EM for Bayes Nets

Machine Learning — 10701/15781

Carlos Guestrin
Carnegie Mellon University

April 161, 2007 )

©2005-2007 Carlos Guestrin



Learning HMMs from fully
observable data Iis easy

G T I Joor) 2o il

Learn 3 distributions:

P(X]?Uj — (OU\/\—‘- ('H'— rst ‘CH""WQ&B SA‘LJ’ 'l""‘i’\.l"ﬁ 4‘4‘2L.

whe b ety o A

/
- (1= Antaset < ¢ 24 /

)
Y "'\ }3&:‘* - o~

,r’ oo \7'0&1 12 as whife, X :5\)
X z) = low .(

What if O Is observed,
but X' Is hidden
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Log Iikelihoog: {or HI\/II\/Is when X is
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m Marginal likelihood — O is observed, X is missing
For simpliCity of notation, training data consists of only one sequence:
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Computing Log likelihood for
HI\/II\/Is when XIS hldden
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The M-step

m Maximization step:

p(t+1)  3rg m@axZQ(H’l)(x | 0)log P(x,0 | 6)
S ————
wotighdl. oo 1lealihen
m Use expected counts instead of counts:
If learning requires Count(x 0) ) J—

Use Eqq.pylCount(x, 0)] i Q (1 Y. b JEI
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E-Step rEVISIted Q(t—l—l)(x ‘ O) — P(X ‘ O,H(t))

m E-step computes probabillity of hidden vars x
given o
m Must compute:
Q(x=a|o) — marginal probability of each position
m Just forwards-backwards!

of positions .
&L‘? TS rwlinf) [Q'mfﬂk L%’\'}
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Exploiting unlabeled data in

_ Clustering

_l|

J.
Auton”s Graphics |

m A few data points are labeled ©

<X,0>

m Most points are unlabeled
<?.0>

m In the E-step of EM:

If I'th point is unlabeled:
= compute Q(X|o;) as usual

If 'th point is labeled:
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m set gX:x|oi):1 and Q(X#x|0,)=0
corvy i (,V — J Le)
m M-step as usual ot (e
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20 Newsgroups data — advantage

_ Of adding unlabeled data
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log e b = Ioeacn-elo?k

Data likelihood for BNSKQ

" J
m Given structure, log likelihood of fully
observed data:
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Marginal likelihood O
" S it T

m What if S is hidden?
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Log likelihood for BNs with hidden
data

= Marginal likelihood — O is observed, H is hidden
m . Headache
00 :D) = log P(o'9) | 6) = =2
j=1

= ) IogZP(h,o(j) 1 0)
=1 h
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E-step for BNs CD\.

" J
Headache

m E-step computes probability of hidden vars h given o

QUTY(h|o) = P(h|o,0
N
Kloo..{ /)G\V'éa..s

((/y.rv ]1,79

m Corresponds to inference in BN
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<
The M-step for BNs /.

" S

m Maximization step:

' |
p(+1)  arg ma%Z QU+ (n | (?) log P(h,oéf 0)
o LZh

———

m Use expected counts instead of counts:
If learning requires Count(h,o)

Use Eqq.ylCount(h,0)] = 7 T(0) Okl o(s))
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<>
M-step for each CPT /.

" SN
MiE CPT

m M-step decomposes per CPT (5=t | Asf, F=t)

- - > =4
Standard MLE: = Cod (82t A F)

CBUHt(XZ' = x;, PaXZ. = Z) ?O"""d- [ﬂ:f‘, F-:f)
Count(Pay, =z)

P(X; =x; | Pax, = z) =

M-step uses expected counts:
ExCount(XZ- = x;, PaXZ. = Z)
ExCount(Pay, = z)

P(X;=u;| Pax, =z) =

~—
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<>
Computing expected counts/’
"

ExCount(X,; = x;,Pay. = z
P(XZ=$Z|PaXZ=Z)= ( ¢ ! XZ )

. ExCount(Pay, :D

m M-step requires expected counts:
For a set of vars A, must computeLExCount(A,:\a

Some of A in example j will be observed
= denote by Ag =ag® <
Some of A will be hidden

= denote by AHCQQ_
m Use inference (E-step computes expected counts):

Ve

inbince (VE) s
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Data need not be hidden in Q
ac.same way SR

m When data is fully observed

A data point is (Flﬁ‘, A=F ¢ <t, B, j\/:,C>

m When data is partially observed

A data point is LP:f(Ac?/QZ? ‘ [+:-&)N:—F>

m But unobserved variables can be different for different data points
eg, LF=t,A=t,S<t,H=/ N=7>
CF:;?’A.:’F‘Q:%)H:?INT;F‘)‘

m  Same framework, just change definition of expected counts

ExCount®D(A, = ag®, A, = a,) « Plir——te—afs)— |
U o hiddia vars are o Brackon o ) -
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What you need to know
"
m EM for Bayes Nets

m E-step: inference computes expected counts
Only need expected counts over X; and Pa,;

m M-step: expected counts used to estimate
parameters

T ——

m Hidden variables can change per datapoint

(: Use Iagg,k_ed and unlabeled data — some data

@r{% points are complete, some include hidden
U variables
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Announcements

W
m No recitation this week
SFV{hQ CG\./‘h{\/o\l

m On Wednesday, Special lecture on learning with
text data by Prof. Noah Smith (LTI)
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Redundant information — webpage
text
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Redundant information — anchor
_ text for hxgerlinks
G 2
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Exploiting redundant information in

semi-sugervised learning

m \Want to predict Y from

features X
f(X)IEPY

have some labeled data L
lots of unlabeled data U

m Co-training assumption: X is

very expressive
X = (X1, X))
can learn

m g, (X)BY
m gy (X ERY

Professor Faloutsos
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access methods,
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Co-Training

= Key idea: Classifier, and Cl

P
q

92

Correctly classify labeled data

6( )
<

assifier, must:

Agree on unlabeled data y (ehT
Lo 05 labuleAd s RN
A
£ Y os unlabde 642
beah T JI[X(\: ﬁbl{l) g b4
Answer, Answer, éﬁl&l\
Classifier, Classifier, 3'7,
Y2

N3

24




Co-Training Algorithm

[Blum & Mitchell "99]

C

)(mM e of

o (_o v—f%mj

’)V\"\Czﬁ

Given: labeled data L,
unlabeled data U

Loop:
5 X

Train gl (hyperlink classifier) using L

——

Train g2 (page clfﬁssifier) using L

—_—

————

Adds these self-labeled examples toL
MOk

./

Allow g1 to label p positive, n negative examps from U

—

Allow g2 to label p positive, n negative examps from U

—
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Co-Training experimental results
" B

« begin with 12 labeled web pages (academic course)
« provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
s —_—
« average error: cotraining 5.0%
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Co-Training theory
" S

m Want to predict Y from features X
FX)r0Y

m Co-training assumption: X is(\//ery expressive
X = (X, X5)
want to learn g,(X)#&*Y and g,(X,) &Y

m Assumption: 3 g4, 9,, V X g;(X;) = f(X), g,(X5) = f(X)

\)

m Questions: “— )
Does unlabeled data always help?
pailic

How many labeled examples do | need?
How many unlabeled examples do | need?

27
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Understanding Co-Training: A

= Suppose X, and X, are discrete X, iq Aasertbed

X, =|X,] =N i oy
Y NolTa;llloell nzcl)ise ’ =9 ,Z;h’:cs? A/j;zj’“
m Without unlabeled data, how hard is it to learn g, (or g,)?
\H [ < ZN B aiatiny AXAples
(N hypths spre i5  Lapuaded onF
IR q. €4 NIV
7: %IC/';
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Co-Training in simple setting —

lteration O

Age ¥,
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Co-Training in simple setting —
lteration 1
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Co-Training In simple setting — after

. convergence
C_aﬂi’\ﬂ.a‘g‘lOQ

hyperlinks hages Comj)m\wd‘
/0 —

bL‘I‘WMV\ ‘]LLWA)

/ brecausn  no  ladyl

C omporspd

+

noise
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Co-Training In simple setting —
Connected components .. ..
= T

= Suppose infinite unlabeled data My advisor

Co-training must have at least one labeled
example in each connected component of L+U

graph

fornlpdnlrﬂ' j&

m What's probability of making an error? wikh m
T Conmohh (erprd whT e po APt

Ocho- wes  flebdd p @ @ -
+¢SJ’ ?b:’\* * . ( . . .
Eferre 'E . Z P(LE 3@ \ "‘F( Lﬁﬂb )
Y = o g 2 Preg)1-Plxeg)

o :hmi-\i'j
m For k ConneC%d COmponentS, hOW mUCh \,r\ j’b’\’hereg 1s the jth connected component of graph

labeled data?
aY s K daw 'P”""‘b
‘I'\M o N

of L+U, m 1s number of labeled examples
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How much unlabeled data?
" A

Want to assure that connected components in the underlying

distribution, G, are connected components 1n the observed
sample, G¢

NV

/)

&

O(log(N)/o) examples assure that with high probability, G¢ has same
connected components as Gp, [Karger, 94|

N 1s s1ze of Gy, o 1s mun cut over all connected components of G

©2005-2007 Carlos Guestrin
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Co-Training theory
" J

m Want to predict Y from features X
f(X) O Y

m Co-training assumption: X is very expressive
X = (X, X5)
want to learn g,(X,) O Y and g,(X,) O Y

m Assumption: 3 g4, 9,, V X g;(X;) = f(X), g,(X5) = f(X)
m One co-training result [Blum & Mitchell '99]

|f
m (X; LX,]Y)
= g, & g, are PAC learnable from noisy data (and thus f)
Then
m fis PAC learnable from weak initial classifier plus unlabeled data

34
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What you need to know about co-

] training

m Unlabeled data can help supervised learning (a lot) when
there are (mostly) independent redundant features

m One theoretical result:

If (X; L X,]Y)and g, &g, are PAC learnable from noisy data
(and thus f)

Then f is PAC learnable from weak initial classifier plus
unlabeled data

Disagreement between g, and g, provides bound on error of final
classifier

m Applied in many real-world settings:

Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99],
[Jones 05]

Web page classification [Blum, Mitchell 99]
Word sense disambiguation [Yarowsky 95]
Speech recognition [de Sa, Ballard 98]

Visual classification of cars [Levin, Viola, Freund 03] ae
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