

Expectation Maximization

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 9th, 2007

©2005-2007 Carlos Guestrin

Gaussian Bayes Classifier Reminder

$$P(y = i \mid \mathbf{x}_{j}) = \frac{p(\mathbf{x}_{j} \mid y = i)P(y = i)}{p(\mathbf{x}_{j})}$$

$$(lab) \text{ mean class covariance}$$

$$P(y = i \mid \mathbf{x}_{j}) \propto \frac{1}{(2\pi)^{m/2} \|\Sigma_{i}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \mu_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x}_{j} - \mu_{i})\right] P(y = i)$$
prior
$$(-auxian likelihood)$$

Next... back to Density Estimation

What if we want to do density estimation with multimodal or clumpy data?

Marginal likelihood for general case

$$P(y=i \mid \mathbf{x}_{j}) \propto \frac{1}{(2\pi)^{m/2} \parallel \Sigma_{i} \parallel^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \mu_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x}_{j} - \mu_{i})\right] P(y=i)$$

$$\text{Marginal likelihood:} \qquad \text{defn. of} \qquad \text$$

^{*} corresponds to switching y_1 with y_2 .

Finding the max likelihood $\mu_1, \mu_2...\mu_k$

The normal max likelihood trick:

Set
$$\partial \mu_i$$
 log Prob (....) = 0

and solve for μ_i 's.

Here you get non-linear non-analytically-solvable equations

Use gradient descent Slow but doable

there is some debute

not a convox soblem

'some versions and

NP-hand

E.M. Algorithm

- We'll get back to unsupervised learning soon
- But now we'll look at an even simpler case with hidden information
- The EM algorithm
 - Can do trivial things, such as the contents of the next few slides
 - An excellent way of doing our unsupervised learning problem, as we'll see
 - Many, many other uses, including learning BNs with hidden data

Silly Example

М

Let events be "grades in a class"

$$W_1 = \text{Gets an A}$$
 $P(A) = \frac{1}{2}$ $W_2 = \text{Gets a B}$ $P(B) = \mu$ $P(C) = 2\mu$ $P(C) = \frac{1}{2}$ $P(C) = \frac$

Assume we want to estimate µ from data. In a given class there were

What's the maximum likelihood estimate of μ given a,b,c,d?

Trivial Statistics

$$P(A) = \frac{1}{2}$$
 $P(B) = \mu$ $P(C) = 2\mu$ $P(D) = \frac{1}{2} - 3\mu$

$$P(a,b,c,d \mid \mu) = K(\frac{1}{2})^a (\mu)^b (2\mu)^c (\frac{1}{2}-3\mu)^d = \log |i| ke |i| hood$$

log P(a,b,c,d | μ) = log K + alog ½ + blog μ + clog 2μ + dlog (½-3μ) - toke log

FOR MAX LIKE
$$\mu$$
, SET $\frac{\partial \text{LogP}}{\partial \mu} = 0$ \mathcal{S}

$$\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$$
nove things around

Gives max like $\mu = \frac{b+c}{6(b+c+d)}$

So if class got

Α	В	С	D
14	6	9	10

Max like
$$\mu = \frac{1}{10}$$

Same Problem with Hidden Information

h people got A's or B's

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max. like estimate of μ now?

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = a

What is the max. like estimate of μ now?

We can answer this question circularly:

EXPECTATION

If we know the value of μ we could compute the expected value of a and b

Since the ratio a:b should be the same as the ratio $1\!\!/_2$: μ

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

 $a = \frac{\frac{1}{2}}{\frac{1}{2} + \mu} h \qquad b = \frac{\mu}{\frac{1}{2} + \mu} h$ expected \Rightarrow of A's 8 B's

$$\mu = \frac{b+c}{6(b+c+d)}$$
Ryifue
hal
exert

E.M. for our Trivial Problem

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

We begin with a guess for u

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and a and b.

Define $\mu^{(t)}$ the estimate of μ on the t'th iteration $b^{(t)}$ the estimate of b on t'th iteration

 $\mu^{(0)}$ = initial guess

$$b^{(t)} = \frac{\mu^{(t)}h}{\frac{1}{2} + \mu^{(t)}} = \mathbb{E}[b \mid \mu^{(t)}]$$

$$\mu^{(t+1)} = \frac{b^{(t)} + c}{6(b^{(t)} + c + d)}$$

= max like est. of μ given $b^{(t)}$

M-step

Continue iterating until converged.

Good news: Converging to local optimum is assured.

Bad news: I said "local" optimum. Optimum. Carlos Guestrin

E.M. Convergence

- Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration [NOT OBVIOUS]
- But it can never exceed 1 [OBVIOUS]

So it must therefore converge [OBVIOUS]

Convergence is generally <u>linear</u>: error decreases by a constant factor each time step.

t	$\mu^{(t)}$	b ^(t)	
0	0	0	
1	0.0833	2.857	
2	0.0937	3.158	
3	0.0947	3.185	
4	0.0948	3.187	
5	0.0948	3.187	
6	0.0948	3.187	
	•	l	

Back to Unsupervised Learning of GMMs – a simple case

A simple case:

We have unlabeled data $x_1 x_2 \dots x_m = 3$ We know there are k classes
We know $P(y_1) P(y_2) P(y_3) \dots P(y_k) = 3$ We don't know $\mu_1 \mu_2 \dots \mu_k = 3$ We don't know $\mu_1 \mu_2 \dots \mu_k = 3$

We can write P(data | $\mu_1 \dots \mu_k$)

$$= p(x_1...x_m | \mu_1...\mu_k)$$

$$= \prod_{j=1}^{m} p(x_j | \mu_1...\mu_k)$$

$$= \prod_{j=1}^{m} \sum_{i=1}^{k} p(x_j | \mu_i) P(y = i)$$

$$\propto \prod_{j=1}^{m} \sum_{i=1}^{k} exp(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2) P(y = i)$$

EM for simple case of GMMs: The E-step

■ If we know $\mu_1, ..., \mu_k \rightarrow \text{easily compute prob.}$ point x_j belongs to class y=i

$$p(y=i|x_{j},\mu_{1}...\mu_{k}) \propto \exp\left(-\frac{1}{2\sigma^{2}}||x_{j}-\mu_{i}||^{2}\right) P(y=i)$$
for $x_{j}=(1,3)$

$$(1,3)$$

$$(2,3)$$

$$(3,4)$$

$$(3,4)$$

$$(4,3)$$

$$(4,3)$$

$$(4,3)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

$$(5,4)$$

EM for simple case of GMMs: The M-step

- If we know prob. point x_i belongs to class y=i
 - \rightarrow MLE for μ_i is weighted average
 - \square imagine k copies of each x_i , each with weight $P(y=i|x_i)$:

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

E.M. for GMMs (simple case)

E-step

Compute "expected" classes of all datapoints for each class

Just evaluate a Gaussian at

$$p(y = i|x_j, \mu_1...\mu_k) \propto \exp\left(-\frac{1}{2\sigma^2}||x_j - \mu_i||^2\right) P(y = i)$$

M-step

Compute Max. like **µ** given our data's class membership distributions

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

E.M. Convergence

 EM is coordinate ascent on an interesting potential function

 Coord. ascent for bounded pot. func. → convergence to a local optimum guaranteed

 See Neal & Hinton reading on class webpage

This algorithm is <u>REALLY USED</u>. And in high dimensional state spaces, too.
 E.G. Vector Quantization for Speech Data

E.M. for General GMMs

 $p_i^{(t)}$ is shorthand for estimate of P(y=i) on t'th iteration

Iterate. On the *t*th iteration let our estimates be

Compute "expected" classes of all datapoints for each class

$$P(y=i|x_{j},\lambda_{t}) \propto p_{i}^{(t)}p(x_{j}|\mu_{i}^{(t)},\Sigma_{i}^{(t)})$$
Just evaluate a Gaussian at some as normalized that we have the solution of the solution o

Compute Max. like µ given, our data's class membership distributions

$$\mu_{i}^{(t+1)} = \frac{\sum_{j} P(y=i | x_{j}, \lambda_{t}) x_{j}}{\sum_{j} P(y=i | x_{j}, \lambda_{t})} \left[\sum_{i} P(y=i | x_{j}, \lambda_{t}) \left[x_{j} - \mu_{i}^{(t+1)} \right] x_{j} - \mu_{i}^{(t+1)} \right]^{T}}{\sum_{j} P(y=i | x_{j}, \lambda_{t})}$$

$$p_{i}^{(t+1)} = \frac{\sum_{j} P(y=i | x_{j}, \lambda_{t})}{m}$$

$$m = \# \text{records}$$

$$0 \leq 2005 - 2007 \text{ Carlos Guestrin}$$

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data

Resulting Density Estimator

Resulting Bayes Classifier

Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means anomalous

Cyan means ambiguous

The general learning problem with missing data

Marginal likelihood – x is observed, z is missing:

$$\ell(\theta:\mathcal{D}) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} \mid \theta)$$

$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} \mid \theta)$$

$$= \sum_{j=1}^{m} \log \sum_{\mathbf{Z}} P(\mathbf{x}_{j}, \mathbf{z} \mid \theta)$$
Show over (marginelize out)

E-step

x is observed, z is missing

at t's itruction

- Compute probability of missing data given current choice of θ
 - \square Q(**z**|**x**_j) for each **x**_j
 - e.g., probability computed during classification step
 - corresponds to "classification step" in K-means

$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) = P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$$

Jensen's inequality

$$\ell(\theta: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{z} \mid \mathbf{x}_{j}) P(\mathbf{x}_{j} \mid \theta)$$

■ Theorem: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

Applying Jensen's inequality () =)

■ Use: $\log \sum_{\mathbf{z}} P(\mathbf{z}) f(\mathbf{z}) \ge \sum_{\mathbf{z}} P(\mathbf{z}) \log f(\mathbf{z})$

$$\ell(\theta^{(t)}:\mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})}{Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j})}$$

$$\sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log \frac{P\left(\frac{1}{2}, \mathbf{x}_{j} \mid \theta^{(t)} \right)}{Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)}$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log P\left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log P\left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log P\left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log P\left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log P\left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log P\left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log P\left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log P\left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right) \log Q^{(t+1)} \left(\frac{1}{2} \mid \mathbf{x}_{j} \right)$$

$$= \sum_{$$

The M-step maximizes lower bound on

weighted data fix Q in the M step

maximize over o

ower bound from Jensen's:

$$\ell(\theta^{(i)}: \mathcal{D}) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta^{(i)}) + m.H(Q^{(t+1)})$$

$$= \max_{j=1}^{j=1} \sum_{z=1}^{z} Z_{z} Q^{(j+1)}(z_{z}|x_{j}) \log P(z_{j}|x_{j}|\theta)$$

a data point i Xj with I hidden

Corresponds to weighted dataset:

- \square < \mathbf{x}_2 , \mathbf{z} =2> with weight Q^(t+1)(\mathbf{z} =2| \mathbf{x}_2)
- \square < \mathbf{x}_2 , \mathbf{z} =3> with weight Q^(t+1)(\mathbf{z} =3| \mathbf{x}_2)

The M-step

$$\ell(\theta^{(t)}: \mathcal{D}) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta^{(t)}) + m.H(Q^{(t+1)})$$

Maximization step:

$$heta^{(t+1)} \leftarrow \arg\max_{ heta} \sum_{j=1}^m \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta)$$

- Use expected counts instead of counts: Bushy

 - \square Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{z})]$

Convergence of EM

■ Define potential function $F(\theta,Q)$:

$$\ell(\theta:\mathcal{D}) \geq F(\theta,Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z},\mathbf{x}_j \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

Sinstin's

- EM corresponds to coordinate ascent on F
 - □ Thus, maximizes lower bound on marginal log likelihood

M-step is easy

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{j=1}^{\infty} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta) \\ \text{mex} = \mathbf{C}(\theta_{j}Q^{(t+1)})$$

$$\mathbf{E}(\theta_{j}Q^{(t+1)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta) + m_{j}H(Q^{(t+1)})$$

$$\mathbf{E}(\theta_{j}Q^{(t+1)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta) + m_{j}H(Q^{(t+1)})$$

E-step also doesn't decrease of the potential function 1

■ Fixing θ to $\theta^{(t)}$: fix maximize over Q $\ell(\theta^{(t)}: \mathcal{D}) \geq F(\theta^{(t)}, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_{j})}$ $= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_{j})} \qquad \text{Chein rule}$ $= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_{j})} \qquad \text{Chein rule}$ + 2 ZQ(z1x;) (69 P(X;16(+)) = [[Q(7) xi) log P(7 |xi, 64) - KL-déurgence

KL-divergence

Measures distance between distributions

$$KL(Q||P) = \sum_{z} Q(z) \log \frac{Q(z)}{P(z)}$$

KL=zero if and only if Q=P

E-step also doesn't decrease potential function 2

Fixing θ to $\theta^{(t)}$:

$$\ell(\theta^{(t)}:\mathcal{D}) \geq F(\theta^{(t)},Q) = \ell(\theta^{(t)}:\mathcal{D}) + \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log \frac{P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_{j})}$$

$$= \ell(\theta^{(t)}:\mathcal{D}) - \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_{j}) || P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})\right)$$

$$\geq \mathcal{D} \iff \mathcal{Q} \leq \mathcal{P}$$

$$\geq \mathcal{Q}(\mathsf{J} + \mathsf{I}) - \mathcal{Q}(\mathsf{J} + \mathsf{I})$$

$$\geq \mathcal{Q}(\mathsf{J} + \mathsf{I}) - \mathcal{Q}(\mathsf{J} + \mathsf{I})$$

E-step also doesn't decrease potential function 3

$$\ell(\theta^{(t)}: \mathcal{D}) \ge F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) - \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_j) || P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})\right)$$

- Fixing θ to $\theta^{(t)}$
- Maximizing $F(\theta^{(t)}, Q)$ over $Q \rightarrow \text{set } Q$ to posterior probability:

$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \leftarrow P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$$

Note that

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

EM is coordinate ascent

■ **M-step**: Fix Q, maximize F over θ (a lower bound on $\ell(\theta : \mathcal{D})$):

$$\ell(\theta: \mathcal{D}) \geq F(\theta, Q^{(t)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) + m.H(Q^{(t)})$$

E-step: Fix θ, maximize F over Q:

$$\ell(\theta^{(t)}: \mathcal{D}) \ge F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) - m \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_{j}) || P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})\right)$$

"Realigns" F with likelihood:

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

What you should know

- K-means for clustering:
 - algorithm
 - converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>
- EM is coordinate ascent
- General case for EM

Acknowledgements

- Ŋ.
 - K-means & Gaussian mixture models presentation contains material from excellent tutorial by Andrew Moore:
 - □ http://www.autonlab.org/tutorials/
 - K-means Applet:
 - □ http://www.elet.polimi.it/upload/matteucc/Clustering/tu torial http://www.elet.polimi.it/upload/matteucc/Clustering/tu
 - Gaussian mixture models Applet:
 - http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM. html

EM for HMMs a.k.a. The Baum-Welch Algorithm

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 9th, 2007

©2005-2007 Carlos Guestrin

Learning HMMs from fully observable data is easy

Learn 3 distributions:

$$P(X_1)$$

$$P(O_i \mid X_i)$$

$$P(X_i | X_{i-1})$$

Learning HMMs from fully observable data is easy

$$X_1 = \{a, ... z\}$$
 $X_2 = \{a, ... z\}$ $X_3 = \{a, ... z\}$ $X_4 = \{a, ... z\}$ $X_5 = \{a, .$

Learn 3 distributions:

$$P(X_1)^{\circ} = (\text{ount (# first letter a}))$$
 select training distance of the letter was a $P(O_i \mid X_i) = (\text{ount (Pixel 12 was white, Xi=9}))$

$$P(X_i^{\circ}|X_i^{\circ})$$

$P(X_i^{\bullet}|X_i^{\bullet})$ What if **O** is observed, but **X** is hidden

Log likelihood for HMMs when **X** is hidden

- Marginal likelihood O is observed, X is missing
 - □ For simplicity of notation, training data consists of only one sequence:

$$\ell(\theta : \mathcal{D}) = \log P(\mathbf{o} \mid \theta)$$
$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

□ If there were m sequences:

$$\ell(\theta: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o}^{(j)} | \theta)$$

Computing Log likelihood for HMMs when **X** is hidden

$$X_1 = \{a, \dots z\} \longrightarrow X_2 = \{a, \dots z\} \longrightarrow X_3 = \{a, \dots z\} \longrightarrow X_4 = \{a, \dots z\} \longrightarrow X_5 = \{a, \dots z\} \longrightarrow X_5$$

$$\ell(\theta : \mathcal{D}) = \log P(\mathbf{o} \mid \theta)$$
$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

Computing Log likelihood for HMMs when **X** is hidden – variable elimination

Can compute efficiently with variable elimination:

$$\ell(\theta : \mathcal{D}) = \log P(\mathbf{o} \mid \theta)$$
$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

EM for HMMs when X is hidden

E-step: Use inference (forwards-backwards algorithm)

M-step: Recompute parameters with weighted data

E-step

E-step computes probability of hidden vars x given o

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

- Will correspond to inference
 - □ use forward-backward algorithm!

The M-step

Maximization step:

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta)$$

- Use expected counts instead of counts:
 - □ If learning requires Count(x,o)
 - □ Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{o})]$

Decomposition of likelihood $P(X_1)$

revisited $P(O_i \mid X_i)$

Likelihood optimization decomposes:

$$\max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta) =$$

$$\max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(x_1 \mid \theta_{X_1}) P(o_1 \mid x_1, \theta_{O|X}) \prod_{t=2}^{n} P(x_t \mid x_{t-1}, \theta_{X_t \mid X_{t-1}}) P(o_t \mid x_t, \theta_{O|X})$$

Starting state probability P(X₁)

$$\square$$
 P(X₁=a) = $\theta_{X1=a}$

$$\max_{\theta_{X_1}} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(x_1 \mid \theta_{X_1})$$

$$\theta_{X_1=a} = \frac{\sum_{j=1}^{m} Q(X_1 = a \mid \mathbf{o}^{(j)})}{m}$$

©2005-2007 Carlos Guestrin

Transition probability $P(X_t|X_{t-1})$

$$\max_{\theta_{X_t|X_{t-1}}} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log \prod_{t=2}^{n} P(x_t \mid x_{t-1}, \theta_{X_t|X_{t-1}})$$

$$\theta_{X_t=a|X_{t-1}=b} = \frac{\sum_{j=1}^m \sum_{t=2}^n Q(X_t=a, X_{t-1}=b \mid \mathbf{o}^{(j)})}{\sum_{j=1}^m \sum_{t=2}^n \sum_{i=1}^k Q(X_t=i, X_{t-1}=b \mid \mathbf{o}^{(j)})}$$

©2005-2007 Carlos Guestrir

Observation probability $P(O_t|X_t)$

$$\square P(O_t=a|X_t=b) = \theta_{Ot=a|Xt=b}$$

$$\max_{\theta_{O\mid X}} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log \prod_{t=1}^{n} P(o_t \mid x_t, \theta_{O\mid X})$$

$$\theta_{O_t = a \mid X_t = b} = \frac{\sum_{j=1}^m \sum_{t=1}^n \delta(\mathbf{o}_t^{(j)} = a) Q(X_t = b \mid \mathbf{o}^{(j)})}{\sum_{j=1}^m \sum_{t=1}^n Q(X_t = b \mid \mathbf{o}^{(j)})}$$

SZUUD-ZUUT GANUS GUESIIIII

E-step revisited

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

- E-step computes probability of hidden vars x given o
- Must compute:
 - \square Q(x_t=a|**o**) marginal probability of each position
 - □ Q(x_{t+1}=a,x_t=b|o) joint distribution between pairs of positions

The forwards-backwards algorithm

- Initialization: $\alpha_1(X_1) = P(X_1)P(o_1 \mid X_1)$
- For i = 2 to n
- Generate a forwards factor by eliminating X_{i-1}

$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

- Initialization: $\beta_n(X_n) = 1$
- For i = n-1 to 1
 - □ Generate a backwards factor by eliminating X_{i+1}

$$\beta_i(X_i) = \sum_{x_{i+1}} P(o_{i+1} \mid x_{i+1}) P(x_{i+1} \mid X_i) \beta_{i+1}(x_{i+1})$$

 \blacksquare \forall i, probability is: $P(X_i \mid o_{1..n}) \rightleftharpoons \alpha_i(X_i)\beta_i(X_i)$

ornalized =Panlound

18, (X1)X, (X normalized = P(X1101:n)

E-step revisited

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

- E-step computes probability of hidden vars x given o
- Must compute:
 - $\square Q(x_t=a|\mathbf{o})$ marginal probability of each position
 - Just forwards-backwards!
 - □ Q(x_{t+1}=a,x_t=b|o) joint distribution between pairs of positions
 - Homework! ©

What can you do with EM for HMMs? 1

Clustering sequences

Independent clustering:

Sequence clustering:

What can you do with EM for HMMs? 2

Exploiting unlabeled data

- Labeling data is hard work → save (graduate student) time by using both labeled and unlabeled data
 - □ Labeled data:
 - <X="brace",O=</p>
 - □ Unlabeled data:
 - < <X=?????,O=</pre>

Exploiting unlabeled data in clustering

- A few data points are labeled
 - □ <x,o>
- Most points are unlabeled
 - □ <?,o>
- In the E-step of EM:
 - ☐ If i'th point is unlabeled:
 - compute Q(X|o_i) as usual
 - ☐ If i'th point is labeled:
 - set $Q(X=x|o_i)=1$ and $Q(X\neq x|o_i)=0$
- M-step as usual

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0	Iteration 1		Iteration 2
intelligence		DD	D
DD		D	DD
artificial	Using one	lecture	lecture
understanding	labeled	cc	cc
DDw	•	D^{\star}	DD:DD
dist	example per	DD:DD	due
identical		handout	D^{\star}
rus	class	due	homework
arrange	problem		assignment
games	set		handout
dartmouth	$_{ m tay}$		set
natural	DDam		hw
cognitive	yurttas		exam
logic	homework		problem
proving	kfoury		DDam
prolog	sec		postscript
knowledge	postscript		solution
human	exam		quiz
representation	solution		chapter
field	assaf		ascii

20 Newsgroups data – advantage of adding unlabeled data

20 Newsgroups data – Effect of additional unlabeled data

Exploiting unlabeled data in HMMs

- A few data points are labeled
 - □ <x,o>
- Most points are unlabeled
 - □ <?,0>
- In the E-step of EM:
 - ☐ If i'th point is unlabeled:
 - compute Q(X|o_i) as usual
 - ☐ If i'th point is labeled:
 - set Q(X=x|o_i)=1 and Q(X≠x|o_i)=0
- M-step as usual
 - Speed up by remembering counts for labeled data

What you need to know

- Baum-Welch = EM for HMMs
- E-step:
 - □ Inference using forwards-backwards
- M-step:
 - □ Use weighted counts
- Exploiting unlabeled data:
 - Some unlabeled data can help classification
 - ☐ Small change to EM algorithm
 - In E-step, only use inference for unlabeled data

Acknowledgements

 Experiments combining labeled and unlabeled data provided by Tom Mitchell