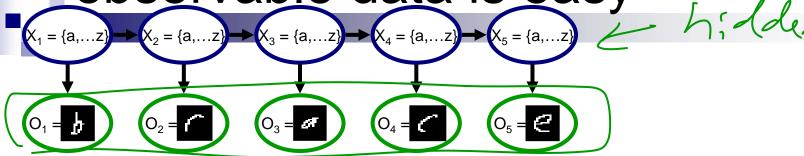
EM for Bayes Nets

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 16th, 2007

Learning HMMs from fully

observable data is easy



_earn 3 distributions:

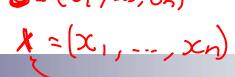
$$P(X_1) = (\text{ount (# first letter a}))$$
 select training destants of the letter was a $P(O_i \mid X_i) = (\text{ount (Pixel 12 was white, Xi=9}))$

$$P(X_i^{\circ}|X_i^{\circ})$$

 $P(X_i^{\bullet}|X_i^{\bullet})$ What if **O** is observed, but **X** is hidden

Log likelihood for HMMs when X is

hidden



observed, X is missing for m signerces $\sum_{j=1}^{\infty} \log P(3^{j})/\Theta$

Marginal likelihood - O is observed, X is missing

For simplicity of notation, training data consists of only one sequence:

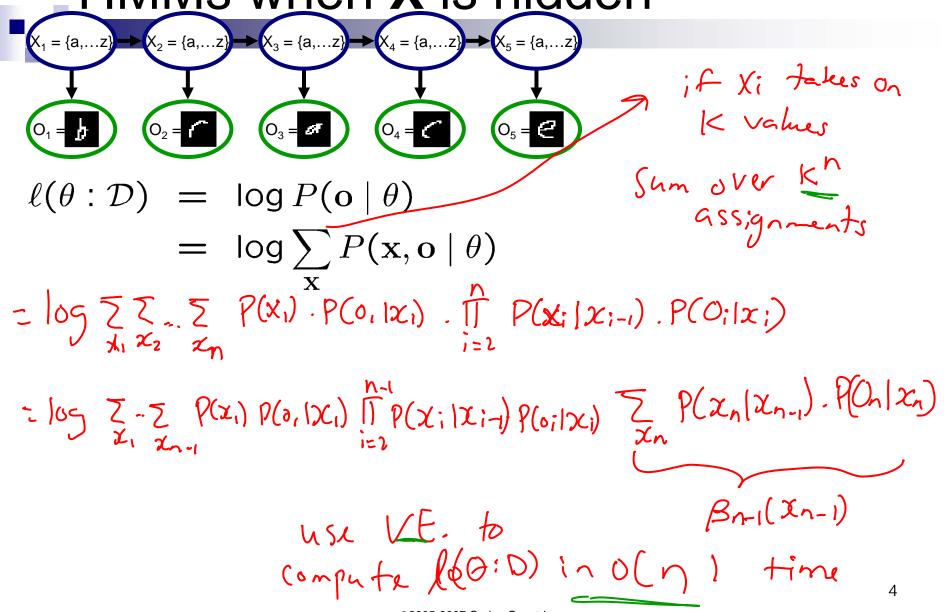
$$\frac{\ell(\theta : \mathcal{D})}{=} = \log P(\mathbf{o} \mid \theta)$$

$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

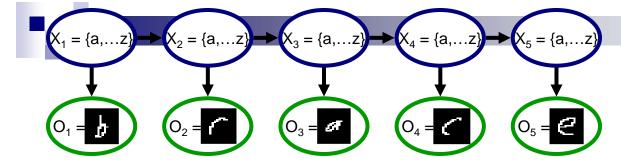
If there were m sequences:

$$\ell(\theta: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o}^{(j)} | \theta)$$

Computing Log likelihood for HMMs when **X** is hidden



The M-step



Maximization step:

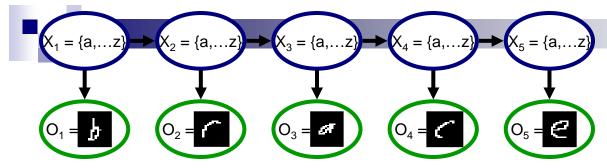
$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta)$$

$$\mathbf{U}_{\mathbf{x}} = \mathbf{U}_{\mathbf{y}} = \mathbf{v}_{\mathbf{y}} = \mathbf{v}_{\mathbf{y}}$$

- - □ If learning requires Count(x,o)
 - \square Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{o})]$

E-step revisited

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$



- E-step computes probability of hidden vars x given o
- Must compute:
 - $\square Q(x_t=a|\mathbf{o})$ marginal probability of each position
 - Just forwards-backwards!

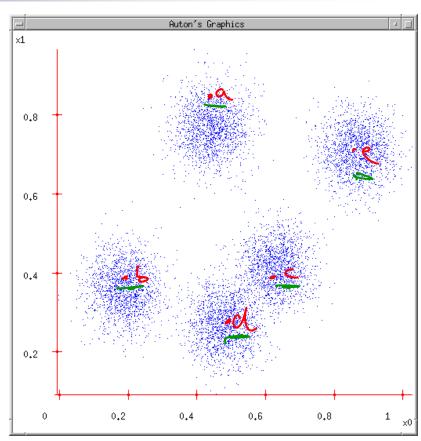
 $\Box Q(x_{t+1}=a,x_t=b|\mathbf{o})$ – joint distribution between pairs

of positions

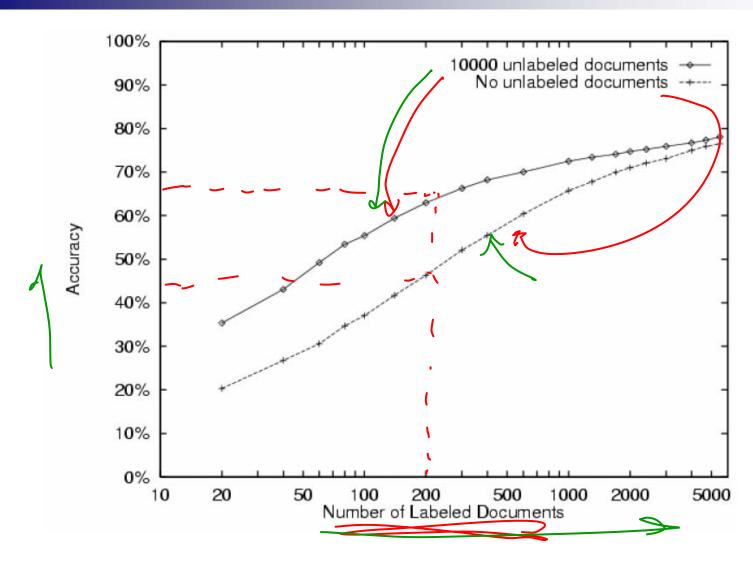
see rading [simple eqn.] [may be homework

Exploiting unlabeled data in clustering

- A few data points are labeled
 - <X,0>
- Most points are unlabeled
 - □ <?,0>
- In the E-step of EM:
 - ☐ If i'th point is unlabeled:
 - compute Q(X|o_i) as usual
 - ☐ If i'th point is labeled:
 - set $Q(X=x|o_i)=1$ and $Q(X\neq x|o_i)=0$ M-step as usual

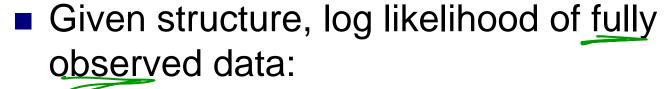


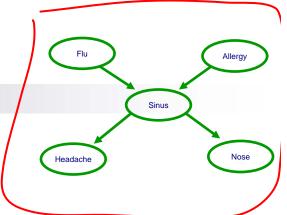
20 Newsgroups data – advantage of adding unlabeled data



loga. 5 = loga + logs

Data likelihood for BNs

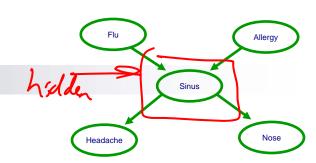




©2005-2007 Carlos Guestrin

Marginal likelihood

What if S is hidden?



$$\begin{split} &\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) \\ &= \sum_{j \geq i} \log \sum_{S} P(\alpha^{(i)} \mid \theta_{A}) P(f^{(i)} \mid \theta_{P}). P(S \mid f^{(i)}, \alpha^{(i)}, \theta_{S \mid f_{A}}) \\ &\qquad \cdot P(h^{(i)} \mid S, \theta_{H \mid S}) \cdot P(n^{(i)} \mid S, \theta_{P \mid S}) \end{split}$$

109 3

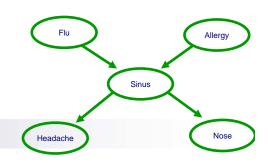
doesn't de compose EM for BNS same derivation (Susen's, etc.)

Log likelihood for BNs with hidden data

Marginal likelihood – O is observed, H is hidden

$$\ell(\theta : \mathcal{D}) = \sum_{j=1}^{m} \log P(\mathbf{o}^{(j)} | \theta)$$
$$= \sum_{j=1}^{m} \log \sum_{\mathbf{h}} P(\mathbf{h}, \mathbf{o}^{(j)} | \theta)$$

E-step for BNs

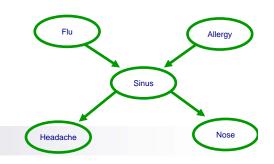


$$Q^{(t+1)}(\underline{\mathbf{h}} \mid \mathbf{o}) = P(\underline{\mathbf{h}} \mid \mathbf{o}, \theta^{(t)})$$
if $|\mathbf{h}| = 160$

$$|\mathbf{k}| = 160$$
Corresponds to inference in BN

VE.

The M-step for BNs



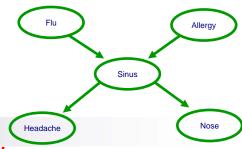
Maximization step:

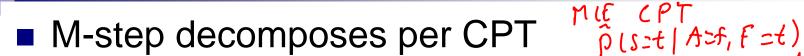
$$\theta^{(t+1)} \leftarrow \arg \max_{\theta} \sum_{\mathbf{x}, \mathbf{h}} Q^{(t+1)}(\mathbf{h} \mid \mathbf{o}) \log P(\mathbf{h}, \mathbf{o}) \theta$$

- Use expected counts instead of counts:
 - □ If learning requires Count(h,o)

Use
$$E_{Q(t+1)}[Count(\underline{\mathbf{h}},\underline{\mathbf{o}})] = \sum_{j=1}^{\infty} \int_{\mathbb{C}} (O^{(j)} = O) \cdot Q^{(t+1)}(h | O^{(j)})$$

M-step for each CPT





☐ Standard MLE:

Standard MLE:
$$P(X_i = x_i \mid Pa_{X_i} = z) = \frac{Count(X_i = x_i, Pa_{X_i} = z)}{Count(Pa_{X_i} = z)}$$

M-step uses expected counts:

$$P(X_i = x_i \mid \mathbf{Pa}_{X_i} = \mathbf{z}) = \frac{\mathsf{ExCount}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{z})}{\mathsf{ExCount}(\mathbf{Pa}_{X_i} = \mathbf{z})}$$

Computing expected counts

$$P(X_i = x_i \mid \mathbf{Pa}_{X_i} = \mathbf{z}) = \frac{\mathsf{ExCount}(X_i = x_i, \mathbf{Pa}_{X_i} = \mathbf{z})}{\mathsf{ExCount}(\mathbf{Pa}_{X_i} = \mathbf{z})}$$

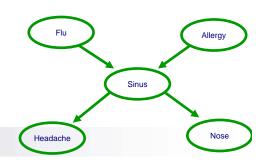
- M-step requires expected counts:
 - □ For a set of vars A, must compute ExCount(A=a)
 - □ Some of A in example j will be observed
 - denote by $A_0 = a_0$
 - □ Some of A will be hidden
 - denote by A_H
- Use inference (E-step computes expected counts):

$$= \text{ExCount}^{(t+1)}(\mathbf{A_0} = \mathbf{a_0}), \mathbf{A_H} = \mathbf{a_H}) \leftarrow P(\mathbf{A_H} = \mathbf{a_H}, \mathbf{A_0} = \mathbf{a_0})$$

$$= \mathcal{T} \mathcal{J}(\mathcal{A_0}) = \mathbf{a_0} \mathcal{J}(\mathcal{A_H}) = \mathbf{a_H} \mathcal{J}(\mathcal{A_H})$$

$$= \mathcal{J}(\mathcal{A_H}) = \mathbf{a_H} \mathcal{J}($$

Data need not be hidden in the same way



- When data is fully observed
 - □ A data point is ∠F=t, A=f, S=t, H=t, N=f)
- When data is partially observed
 - □ A data point is $\angle F = t, A = ?, S = ?, H = t, N = f$
- But unobserved variables can be different for different data points
 - < CF=?, A=f, S=t, H=?, N=f)
- Same framework, just change definition of expected counts
 - ExCount(t+1)($A_0 = a_0$), $A_H = a_H$) $\leftarrow P(A_H = a_H, A_0 = a_0)(1)(t)$.

What you need to know

- r,e
 - EM for Bayes Nets
 - E-step: inference computes expected counts
 - □ Only need expected counts over X_i and Pa_{xi}
 - M-step: expected counts used to estimate parameters
 - Hidden variables can change per datapoint
 - Use labeled and unlabeled data → some data points are complete, some include hidden variables

Announcements

No recitation this week

Spring (arnival

 On Wednesday, Special lecture on learning with text data by Prof. Noah Smith (LTI)

Co-Training for Semisupervised learning

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 16th, 2007

Redundant information

my advisor

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg. Phone: (301) 405-2695 Fax: (301) 405-6707 Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.), B.Sc. (Nat. Tech. U. Ath

Research Interests:

- Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- Data mining;

Class

E { Faculty,

Student,

project, -- ?

Redundant information – webpage text

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99: on leave at CMU)

Office: 3227 A.V. Williams Bldg. Phone: (301) 405-2695 Fax: (301) 405-6707 Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

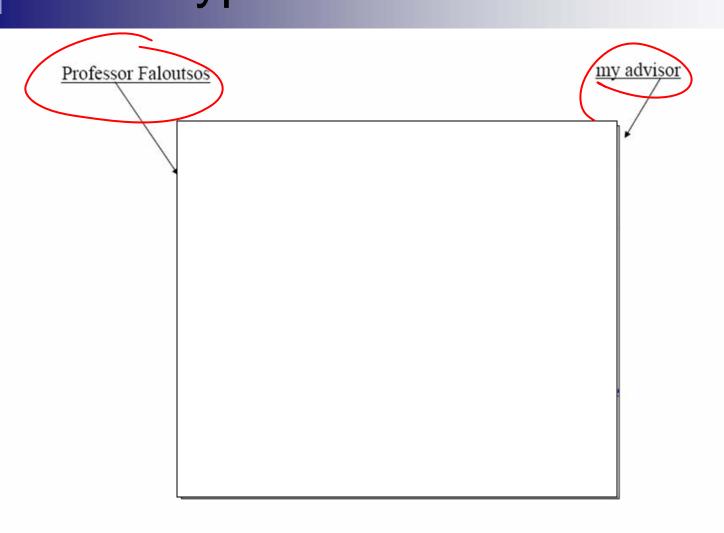
Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.), B.Sc. (Nat. Tech. U. Ath

Research Interests:

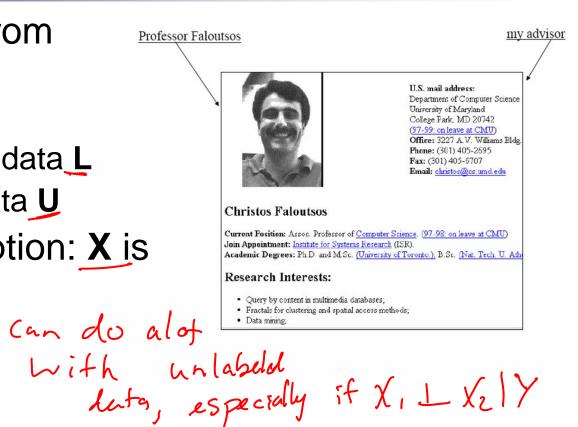
- Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- Data mining;

Redundant information – anchor text for hyperlinks



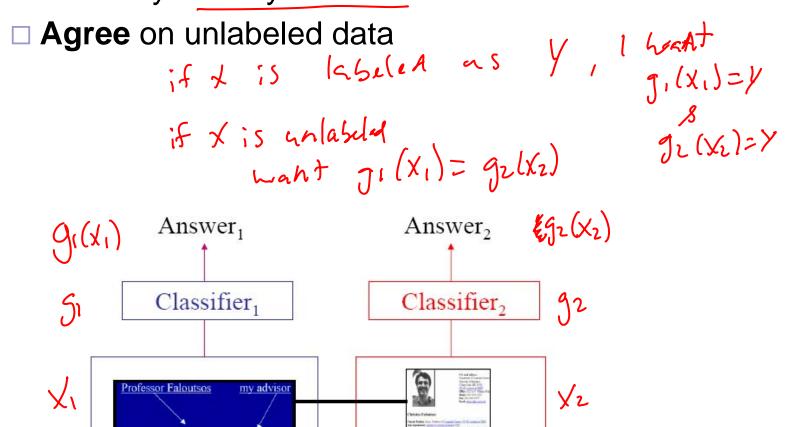
Exploiting redundant information in semi-supervised learning

- Want to predict Y from features X
 - $\Box f(X) \longrightarrow Y$
 - □ have some labeled data L
 - □ lots of unlabeled data U
- Co-training assumption: X is very expressive
 - $\square \mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$
 - can learn
 - $g_1(\mathbf{X}_1) \longrightarrow Y$
 - $\mathbf{g}_{2}(\mathbf{X}_{2}) \rightarrow \mathbf{Y}$

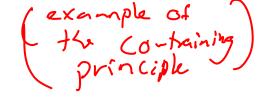


Co-Training

- Key idea: Classifier₁ and Classifier₂ must:
 - □ Correctly classify labeled data



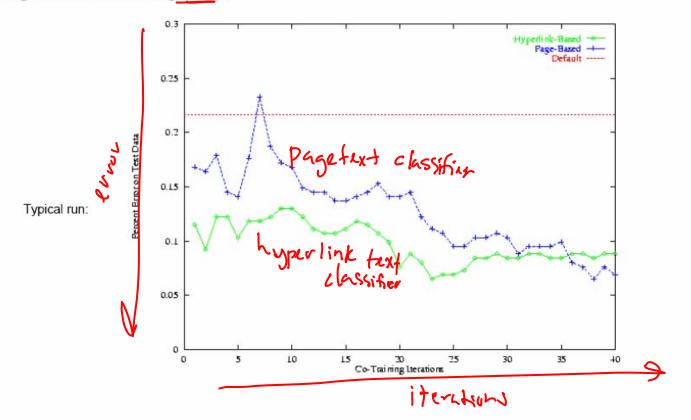
Co-Training Algorithm (example of the Co-taining) [Blum & Mitchell '99]



```
Given: labeled data L,
       unlabeled data U
Loop:
   Train g1 (hyperlink classifier) using L
   Train g2 (page classifier) using L
   Allow g1 to label p positive, n negative examps from U
   Allow g2 to label p positive, n negative examps from U
   And these self-labeled examples to L
    MOUL
```

Co-Training experimental results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: cotraining 5.0%



Co-Training theory

- Want to predict Y from features X
 - □ f(**X**) → Y
- Co-training assumption: X is very expressive

 - \square want to learn $g_1(\mathbf{X}_1) \mapsto Y$ and $g_2(\mathbf{X}_2) \mapsto Y$
- Assumption: $\exists g_1, g_2, \forall \mathbf{x} g_1(\mathbf{x}_1) = f(\mathbf{x}), g_2(\mathbf{x}_2) = f(\mathbf{x})$
- Questions:
 - Does unlabeled data always help?
 - □ How many labeled examples do I need?
 - □ How many unlabeled examples do I need?

Understanding Co-Training: A simple setting

- Suppose X_1 and X_2 are discrete $|X_1| = |X_2| = N$ Suppose X_1 and X_2 are discrete

 No label noise

 Suppose X_1 and X_2 are discrete

 Suppose X_1 is described

 Suppose X_1 is described

 No label noise

[4,-3

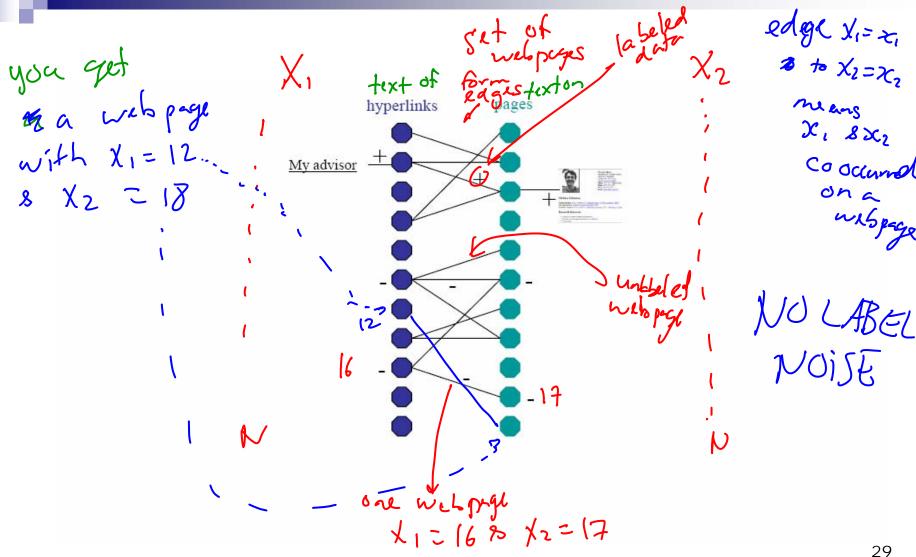
- Without unlabeled data, how hard is it to learn g₁ (or g₂)?
- 1 H 1 = 2" # trining examples

 1. hypothesis space is dependent on?

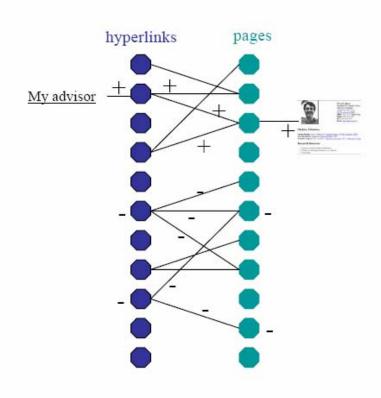
 1. {\psi, -3} g. \text{EH} |n|H| = N. |n2

 2. {\psi, -3}

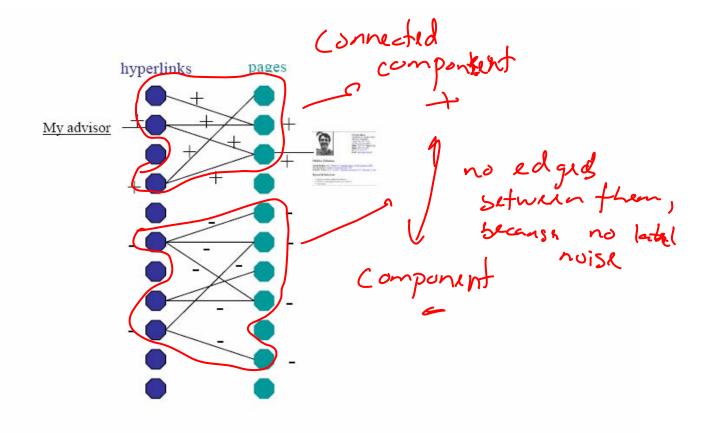
Co-Training in simple setting Iteration 0



Co-Training in simple setting – Iteration 1

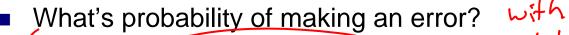


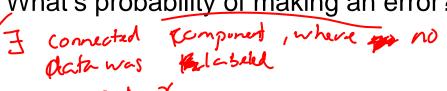
Co-Training in simple setting – after convergence



Co-Training in simple setting – Connected components

- Suppose infinite unlabeled data
 - Co-training must have at least one labeled example in each connected component of L+U graph component gj





$$E[ernor] = \sum_{j} P(x \in g_j) (1 - P(x \in g_j))^{n}$$

hyperlinks

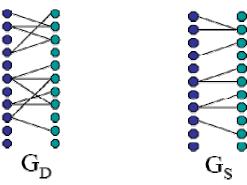
My advisor

pages

For k Connected components, how much in Swhere g, is the jth connected component of graph of L+U, m is number of labeled examples labeled data?

How much unlabeled data?

Want to assure that connected components in the underlying distribution, G_D , are connected components in the observed sample, G_S



 $O(log(N)/\alpha)$ examples assure that with high probability, G_s has same connected components as G_D [Karger, 94]

N is size of G_D, α is min cut over all connected components of G_D

Co-Training theory

- Want to predict Y from features X
 - □ f(**X**) Y
- Co-training assumption: X is very expressive
 - $\square X = (X_1, X_2)$
 - \square want to learn $g_1(\mathbf{X}_1)$ Y and $g_2(\mathbf{X}_2)$ Y
- Assumption: $\exists g_1, g_2, \forall \mathbf{x} g_1(\mathbf{x}_1) = f(\mathbf{x}), g_2(\mathbf{x}_2) = f(\mathbf{x})$
- One co-training result [Blum & Mitchell '99]
 - - $\bullet (\mathbf{X}_1 \perp \mathbf{X}_2 \mid \mathbf{Y})$
 - g₁ & g₂ are PAC learnable from noisy data (and thus f)
 - □ Then
 - f is PAC learnable from weak initial classifier plus unlabeled data

What you need to know about cotraining

- Unlabeled data can help supervised learning (a lot) when there are (mostly) independent redundant features
- One theoretical result:
 - □ If $(\mathbf{X}_1 \perp \mathbf{X}_2 \mid \mathbf{Y})$ and $\mathbf{g}_1 \& \mathbf{g}_2$ are PAC learnable from noisy data (and thus f)
 - □ Then f is PAC learnable from weak initial classifier plus unlabeled data
 - □ Disagreement between g₁ and g₂ provides bound on error of final classifier
- Applied in many real-world settings:
 - Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99],
 [Jones 05]
 - □ Web page classification [Blum, Mitchell 99]
 - □ Word sense disambiguation [Yarowsky 95]
 - □ Speech recognition [de Sa, Ballard 98]
 - □ Visual classification of cars [Levin, Viola, Freund 03]

Acknowledgement

I would like to thank Tom Mitchell for some of the material used in this presentation of cotraining