99]
Word sense disambiguation [Yarowsky 95]
Speech recognition [de Sa, Ballard 98]

Visual classification of cars [Levin, Viola, Freund 03] a4
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