Expectation Maximization

Machine Learning - 10701/15781 Carlos Guestrin
Carnegie Mellon University
April 9th 2007
©2005-2007 Carlos Guestrin

Gaussian Bayes Classifier

Next... back to Density Estimation
What if we want to do density estimation with multimodal or clumpy data?

Marginal likelihood for general case

$$
P\left(y=i \mid \mathbf{x}_{j}\right) \propto \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
$$

defn. of $\quad X_{j} \longleftarrow$ observed

$$
\begin{aligned}
& \text { - Marginal likelihood: } \\
& \log \prod_{j=1}^{m} P\left(\mathbf{x}_{j}\right)={ }^{\circ} \prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \\
& \text { otis assumption: } x_{j} \sim \text { Gr } \\
& P\left(x_{j}\right)=\sum_{i} P(y=i) \cdot P\left(x_{j} \mid y_{i}\right) \\
& \text { don't observe g' } \\
& \Rightarrow \text { max } P\left(x_{j}\right) \text { g'j Gaussian } \\
& =\psi_{j=1}^{m} \sum_{i=1}^{k} \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i) \\
& =\sum_{j=1}^{m} \log \sum_{i=1}^{k}
\end{aligned}
$$

Duda \& Hart's Example

Finding the max likelihood $\mu_{1}, \mu_{2} . . \mu_{k}$

We can compute P(data $\left.\mid \mu_{1}, \mu_{2} . . \boldsymbol{\mu}_{k}\right)$
How do we find the $\boldsymbol{\mu}_{i}$ s which give max. likelihood?

- The normal max likelihood trick:

Set $\frac{\partial}{\partial \mu_{i}} \log \operatorname{Prob}(\ldots)=0$
and solve for μ_{i} s.
\# Here you get non-linear non-analytically-solvable equations

- Use gradient descent

Slow but doable
■ Use a much faster, cuter, and recently very popular method...

©2005-2007 Carlos Guestrin

ThaE.M. Algorithm

- We'll get back to unsupervised learning soon
- But now we'll look at an even simpler case with hidden information
- The EM algorithm
$\square \quad$ Can do trivial things, such as the contents of the next few slides
\square An excellent way of doing our unsupervised learning problem, as we'll see
\square Many, many other uses, including learning BNs with hidden data

Silly Example

Let events be "grades in a class"

$$
\begin{array}{ll}
w_{1}=\text { Gets an } A & P(A)=1 / 2 \\
w_{2}=\text { Gets a } B & P(B)=\mu \\
w_{3}=\text { Gets a C } & P(C)=2 \mu \\
w_{4}=\text { Gets a } \quad D & P(D)=1 / 2-3 \mu
\end{array}
$$

(Note $0 \leq \mu \leq 1 / 6$)
Assume we want to estimate μ from data. In a given class there were

$$
\begin{array}{ll}
\text { a A's } \\
\text { b } & \text { B's } \\
\text { c } & \text { C's } \\
\text { d } & \text { D's }
\end{array}
$$

What's the maximum likelihood estimate of μ given a, b, c, d ?

Trivial Statistics

$P(A)=1 / 2 \quad P(B)=\mu \quad P(C)=2 \mu \quad P(D)=1 / 2-3 \mu$
$P(a, b, c, d \mid \mu)=K(1 / 2)^{a}(\mu)^{b}(2 \mu)^{c}(1 / 2-3 \mu)^{d}$
$\log P(a, b, c, d \mid \mu)=\log K+a \log 1 / 2+b \log \mu+c \log 2 \mu+d \log (1 / 2-3 \mu)$
FOR MAX LIKE $\mu, \operatorname{SET} \frac{\partial \operatorname{LogP}}{\partial \mu}=0$
$\frac{\partial \log P}{\partial \mu}=\frac{b}{\mu}+\frac{2 c}{2 \mu}-\frac{3 d}{1 / 2-3 \mu}=0$
Gives max like $\mu=\frac{b+c}{6(b+c+d)}$
So if class got

A	B	C	D
14	6	9	10

Max like $\mu=\frac{1}{10}$

Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's $+\mathrm{B}^{\prime} \mathrm{s}$) $=h$
Number of C's $=c$

$$
\begin{aligned}
& \text { REMEMBER } \\
& P(A)=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu
\end{aligned}
$$

Number of D's $=d$
What is the max. like estimate of μ now?

Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's $+\mathrm{B}^{\prime} \mathrm{s}$) $=h$
Number of C's $=c$
Number of D's $=d$

$$
\begin{aligned}
& \text { REMEMBER } \\
& \mathrm{P}(\mathrm{~A})=1 / 2 \\
& \mathrm{P}(\mathrm{~B})=\mu \\
& \mathrm{P}(\mathrm{C})=2 \mu \\
& \mathrm{P}(\mathrm{D})=1 / 2-3 \mu
\end{aligned}
$$

What is the max. like estimate of μ now?
We can answer this question circularly:
EXPECTATION
If we know the value of μ we could compute the expected value of a and b
Since the ratio a:b should be the same as the ratio $1 / 2: \mu \quad b a=\frac{1 / 2}{1 / 2+\mu} h \quad b=\frac{\mu}{1 / 2+\mu} h$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ

$$
\mu=\frac{b+c}{6(b+c+d)}
$$

E.M. for our Trivial Problem

We begin with a guess for μ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates

REMEMBER

$$
\begin{aligned}
& P(A)=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu
\end{aligned}
$$ of μ and a and b.

Define $\mu^{(t)}$ the estimate of μ on the t'th iteration
$b^{(t)}$ the estimate of b on t'th iteration

Continue iterating until converged.
Good news: Converging to local optimum is assured.
Bad news: I said "local" optimumpor carlos Guestrin

E.M. Convergence

- Convergence proof based on fact that $\operatorname{Prob}($ data $\mid \mu)$ must increase or remain same between each iteration [Not obvious]
- But it can never exceed 1 [obvious]

So it must therefore converge [obvious]

In our example, suppose we had

$$
\begin{aligned}
\mathrm{h} & =20 \\
\mathrm{c} & =10 \\
\mathrm{~d} & =10 \\
\mu^{(0)} & =0
\end{aligned}
$$

Convergence is generally linear: error decreases by a constant factor each time step.

t	$\mu^{(\mathrm{t})}$	$\mathrm{b}^{(\mathrm{t})}$
0	0	0
1	0.0833	2.857
2	0.0937	3.158
3	0.0947	3.185
4	0.0948	3.187
5	0.0948	3.187
6	0.0948	3.187

Back to Unsupervised Learning of GMMs - a simple case

A simple case:
We have unlabeled data $\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{\mathrm{m}}$
We know there are k classes
We know $P\left(y_{1}\right) P\left(y_{2}\right) P\left(y_{3}\right) \ldots P\left(y_{k}\right)$
We don't know $\boldsymbol{\mu}_{1} \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{\mathrm{k}}$

We can write $P\left(\right.$ data $\left.\mid \mu_{1} \ldots \mu_{k}\right)$

$$
\begin{aligned}
& =\mathrm{p}\left(x_{1} \ldots x_{m} \mid \mu_{1} \ldots \mu_{k}\right) \\
& =\prod_{j=1}^{m} \mathrm{p}\left(x_{j} \mid \mu_{1} \ldots \mu_{k}\right) \\
& =\prod_{j=1}^{m} \sum_{i=1}^{k} \mathrm{p}\left(x_{j} \mid \mu_{i}\right) \mathrm{P}(y=i) \\
& \propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{j}-\mu_{i}\right\|^{2}\right) \mathrm{P}(y=i)
\end{aligned}
$$

EM for simple case of GMMs: The E-step

■ If we know $\mu_{1}, \ldots, \mu_{\mathrm{k}} \rightarrow$ easily compute prob. point x_{j} belongs to class $y=i$

$$
\mathrm{p}\left(y=i \mid x_{j}, \mu_{1} \ldots, \mu_{k}\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{j}-\mu_{i}\right\|^{2}\right) \mathrm{P}(y=i)
$$

EM for simple case of GMMs: The M-step

- If we know prob. point x_{j} belongs to class $y=i$
\rightarrow MLE for μ_{i} is weighted average
\square imagine k copies of each x_{j}, each with weight $\mathrm{P}\left(\mathrm{y}=\mathrm{i} \mid \mathrm{x}_{\mathrm{j}}\right)$:

$$
\mu_{i}=\frac{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right) x_{j}}{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right)}
$$

E.M. for GMMs

E-step

Compute "expected" classes of all datapoints for each class

$$
\mathrm{p}\left(y=i \mid x_{j}, \mu_{1} \ldots \mu_{k}\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}} \| x_{j}-\left.\mu_{i}\right|^{2}\right) \mathrm{P}(y=i)
$$

M-step

Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\mu_{i}=\frac{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right) x_{j}}{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right)}
$$

E.M. Convergence

- EM is coordinate ascent on an interesting potential function
- Coord. ascent for bounded pot. func. ! convergence to a local optimum guaranteed
- See Neal \& Hinton reading on class webpage

- This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data

E.M. for General GMMs

Iterate. On the t th iteration let our estimates be

$$
\lambda_{t}=\left\{\mu_{1}^{(t)}, \mu_{2}^{(t)} \ldots \mu_{k}(t), \Sigma_{1}^{(t)}, \Sigma_{2}(t) \ldots \Sigma_{k}^{(t)}, p_{1}^{(t)}, p_{2}(t) \ldots p_{k}^{(t)}\right\}
$$

$p_{i}^{(t)}$ is shorthand for estimate of $P(y=i)$ on t'th iteration

E-step

Compute "expected" classes of all datapoints for each class

$$
\mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right) \propto p_{i}^{(t)} \mathrm{p}\left(x_{j} \mid \mu_{i}^{(t)}, \Sigma_{i}^{(t)}\right), \begin{aligned}
& \text { Just evaluate } \\
& \text { a Gaussian at } \\
& x_{j}
\end{aligned}
$$

M-step
Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\begin{gathered}
\grave{\mathrm{I}}_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right) x_{j}}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)} \quad \Sigma_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)\left[x_{j}-\mu_{i}^{(t+1)}\left\lceil x_{j}-\mu_{i}^{(t+1)}\right]\right.}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)} \\
p_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)}{m} \quad m=\text { \#records }
\end{gathered}
$$

Gaussian Mixture Example: Start

©2005-2007 Carlos Guestrin

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

©2005-2007 Carlos Guestrin

GMM clustering of the assay data

©2005-2007 Carlos Guestrin Density
Estimator

Compound $=$

Three classes of

 assay(each learned with it's own mixture model)

©2005-2007 Carlos Guestrin

Resulting Bayes Classifier

©2005-2007 Carlos Guestrin

Resulting Bayes Classifier, using posterior probabilities to alert about ambiguity and anomalousness

Cyan means ambiguous

The general learning problem with missing data

- Marginal likelihood $-\mathbf{x}$ is observed, \mathbf{z} is missing:

$$
\begin{aligned}
\ell(\theta: \mathcal{D}) & =\log \prod_{j=1}^{m} P\left(\mathbf{x}_{j} \mid \theta\right) \\
& =\sum_{j=1}^{m} \log P\left(\mathbf{x}_{j} \mid \theta\right) \\
& =\sum_{j=1}^{m} \log \sum_{\mathbf{z}} P\left(\mathbf{x}_{j}, \mathbf{z} \mid \theta\right)
\end{aligned}
$$

E-step

- \mathbf{x} is observed, \mathbf{z} is missing
- Compute probability of missing data given current choice of θ
$\square \mathrm{Q}\left(\mathbf{z} \mid \mathbf{x}_{\mathrm{j}}\right)$ for each \mathbf{x}_{j}
- e.g., probability computed during classification step
- corresponds to "classification step" in K-means

$$
Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right)=P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)
$$

Jensen's inequality

$$
\ell(\theta: \mathcal{D})=\sum_{j=1}^{m} \log \sum_{\mathbf{z}} P\left(\mathbf{z} \mid \mathbf{x}_{j}\right) P\left(\mathrm{x}_{j} \mid \theta\right)
$$

- Theorem: $\log \sum_{\mathbf{z}} \mathrm{P}(\mathbf{z}) f(\mathbf{z}) \geq \sum_{\mathbf{z}} \mathrm{P}(\mathbf{z}) \log \mathrm{f}(\mathbf{z})$

Applying Jensen's inequality

■ Use: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \geq \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

$$
\ell\left(\theta^{(t)}: \mathcal{D}\right)=\sum_{j=1}^{m} \log \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)}{Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}
$$

The M-step maximizes lower bound on weighted data

- Lower bound from Jensen's:

$$
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)+m \cdot H\left(Q^{(t+1)}\right)
$$

- Corresponds to weighted dataset:
$\square<\mathbf{x}_{1}, \mathbf{z}=1>$ with weight $Q^{(t+1)}\left(\mathbf{z}=1 \mid \mathbf{x}_{1}\right)$
$\square<\mathbf{x}_{1}, \mathbf{z}=2>$ with weight $Q^{(t+1)}\left(\mathbf{z}=2 \mid \mathbf{x}_{1}\right)$
$\square<\mathbf{x}_{1}, \mathbf{z}=3>$ with weight $Q^{(t+1)}\left(\mathbf{z}=3 \mid \mathbf{x}_{1}\right)$
$\square<\mathbf{x}_{2}, \mathbf{z}=1>$ with weight $Q^{(t+1)}\left(\mathbf{z}=1 \mid \mathbf{x}_{2}\right)$
$\square<\mathbf{x}_{2}, \mathbf{z}=2>$ with weight $Q^{(t+1)}\left(\mathbf{z}=2 \mid \mathbf{x}_{2}\right)$
$\square<\mathbf{x}_{2}, \mathbf{z}=3>$ with weight $Q^{(t+1)}\left(\mathbf{z}=3 \mid \mathbf{x}_{2}\right)$

[^0]
The M-step

$$
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)+m \cdot H\left(Q^{(t+1)}\right)
$$

- Maximization step:

$$
\theta^{(t+1)} \leftarrow \arg \max _{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)
$$

- Use expected counts instead of counts:
\square If learning requires $\operatorname{Count}(\mathbf{x}, \mathbf{z})$
\square Use $\mathrm{E}_{\mathrm{Q}(\mathrm{t}+1)}[\operatorname{Count}(\mathbf{x}, \mathbf{z})]$

Convergence of EM

- Define potential function $F(\theta, Q)$:

$$
\ell(\theta: \mathcal{D}) \geq F(\theta, Q)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}
$$

- EM corresponds to coordinate ascent on F
\square Thus, maximizes lower bound on marginal log likelihood

M-step is easy

$$
\theta^{(t+1)} \leftarrow \arg \max _{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)
$$

- Using potential function

$$
F\left(\theta, Q^{(t+1)}\right)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)+m \cdot H\left(Q^{(t+1)}\right)
$$

E-step also doesn't decrease potential function 1

■ Fixing θ to $\theta^{(t)}$:

$$
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)}\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}
$$

KL-divergence

- Measures distance between distributions

$$
K L(Q \| P)=\sum_{z} Q(z) \log \frac{Q(z)}{P(z)}
$$

- KL=zero if and only if $\mathrm{Q}=\mathrm{P}$

E-step also doesn't decrease potential function 2

■ Fixing θ to $\theta^{(t)}$:

$$
\begin{aligned}
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right) & =\ell\left(\theta^{(t)}: \mathcal{D}\right)+\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)} \\
& =\ell\left(\theta^{(t)}: \mathcal{D}\right)-m \sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)| | P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)\right)
\end{aligned}
$$

E-step also doesn't decrease potential function 3

$\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)-m \sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)| | P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)\right)$

- Fixing θ to $\theta^{(t)}$
- Maximizing $F\left(\theta^{(t)}, \mathrm{Q}\right)$ over $\mathrm{Q} \rightarrow$ set Q to posterior probability:

$$
Q^{(t+1)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \leftarrow P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)
$$

- Note that

$$
F\left(\theta^{(t)}, Q^{(t+1)}\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)
$$

EM is coordinate ascent

$$
\ell(\theta: \mathcal{D}) \geq F(\theta, Q)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}
$$

- M-step: Fix Q, maximize F over θ (a lower bound on $\ell(\theta: \mathcal{D})$):

$$
\ell(\theta: \mathcal{D}) \geq F\left(\theta, Q^{(t)}\right)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)+m \cdot H\left(Q^{(t)}\right)
$$

- E-step: Fix θ, maximize F over Q:

$$
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)-m \sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)| | P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)\right)
$$

\square "Realigns" F with likelihood:

$$
F\left(\theta^{(t)}, Q^{(t+1)}\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)
$$

What you should know

- K-means for clustering:
\square algorithm
\square converges because it's coordinate ascent
- EM for mixture of Gaussians:
\square How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it DOES
- EM is coordinate ascent
- General case for EM

Acknowledgements

- K-means \& Gaussian mixture models presentation contains material from excellent tutorial by Andrew Moore:
\square http://www.autonlab.org/tutorials/
- K-means Applet:
$\square \underline{\text { http://www.elet.polimi.it/upload/matteucc/Clustering/tu }}$ torial html/AppletKM.html
- Gaussian mixture models Applet:
\square http://www.neurosci.aist.go.jp/\~akaho/MixtureEM. html

EM for HMMs a.k.a. The Baum-Welch Algorithm

Machine Learning - 10701/15781 Carlos Guestrin
Carnegie Mellon University
April 9 ${ }^{\text {th }}, 2007$
©2005-2007 Carlos Guestrin

Learning HMMs from fully observable data is easy

Learn 3 distributions:
$P\left(X_{1}\right)$
$P\left(O_{i} \mid X_{i}\right)$
$P\left(X_{i} \mid X_{i-1}\right)$

Learning HMM from fully

 observable data is easy

Learn 3 distributions:

$$
P\left(O_{i} \mid X_{i}\right)=\begin{gathered}
\text { (count (pixel } \left.z \text { was white, } x_{i}=a\right)
\end{gathered}
$$

$$
P\left(X_{i}^{\prime=a} \mid X_{i-}^{\prime b}\right.
$$

What if \mathbf{O} is observed, but \mathbf{X} is hidden

$$
\begin{aligned}
& \left.T P\left(X_{1}^{\prime}\right)^{\prime}\right)=\left(\text { out (\# first letterva }{ }^{\text {was }}\right. \text {) } \\
& \text { select training data } \\
& \text { white letter was a }
\end{aligned}
$$

Log likelihood for HMMs when \mathbf{X} is hidden

- Marginal likelihood - \mathbf{O} is observed, \mathbf{X} is missing
\square For simplicity of notation, training data consists of only one sequence:

$$
\begin{aligned}
\ell(\theta: \mathcal{D}) & =\log P(\mathbf{o} \mid \theta) \\
& =\log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)
\end{aligned}
$$

\square If there were m sequences:

$$
\ell(\theta: \mathcal{D})=\sum_{j=1}^{m} \log \sum_{\mathbf{x}} P\left(\mathbf{x}, \mathbf{o}^{(j)} \mid \theta\right)
$$

Computing Log likelihood for

 HMMs when \mathbf{X} is hidden

$$
\begin{aligned}
\ell(\theta: \mathcal{D}) & =\log P(\mathbf{o} \mid \theta) \\
& =\log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)
\end{aligned}
$$

Computing Log likelihood for HMMs when \mathbf{X} is hidden - variable elimination

- Can compute efficiently with variable elimination:

$$
\begin{aligned}
\ell(\theta: \mathcal{D}) & =\log P(\mathbf{o} \mid \theta) \\
& =\log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)
\end{aligned}
$$

EM for HMMs when \mathbf{X} is hidden

- E-step: Use inference (forwards-backwards algorithm)
- M-step: Recompute parameters with weighted data

E-step

- E-step computes probability of hidden vars \mathbf{x} given \mathbf{o}

$$
Q^{(t+1)}(\mathbf{x} \mid \mathbf{o})=P\left(\mathbf{x} \mid \mathbf{o}, \theta^{(t)}\right)
$$

- Will correspond to inference
\square use forward-backward algorithm!

The M-step

- Maximization step:

$$
\theta^{(t+1)} \leftarrow \arg \max _{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta)
$$

- Use expected counts instead of counts:
\square If learning requires $\operatorname{Count}(\mathbf{x}, \mathbf{o})$
\square Use $\mathrm{E}_{\mathrm{Q}(\mathrm{t}+1)}[\operatorname{Count}(\mathbf{x}, \mathbf{o})]$

Decomposition of likelihood $P\left(X_{1}\right)$

- Likelihood optimization decomposes:
$\max _{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta)=$
$\quad \max _{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P\left(x_{1} \mid \theta_{X_{1}}\right) P\left(o_{1} \mid x_{1}, \theta_{O \mid X}\right) \prod_{t=2}^{n} P\left(x_{t} \mid x_{t-1}, \theta_{X_{t} \mid X_{t-1}}\right) P\left(o_{t} \mid x_{t}, \theta_{O \mid X}\right)$

Starting state probability $\mathrm{P}\left(\mathrm{X}_{1}\right)$

- Using expected counts
$\square P\left(X_{1}=a\right)=\theta_{\mathrm{X} 1=\mathrm{a}}$
$\max _{\theta_{X_{1}}} \sum_{\mathrm{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P\left(x_{1} \mid \theta_{X_{1}}\right)$

$$
\theta_{X_{1}=a}=\frac{\sum_{j=1}^{m} Q\left(X_{1}=a \mid \mathbf{o}^{(j)}\right)}{m}
$$

Transition probability $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)$

- Using expected counts
$\square \mathrm{P}\left(\mathrm{X}_{\mathrm{t}}=\mathrm{a} \mid \mathrm{X}_{\mathrm{t}-1}=\mathrm{b}\right)=\theta_{\mathrm{Xt}=a \mathrm{Xt}-1 \mathrm{~b}}$
$\max _{\theta_{X} \mid X_{t-1}} \sum_{\mathrm{x}} Q(\mathrm{x} \mid \mathrm{o}) \log \prod_{t=2}^{n} P\left(x_{t} \mid x_{t-1}, \theta_{X_{t} \mid X_{t-1}}\right)$

$$
\theta_{X_{t}}=a \left\lvert\, X_{t-1}=b=\frac{\sum_{j=1}^{m} \sum_{t=2}^{n} Q\left(X_{t}=a, X_{t-1}=b \mid \mathbf{o}^{(j)}\right)}{\sum_{j=1}^{m} \sum_{t=2}^{n} \sum_{i=1}^{k} Q\left(X_{t}=i, X_{t-1}=b \mid \mathbf{0}(j)\right)}\right.
$$

Observation probability $\mathrm{P}\left(\mathrm{O}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}}\right)$

- Using expected counts
$\square \mathrm{P}\left(\mathrm{O}_{\mathrm{t}}=\mathrm{a} \mid \mathrm{X}_{\mathrm{t}}=\mathrm{b}\right)=\theta_{\mathrm{Ot}=\mathrm{a} \mid \mathrm{Xt}=\mathrm{b}}$
$\max _{\theta_{O \mid X}} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log \prod_{t=1}^{n} P\left(o_{t} \mid x_{t}, \theta_{O \mid X}\right)$

$$
\theta_{O_{t}=a \mid X_{t}=b}=\frac{\sum_{j=1}^{m} \sum_{t=1}^{n} \delta\left(\mathbf{o}_{t}^{(j)}=a\right) Q\left(X_{t}=b \mid \mathbf{o}^{(j)}\right)}{\sum_{j=1}^{m} \sum_{t=1}^{n} Q\left(X_{t}=b \mid \mathbf{o}^{(j)}\right)}
$$

E-step revisited

$$
Q^{(t+1)}(\mathbf{x} \mid \mathbf{o})=P\left(\mathbf{x} \mid \mathbf{o}, \theta^{(t)}\right)
$$

- E-step computes probability of hidden vars \mathbf{x} given \mathbf{o}
- Must compute:
$\square \mathrm{Q}\left(\mathrm{x}_{\mathrm{t}}=\mathrm{a} \mid \mathbf{0}\right)$ - marginal probability of each position
$\square \mathrm{Q}\left(\mathrm{x}_{\mathrm{t}+1}=\mathrm{a}, \mathrm{x}_{\mathrm{t}}=\mathrm{b} \mid \mathrm{o}\right)$ - joint distribution between pairs of positions

The forwards-backwards algorithm

- Initialization: $\alpha_{1}\left(X_{1}\right)=P\left(X_{1}\right) P\left(o_{1} \mid X_{1}\right)$
- For $\mathrm{i}=2$ to n
\square Generate a forwards factor by eliminating X_{i-1}

$$
\frac{\alpha_{i}\left(X_{i}\right)}{=} \sum_{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{\text {o }}(a)\left(x_{i-1}\right)
$$

- Initialization: $\beta_{n}\left(X_{n}\right)=1$
- For $\mathrm{i}=\mathrm{n}-1$ to 1

$$
\alpha_{5}^{\dot{i}}(z)
$$

\square Generate a backwards factor by eliminating $\mathrm{X}_{\mathrm{i}+1}$
$\forall x^{\prime}$

$$
\beta_{i}\left(X_{i}^{\sim}\right)^{x_{1}}=\sum_{x_{i+1}} P\left(o_{i+1} \mid x_{i+1}\right) P\left(x_{i+1} \mid X_{i}^{\sim}\right) \beta_{i+1}\left(x_{i+1}\right)
$$

- 8 i, probability is: $\underset{\left(X_{i} \mid O_{1 . n}\right)}{ } \alpha_{i}\left(X_{i}\right) \beta_{i}\left(X_{i}\right)$

E-step revisited

$$
Q^{(t+1)}(\mathbf{x} \mid \mathbf{o})=P\left(\mathbf{x} \mid \mathbf{o}, \theta^{(t)}\right)
$$

- E-step computes probability of hidden vars \mathbf{x} given o
- Must compute:
$\square \mathrm{Q}\left(\mathrm{x}_{\mathrm{t}}=\mathrm{a} \mid \mathbf{0}\right)$ - marginal probability of each position - Just forwards-backwards!
$\square \mathrm{Q}\left(\mathrm{x}_{\mathrm{t}+1}=\mathrm{a}, \mathrm{x}_{\mathrm{t}}=\mathrm{b} \mid \mathrm{o}\right)$ - joint distribution between pairs of positions
- Homework! :

What can you do with EM for HMMs? 1 - Clustering sequences

Independent clustering:
Sequence clustering:

What can you do with EM for HMMs? 2 - Exploiting unlabeled data

- Labeling data is hard work! save (graduate student) time by using both labeled and unlabeled data
\square Labeled data:
- <X="brace",O= >
\square Unlabeled data:
- <X=?????,O= >

Exploiting unlabeled data in clustering

- A few data points are labeled $\square<\mathrm{X}, \mathrm{O}>$
- Most points are unlabeled -<?,o>
- In the E-step of EM:
\square If i'th point is unlabeled:
- compute $\mathrm{Q}\left(\mathrm{X} \mid \mathrm{o}_{\mathrm{i}}\right)$ as usual
\square If i'th point is labeled:

- $\operatorname{set} Q\left(X=x \mid o_{i}\right)=1$ and $Q\left(X \neq x \mid o_{i}\right)=0$
- M-step as usual

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.
\square

Iteration 0		Iteration 1	Iteration 2
intelligence		D D	D
DD		D	D D
artificial	Using one	lecture	lecture
understanding	-	cc	cc
$D D \mathrm{w}$	abeled	D^{\star}	$D D: D D$
dist	example per	D D: $D \mathrm{D}$	due
identical		handout	D^{\star}
rus	class	due	homework
arrange		problem	assignment
games		set	handout
dartmouth		tay	set
natural		DDam	hw
cognitive		yurttas	exam
logic		homework	problem
proving		kfoury	DDam
prolog		sec	postscript
knowledge		postscript	solution
human		exam	quiz
representation		solution	chapter
field		assaf	ascii

20 Newsgroups data - advantage of adding unlabeled data

©2005-2007 Carlos Guestrin

20 Newsgroups data - Effect of additional unlabeled data

Exploiting unlabeled data in HMMs

- A few data points are labeled
$\square<x, 0>$
- Most points are unlabeled
$\square<?, \mathrm{o}>$
- In the E-step of EM:
\square If i'th point is unlabeled:
- compute $\mathrm{Q}\left(\mathrm{X} \mid \mathrm{o}_{\mathrm{i}}\right)$ as usual
\square If i'th point is labeled:
- $\operatorname{set} Q\left(X=x \mid o_{i}\right)=1$ and $Q\left(X \neq x \mid o_{i}\right)=0$
- M-step as usual
\square Speed up by remembering counts for labeled data

What you need to know

- Baum-Welch = EM for HMMs
- E-step:
\square Inference using forwards-backwards
- M-step:
\square Use weighted counts
- Exploiting unlabeled data:
\square Some unlabeled data can help classification
\square Small change to EM algorithm
- In E-step, only use inference for unlabeled data

Acknowledgements

- Experiments combining labeled and unlabeled data provided by Tom Mitchell

[^0]: $\square \ldots$

