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Gaussian Bayes Classifier
Reminder
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Next…   back to Density Estimation

What if we want to do density estimation with
multimodal or clumpy data?
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Marginal likelihood for general case

 Marginal likelihood:

! 

P(x j )
j=1

m

" = P(x j ,y = i)
i=1

k

#
j=1

m

"

=
1

(2$ )m / 2 ||%i ||
1/ 2
exp &

1

2
x j &µi( )

T

%i

&1
x j &µi( )

' 

( ) 
* 

+ , 
P(y = i)

i=1

k

#
j=1

m

"

! 

P(y = i | x j )"
1

(2# )m / 2 ||$i ||
1/ 2
exp %

1

2
x j %µi( )

T

$i

%1
x j %µi( )

& 

' ( 
) 

* + 
P(y = i)



©2005-2007 Carlos Guestrin

Graph of
log P(x1, x2 .. x25 | µ1, µ2 )

against µ1 (→) and µ2 (↑)

Max likelihood = (µ1 =-2.13, µ2 =1.668)

Local minimum, but very close to global at (µ1 =2.085, µ2 =-1.257)*

     * corresponds to switching y1 with y2.

Duda & Hart’s Example

µ1

µ2
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Finding the max likelihood µ1,µ2..µk

We can compute  P( data | µ1,µ2..µk)
How do we find the µi‘s which give max. likelihood?

 The normal max likelihood trick:
Set   ∂    log Prob (….) = 0

                  ∂ µi

and solve for µi‘s.
# Here you get non-linear non-analytically-solvable equations

 Use gradient descent
Slow but doable

 Use a much faster, cuter, and recently very popular method…
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Expectation
Maximalization
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The E.M. Algorithm

 We’ll get back to unsupervised learning soon
 But now we’ll look at an even simpler case with hidden

information
 The EM algorithm

 Can do trivial things, such as the contents of the next few slides
 An excellent way of doing our unsupervised learning problem, as

we’ll see
 Many, many other uses, including learning BNs with hidden data

DETOUR
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Silly Example
Let events be “grades in a class”

w1 = Gets an A P(A) = ½
w2 = Gets a   B P(B) = µ
w3 = Gets a   C P(C) = 2µ
w4 = Gets a   D P(D) = ½-3µ

(Note  0 ≤ µ ≤1/6)
Assume we want to estimate µ from data.  In a given class there were

a   A’s
b   B’s
c   C’s
d   D’s

What’s the maximum likelihood estimate of µ given a,b,c,d ?
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Trivial Statistics
P(A) = ½    P(B) = µ    P(C) = 2µ    P(D) = ½-3µ
P( a,b,c,d | µ) = K(½)a(µ)b(2µ)c(½-3µ)d

log P( a,b,c,d | µ) = log K + alog ½ + blog µ + clog 2µ + dlog (½-3µ)

! 

FOR MAX LIKE µ,  SET 
"LogP

"µ
= 0

"LogP

"µ
=
b

µ
+

2c

2µ
#

3d

1/2 # 3µ
= 0

Gives max like µ =  
b + c

6 b + c + d( )

So if class got

Max like µ =
1

10

109614

DCBA

Boring, but tru
e!
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

We can answer this question circularly:

! 

µ  =  
b + c

6 b + c + d( )

MAXIMIZATION

If we know the expected values of a and b
we could compute the maximum likelihood
value of µ

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

! 

a =
1

2

1
2

+ µ
h        b =

µ

1
2

+ µ
h

EXPECTATION If we know the value of µ we could compute the
expected value of a and b

Since the ratio a:b should be the same as the ratio ½ : µ
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E.M. for our Trivial Problem

We begin with a guess for µ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates
of  µ and a and b.

Define    µ(t)  the estimate of µ on the t’th iteration
               b(t)  the estimate of b on t’th iteration

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

! 

µ(0) =  initial guess

b
(t ) =   

µ(t )
h

1
2

+ µ( t )
= " b | µ( t )[ ]

µ(t+1) =
b

(t ) + c

6 b(t ) + c + d( )
=  max like est. of µ given b( t )

E-step

M-step

Continue iterating until converged.
Good news:  Converging to local optimum is assured.
Bad news:  I said “local” optimum.
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E.M. Convergence
 Convergence proof based on fact that Prob(data | µ) must increase or remain

same between each iteration [NOT OBVIOUS]

 But it can never exceed 1    [OBVIOUS]

So it must therefore converge   [OBVIOUS]

3.1870.09486

3.1870.09485

3.1870.09484

3.1850.09473

3.1580.09372

2.8570.08331

000

b(t)µ(t)tIn our example,
suppose we had

h = 20
c = 10
d = 10

         µ(0) = 0

Convergence is generally linear: error
decreases by a constant factor each time
step.
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Back to Unsupervised Learning of
GMMs – a simple case

A simple case:
We have unlabeled data x1 x2 … xm
We know there are k classes
We know P(y1) P(y2) P(y3) … P(yk)
We don’t know µ1 µ2 .. µk

We can write P( data | µ1…. µk)

! 

= p x1...xm µ1...µk( )

= p x j µ1...µk( )
j=1

m
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= p x j µi( )P y = i( )
i=1
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EM for simple case of GMMs: The
E-step

 If we know µ1,…,µk      →  easily compute prob.
point xj belongs to class y=i

! 

p y = i x j ,µ1...µk( )"exp #
1

2$ 2
x j #µi

2% 

& 
' 

( 

) 
* P y = i( )
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EM for simple case of GMMs: The
M-step

 If we know prob. point xj belongs to class y=i
 → MLE for µi is weighted average

 imagine k copies of each xj, each with weight P(y=i|xj):

! 

µi =  

P y = i x j( )
j=1

m

" x j

P y = i x j( )
j=1

m

"
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E.M. for GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute Max. like µ given our data’s class membership distributions

Just evaluate
a Gaussian at
xj

! 

p y = i x j ,µ1...µk( )"exp #
1

2$ 2
x j #µi
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E.M. Convergence

 This algorithm is REALLY USED.  And in high dimensional state spaces, too.
E.G. Vector Quantization for Speech Data

• EM is coordinate
ascent on an
interesting potential
function

• Coord. ascent for
bounded pot. func. !
convergence to a local
optimum guaranteed

• See Neal & Hinton
reading on class
webpage
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be

λt = { µ1
(t), µ2

(t) … µk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) }

E-step
Compute “expected” classes of all datapoints for each class

( ) ( ))()()(
,p,P

t

i

t

ij

t

itj
xpxiy !"= µ#

pi
(t) is shorthand for

estimate of P(y=i)
on t’th iteration

M-step
Compute Max. like µ given our data’s class membership distributions
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xj
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Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting
Density
Estimator
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Three
classes of
assay
(each learned with
it’s own mixture
model)
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Resulting
Bayes
Classifier
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Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means
anomalous

Cyan means
ambiguous
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The general learning problem with
missing data

 Marginal likelihood – x is observed, z is missing:



©2005-2007 Carlos Guestrin

E-step

 x is observed, z is missing
 Compute probability of missing data given current choice of θ

 Q(z|xj) for each xj

 e.g., probability computed during classification step
 corresponds to “classification step” in K-means
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Jensen’s inequality

 Theorem: log ∑z P(z) f(z)  ≥  ∑z P(z) log f(z)



©2005-2007 Carlos Guestrin

Applying Jensen’s inequality

 Use:  log ∑z P(z) f(z) ≥ ∑z P(z) log f(z)



©2005-2007 Carlos Guestrin

The M-step maximizes lower bound on
weighted data

 Lower bound from Jensen’s:

 Corresponds to weighted dataset:
 <x1,z=1> with weight Q(t+1)(z=1|x1)
 <x1,z=2> with weight Q(t+1)(z=2|x1)
 <x1,z=3> with weight Q(t+1)(z=3|x1)
 <x2,z=1> with weight Q(t+1)(z=1|x2)
 <x2,z=2> with weight Q(t+1)(z=2|x2)
 <x2,z=3> with weight Q(t+1)(z=3|x2)
 …
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The M-step

 Maximization step:

 Use expected counts instead of counts:
 If learning requires Count(x,z)
 Use EQ(t+1)[Count(x,z)]
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Convergence of EM

 Define potential function F(θ,Q):

 EM corresponds to coordinate ascent on F
 Thus, maximizes lower bound on marginal log likelihood
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M-step is easy

 Using potential function
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E-step also doesn’t decrease
potential function 1
 Fixing θ to θ(t):
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KL-divergence

 Measures distance between distributions

 KL=zero if and only if Q=P
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E-step also doesn’t decrease
potential function 2

 Fixing θ to θ(t):
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E-step also doesn’t decrease
potential function 3

 Fixing θ to θ(t)

 Maximizing F(θ(t),Q) over Q → set Q to posterior probability:

 Note that
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EM is coordinate ascent

 M-step: Fix Q, maximize F over θ (a lower bound on            ):

 E-step: Fix θ, maximize F over Q:

 “Realigns” F with likelihood:
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What you should know

 K-means for clustering:
 algorithm
 converges because it’s coordinate ascent

 EM for mixture of Gaussians:
 How to “learn” maximum likelihood parameters (locally max. like.) in

the case of unlabeled data

 Be happy with this kind of probabilistic analysis
 Remember, E.M. can get stuck in local minima, and

empirically it DOES
 EM is coordinate ascent
 General case for EM
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Acknowledgements

 K-means & Gaussian mixture models
presentation contains material from excellent
tutorial by Andrew Moore:
 http://www.autonlab.org/tutorials/

 K-means Applet:
 http://www.elet.polimi.it/upload/matteucc/Clustering/tu

torial_html/AppletKM.html
 Gaussian mixture models Applet:

 http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.
html
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EM for HMMs
a.k.a. The Baum-Welch
Algorithm
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 9th, 2007
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Learning HMMs from fully
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:



©2005-2007 Carlos Guestrin

Learning HMMs from fully
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:

What if O is observed, 
but X is hidden
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Log likelihood for HMMs when X is
hidden

 Marginal likelihood – O is observed, X is missing
 For simplicity of notation, training data consists of only one sequence:

 If there were m sequences:



©2005-2007 Carlos Guestrin

Computing Log likelihood for
HMMs when X is hidden

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Computing Log likelihood for HMMs
when X is hidden – variable elimination

 Can compute efficiently with variable elimination:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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EM for HMMs when X is hidden

 E-step: Use inference (forwards-backwards algorithm)

 M-step: Recompute parameters with weighted data

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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E-step

 E-step computes probability of hidden vars x given o

 Will correspond to inference
 use forward-backward algorithm!

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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The M-step

 Maximization step:

 Use expected counts instead of counts:
 If learning requires Count(x,o)
 Use EQ(t+1)[Count(x,o)]

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Decomposition of likelihood
revisited

 Likelihood optimization decomposes:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Starting state probability P(X1)
 Using expected counts

 P(X1=a) =  θX1=a
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Transition probability P(Xt|Xt-1)
 Using expected counts

 P(Xt=a|Xt-1=b) =  θXt=a|Xt-1=b
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Observation probability P(Ot|Xt)
 Using expected counts

 P(Ot=a|Xt=b) =  θOt=a|Xt=b
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E-step revisited

 E-step computes probability of hidden vars x given o
 Must compute:

 Q(xt=a|o) – marginal probability of each position

 Q(xt+1=a,xt=b|o) – joint distribution between pairs of
positions

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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The forwards-backwards algorithm
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

 Initialization:
 For i = 2 to n

 Generate a forwards factor by eliminating Xi-1

 Initialization:
 For i = n-1 to 1

 Generate a backwards factor by eliminating Xi+1

  8 i, probability is:
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E-step revisited

 E-step computes probability of hidden vars x
given o

 Must compute:
Q(xt=a|o) – marginal probability of each position

 Just forwards-backwards!
Q(xt+1=a,xt=b|o) – joint distribution between pairs

of positions
 Homework! 

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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What can you do with EM for HMMs? 1
– Clustering sequences
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Independent clustering: Sequence clustering:
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What can you do with EM for HMMs? 2
– Exploiting unlabeled data
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

 Labeling data is hard work ! save (graduate student) time
by using both labeled and unlabeled data
 Labeled data:

 <X=“brace”,O=           >

 Unlabeled data:
 <X=?????,O=           >
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Exploiting unlabeled data in
clustering

 A few data points are labeled
 <x,o>

 Most points are unlabeled
 <?,o>

 In the E-step of EM:
 If i’th point is unlabeled:

 compute Q(X|oi) as usual
 If i’th point is labeled:

 set Q(X=x|oi)=1 and Q(X≠x|oi)=0

 M-step as usual
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20 Newsgroups data – advantage
of adding unlabeled data



©2005-2007 Carlos Guestrin

20 Newsgroups data – Effect of
additional unlabeled data
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Exploiting unlabeled data in HMMs

 A few data points are labeled
 <x,o>

 Most points are unlabeled
 <?,o>

 In the E-step of EM:
 If i’th point is unlabeled:

 compute Q(X|oi) as usual
 If i’th point is labeled:

 set Q(X=x|oi)=1 and Q(X≠x|oi)=0
 M-step as usual

 Speed up by remembering counts for labeled data

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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What you need to know

 Baum-Welch = EM for HMMs
 E-step:

 Inference using forwards-backwards
 M-step:

 Use weighted counts
 Exploiting unlabeled data:

 Some unlabeled data can help classification
 Small change to EM algorithm

 In E-step, only use inference for unlabeled data
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