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Gaussian Bayes Classifier
Reminder
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Next…   back to Density Estimation

What if we want to do density estimation with
multimodal or clumpy data?



©2005-2007 Carlos Guestrin

Marginal likelihood for general case

 Marginal likelihood:
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Graph of
log P(x1, x2 .. x25 | µ1, µ2 )

against µ1 (→) and µ2 (↑)

Max likelihood = (µ1 =-2.13, µ2 =1.668)

Local minimum, but very close to global at (µ1 =2.085, µ2 =-1.257)*

     * corresponds to switching y1 with y2.

Duda & Hart’s Example

µ1

µ2
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Finding the max likelihood µ1,µ2..µk

We can compute  P( data | µ1,µ2..µk)
How do we find the µi‘s which give max. likelihood?

 The normal max likelihood trick:
Set   ∂    log Prob (….) = 0

                  ∂ µi

and solve for µi‘s.
# Here you get non-linear non-analytically-solvable equations

 Use gradient descent
Slow but doable

 Use a much faster, cuter, and recently very popular method…
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Expectation
Maximalization
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The E.M. Algorithm

 We’ll get back to unsupervised learning soon
 But now we’ll look at an even simpler case with hidden

information
 The EM algorithm

 Can do trivial things, such as the contents of the next few slides
 An excellent way of doing our unsupervised learning problem, as

we’ll see
 Many, many other uses, including learning BNs with hidden data

DETOUR
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Silly Example
Let events be “grades in a class”

w1 = Gets an A P(A) = ½
w2 = Gets a   B P(B) = µ
w3 = Gets a   C P(C) = 2µ
w4 = Gets a   D P(D) = ½-3µ

(Note  0 ≤ µ ≤1/6)
Assume we want to estimate µ from data.  In a given class there were

a   A’s
b   B’s
c   C’s
d   D’s

What’s the maximum likelihood estimate of µ given a,b,c,d ?
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Trivial Statistics
P(A) = ½    P(B) = µ    P(C) = 2µ    P(D) = ½-3µ
P( a,b,c,d | µ) = K(½)a(µ)b(2µ)c(½-3µ)d

log P( a,b,c,d | µ) = log K + alog ½ + blog µ + clog 2µ + dlog (½-3µ)

! 

FOR MAX LIKE µ,  SET 
"LogP

"µ
= 0

"LogP

"µ
=
b

µ
+

2c

2µ
#

3d

1/2 # 3µ
= 0

Gives max like µ =  
b + c

6 b + c + d( )

So if class got

Max like µ =
1

10

109614

DCBA

Boring, but tru
e!
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                              = c
Number of D’s                              = d

What is the max. like estimate of µ now?

We can answer this question circularly:

! 

µ  =  
b + c

6 b + c + d( )

MAXIMIZATION

If we know the expected values of a and b
we could compute the maximum likelihood
value of µ

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

! 

a =
1

2

1
2

+ µ
h        b =

µ

1
2

+ µ
h

EXPECTATION If we know the value of µ we could compute the
expected value of a and b

Since the ratio a:b should be the same as the ratio ½ : µ
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E.M. for our Trivial Problem

We begin with a guess for µ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates
of  µ and a and b.

Define    µ(t)  the estimate of µ on the t’th iteration
               b(t)  the estimate of b on t’th iteration

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

! 

µ(0) =  initial guess

b
(t ) =   

µ(t )
h

1
2

+ µ( t )
= " b | µ( t )[ ]

µ(t+1) =
b

(t ) + c

6 b(t ) + c + d( )
=  max like est. of µ given b( t )

E-step

M-step

Continue iterating until converged.
Good news:  Converging to local optimum is assured.
Bad news:  I said “local” optimum.
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E.M. Convergence
 Convergence proof based on fact that Prob(data | µ) must increase or remain

same between each iteration [NOT OBVIOUS]

 But it can never exceed 1    [OBVIOUS]

So it must therefore converge   [OBVIOUS]

3.1870.09486

3.1870.09485

3.1870.09484

3.1850.09473

3.1580.09372

2.8570.08331

000

b(t)µ(t)tIn our example,
suppose we had

h = 20
c = 10
d = 10

         µ(0) = 0

Convergence is generally linear: error
decreases by a constant factor each time
step.
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Back to Unsupervised Learning of
GMMs – a simple case

A simple case:
We have unlabeled data x1 x2 … xm
We know there are k classes
We know P(y1) P(y2) P(y3) … P(yk)
We don’t know µ1 µ2 .. µk

We can write P( data | µ1…. µk)

! 

= p x1...xm µ1...µk( )

= p x j µ1...µk( )
j=1

m

"

= p x j µi( )P y = i( )
i=1

k

#
j=1

m
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EM for simple case of GMMs: The
E-step

 If we know µ1,…,µk      →  easily compute prob.
point xj belongs to class y=i

! 

p y = i x j ,µ1...µk( )"exp #
1

2$ 2
x j #µi

2% 

& 
' 

( 

) 
* P y = i( )
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EM for simple case of GMMs: The
M-step

 If we know prob. point xj belongs to class y=i
 → MLE for µi is weighted average

 imagine k copies of each xj, each with weight P(y=i|xj):

! 

µi =  

P y = i x j( )
j=1

m

" x j

P y = i x j( )
j=1

m

"
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E.M. for GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute Max. like µ given our data’s class membership distributions

Just evaluate
a Gaussian at
xj

! 

p y = i x j ,µ1...µk( )"exp #
1

2$ 2
x j #µi

2% 
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) 
* P y = i( )
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E.M. Convergence

 This algorithm is REALLY USED.  And in high dimensional state spaces, too.
E.G. Vector Quantization for Speech Data

• EM is coordinate
ascent on an
interesting potential
function

• Coord. ascent for
bounded pot. func. !
convergence to a local
optimum guaranteed

• See Neal & Hinton
reading on class
webpage
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be

λt = { µ1
(t), µ2

(t) … µk
(t), Σ1

(t), Σ2
(t) … Σk

(t), p1
(t), p2

(t) … pk
(t) }

E-step
Compute “expected” classes of all datapoints for each class

( ) ( ))()()(
,p,P

t

i

t

ij

t

itj
xpxiy !"= µ#

pi
(t) is shorthand for

estimate of P(y=i)
on t’th iteration

M-step
Compute Max. like µ given our data’s class membership distributions
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a Gaussian at
xj



©2005-2007 Carlos Guestrin

Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration



©2005-2007 Carlos Guestrin

After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting
Density
Estimator
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Three
classes of
assay
(each learned with
it’s own mixture
model)
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Resulting
Bayes
Classifier
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Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means
anomalous

Cyan means
ambiguous
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The general learning problem with
missing data

 Marginal likelihood – x is observed, z is missing:
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E-step

 x is observed, z is missing
 Compute probability of missing data given current choice of θ

 Q(z|xj) for each xj

 e.g., probability computed during classification step
 corresponds to “classification step” in K-means
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Jensen’s inequality

 Theorem: log ∑z P(z) f(z)  ≥  ∑z P(z) log f(z)
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Applying Jensen’s inequality

 Use:  log ∑z P(z) f(z) ≥ ∑z P(z) log f(z)



©2005-2007 Carlos Guestrin

The M-step maximizes lower bound on
weighted data

 Lower bound from Jensen’s:

 Corresponds to weighted dataset:
 <x1,z=1> with weight Q(t+1)(z=1|x1)
 <x1,z=2> with weight Q(t+1)(z=2|x1)
 <x1,z=3> with weight Q(t+1)(z=3|x1)
 <x2,z=1> with weight Q(t+1)(z=1|x2)
 <x2,z=2> with weight Q(t+1)(z=2|x2)
 <x2,z=3> with weight Q(t+1)(z=3|x2)
 …
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The M-step

 Maximization step:

 Use expected counts instead of counts:
 If learning requires Count(x,z)
 Use EQ(t+1)[Count(x,z)]
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Convergence of EM

 Define potential function F(θ,Q):

 EM corresponds to coordinate ascent on F
 Thus, maximizes lower bound on marginal log likelihood
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M-step is easy

 Using potential function
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E-step also doesn’t decrease
potential function 1
 Fixing θ to θ(t):
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KL-divergence

 Measures distance between distributions

 KL=zero if and only if Q=P
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E-step also doesn’t decrease
potential function 2

 Fixing θ to θ(t):
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E-step also doesn’t decrease
potential function 3

 Fixing θ to θ(t)

 Maximizing F(θ(t),Q) over Q → set Q to posterior probability:

 Note that
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EM is coordinate ascent

 M-step: Fix Q, maximize F over θ (a lower bound on            ):

 E-step: Fix θ, maximize F over Q:

 “Realigns” F with likelihood:
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What you should know

 K-means for clustering:
 algorithm
 converges because it’s coordinate ascent

 EM for mixture of Gaussians:
 How to “learn” maximum likelihood parameters (locally max. like.) in

the case of unlabeled data

 Be happy with this kind of probabilistic analysis
 Remember, E.M. can get stuck in local minima, and

empirically it DOES
 EM is coordinate ascent
 General case for EM



©2005-2007 Carlos Guestrin

Acknowledgements

 K-means & Gaussian mixture models
presentation contains material from excellent
tutorial by Andrew Moore:
 http://www.autonlab.org/tutorials/

 K-means Applet:
 http://www.elet.polimi.it/upload/matteucc/Clustering/tu

torial_html/AppletKM.html
 Gaussian mixture models Applet:

 http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.
html
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EM for HMMs
a.k.a. The Baum-Welch
Algorithm
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 9th, 2007
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Learning HMMs from fully
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:
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Learning HMMs from fully
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:

What if O is observed, 
but X is hidden
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Log likelihood for HMMs when X is
hidden

 Marginal likelihood – O is observed, X is missing
 For simplicity of notation, training data consists of only one sequence:

 If there were m sequences:
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Computing Log likelihood for
HMMs when X is hidden

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Computing Log likelihood for HMMs
when X is hidden – variable elimination

 Can compute efficiently with variable elimination:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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EM for HMMs when X is hidden

 E-step: Use inference (forwards-backwards algorithm)

 M-step: Recompute parameters with weighted data

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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E-step

 E-step computes probability of hidden vars x given o

 Will correspond to inference
 use forward-backward algorithm!

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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The M-step

 Maximization step:

 Use expected counts instead of counts:
 If learning requires Count(x,o)
 Use EQ(t+1)[Count(x,o)]

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Decomposition of likelihood
revisited

 Likelihood optimization decomposes:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Starting state probability P(X1)
 Using expected counts

 P(X1=a) =  θX1=a
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Transition probability P(Xt|Xt-1)
 Using expected counts

 P(Xt=a|Xt-1=b) =  θXt=a|Xt-1=b
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Observation probability P(Ot|Xt)
 Using expected counts

 P(Ot=a|Xt=b) =  θOt=a|Xt=b
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E-step revisited

 E-step computes probability of hidden vars x given o
 Must compute:

 Q(xt=a|o) – marginal probability of each position

 Q(xt+1=a,xt=b|o) – joint distribution between pairs of
positions

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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The forwards-backwards algorithm
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

 Initialization:
 For i = 2 to n

 Generate a forwards factor by eliminating Xi-1

 Initialization:
 For i = n-1 to 1

 Generate a backwards factor by eliminating Xi+1

  8 i, probability is:
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E-step revisited

 E-step computes probability of hidden vars x
given o

 Must compute:
Q(xt=a|o) – marginal probability of each position

 Just forwards-backwards!
Q(xt+1=a,xt=b|o) – joint distribution between pairs

of positions
 Homework! 

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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What can you do with EM for HMMs? 1
– Clustering sequences
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Independent clustering: Sequence clustering:
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What can you do with EM for HMMs? 2
– Exploiting unlabeled data
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

 Labeling data is hard work ! save (graduate student) time
by using both labeled and unlabeled data
 Labeled data:

 <X=“brace”,O=           >

 Unlabeled data:
 <X=?????,O=           >
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Exploiting unlabeled data in
clustering

 A few data points are labeled
 <x,o>

 Most points are unlabeled
 <?,o>

 In the E-step of EM:
 If i’th point is unlabeled:

 compute Q(X|oi) as usual
 If i’th point is labeled:

 set Q(X=x|oi)=1 and Q(X≠x|oi)=0

 M-step as usual
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20 Newsgroups data – advantage
of adding unlabeled data
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20 Newsgroups data – Effect of
additional unlabeled data
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Exploiting unlabeled data in HMMs

 A few data points are labeled
 <x,o>

 Most points are unlabeled
 <?,o>

 In the E-step of EM:
 If i’th point is unlabeled:

 compute Q(X|oi) as usual
 If i’th point is labeled:

 set Q(X=x|oi)=1 and Q(X≠x|oi)=0
 M-step as usual

 Speed up by remembering counts for labeled data

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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What you need to know

 Baum-Welch = EM for HMMs
 E-step:

 Inference using forwards-backwards
 M-step:

 Use weighted counts
 Exploiting unlabeled data:

 Some unlabeled data can help classification
 Small change to EM algorithm

 In E-step, only use inference for unlabeled data
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