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Exploiting redundant information in
semi-supervised learning

 Want to predict Y from
features X
 f(X) a Y
 have some labeled data L
 lots of unlabeled data U

 Co-training assumption: X is
very expressive
 X = (X1,X2)
 can learn

 g1(X1) a Y
 g2(X2) a Y
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Co-Training Algorithm
[Blum & Mitchell ’99]
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Understanding Co-Training: A
simple setting
 Suppose X1 and X2 are discrete

 |X1| = |X2| = N

 No label noise
 Without unlabeled data, how hard is it to learn g1 (or g2)?
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Co-Training in simple setting –
Iteration 0
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Co-Training in simple setting –
Iteration 1
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Co-Training in simple setting – after
convergence
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Co-Training in simple setting –
Connected components

 Suppose infinite unlabeled data
 Co-training must have at least one labeled

example in each connected component of L+U
graph

 What’s probability of making an error?

 For k Connected components, how much
labeled data?
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How much unlabeled data?
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Co-Training theory

 Want to predict Y from features X
 f(X) a Y

 Co-training assumption: X is very expressive
 X = (X1,X2)
 want to learn g1(X1) a Y and g2(X2) a Y

 Assumption: ∃ g1, g2, ∀ x g1(x1) = f(x), g2(x2) = f(x)
 One co-training result [Blum & Mitchell ’99]

 If
 (X1 ⊥ X2 | Y)
 g1 & g2 are PAC learnable from noisy data (and thus f)

 Then
 f is PAC learnable from weak initial classifier plus unlabeled data
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What you need to know about co-
training

 Unlabeled data can help supervised learning (a lot) when
there are (mostly) independent redundant features

 One theoretical result:
 If (X1 ⊥ X2 | Y) and g1 & g2 are PAC learnable from noisy data

(and thus f)
 Then f is PAC learnable from weak initial classifier plus

unlabeled data
 Disagreement between g1 and g2 provides bound on error of final

classifier
 Applied in many real-world settings:

 Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99],
[Jones 05]

 Web page classification [Blum, Mitchell 99]
 Word sense disambiguation [Yarowsky 95]
 Speech recognition [de Sa, Ballard 98]
 Visual classification of cars [Levin, Viola, Freund 03]
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Semi-supervised learning and
discriminative models
 We have seen semi-supervised learning for

generative models
 EM

 What can we do for discriminative models
 Not regular EM

 we can’t compute P(x)
 But there are discriminative versions of EM

 Co-Training!
 Many other tricks… let’s see an example
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Linear classifiers – Which line is better?

Data:

Example i:

w.x = ∑j w(j) x(j)
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Support vector machines (SVMs)

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -1

w
.x

 +
 b

 =
 0

margin γ

 Solve efficiently by quadratic
programming (QP)
 Well-studied solution algorithms

 Hyperplane defined by support
vectors
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What if we have unlabeled data?
nL Labeled Data:

Example i:

w.x = ∑j w(j) x(j)

nU Unlabeled Data:
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Transductive support vector
machines (TSVMs)

w.x 
+ b 

= +1

w.x + b 
= -1

w.x + b 
= 0

margin γ
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Transductive support vector
machines (TSVMs)

w.x 
+ b 

= +1

w.x + b 
= -1

w.x + b 
= 0

margin γ
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What’s the difference between transductive
learning and semi-supervised learning?
 Not much, and
 A lot!!!

 Semi-supervised learning:
 labeled and unlabeled data ! learn w
 use w on test data

 Transductive learning
 same algorithms for labeled and unlabeled data, but…
 unlabeled data is test data!!!

 You are learning on the test data!!!
 OK, because you never look at the labels of the test data
 can get better classification
 but be very very very very very very very very careful!!!

 never use test data prediction accuracy to tune parameters, select kernels, etc.
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Adding slack variables

w.x 
+ b 

= +1

w.x 
+ b 

= -1

w.x + b 
= 0

margin γ
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Transductive SVMs – now with slack
variables!  [Vapnik 98]

w.x 
+ b 

= +1

w.x + b 
= -1

w.x 
+ b 

= 0

margin γ
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Learning Transductive SVMs is hard!

w.x 
+ b 

= +1

w.x + b 
= -1

w.x 
+ b 

= 0

margin γ

 Integer Program
 NP-hard!!!
 Well-studied solution algorithms,

but will not scale up to very large
problems
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A (heuristic) learning algorithm for
Transductive SVMs   [Joachims 99]

w.x 
+ b 

= +1

w.x + b 
= -1

w.x 
+ b 

= 0

margin γ

 If you set     to zero → ignore unlabeled data
 Intuition of algorithm:

 start with small
 add labels to some unlabeled data based on classifier

prediction
 slowly increase
 keep on labeling unlabeled data and re-running

classifier
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Some results classifying news
articles – from [Joachims 99]
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What you need to know about
transductive SVMs

 What is transductive v. semi-supervised learning

 Formulation for transductive SVM
 can also be used for semi-supervised learning

 Optimization is hard!
 Integer program

 There are simple heuristic solution methods that
work well here
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Dimensionality reduction

 Input data may have thousands or millions of
dimensions!
 e.g., text data has

 Dimensionality reduction: represent data with
fewer dimensions
 easier learning – fewer parameters
 visualization – hard to visualize more than 3D or 4D
 discover “intrinsic dimensionality” of data

 high dimensional data that is truly lower dimensional
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Feature selection

 Want to learn f:XaY
 X=<X1,…,Xn>
 but some features are more important than others

 Approach: select subset of features to be used
by learning algorithm
 Score each feature (or sets of features)
 Select set of features with best score
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Simple greedy forward feature selection
algorithm
 Pick a dictionary of features

 e.g., polynomials for linear regression
 Greedy heuristic:

 Start from empty (or simple) set of
features F0 = ∅

 Run learning algorithm for current set
of features Ft

 Obtain ht

 Select next best feature Xi
 e.g., Xj that results in lowest cross-

validation error learner when learning with
Ft ∪ {Xj}

 Ft+1 ← Ft ∪ {Xi}
 Recurse
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Simple greedy backward feature
selection algorithm
 Pick a dictionary of features

 e.g., polynomials for linear regression
 Greedy heuristic:

 Start from all features F0 = F
 Run learning algorithm for current set

of features Ft
 Obtain ht

 Select next worst feature Xi
 e.g., Xj that results in lowest cross-

validation error learner when learning with
Ft  - {Xj}

 Ft+1 ← Ft  - {Xi}
 Recurse
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Impact of feature selection on
classification of fMRI data [Pereira et al. ’05]
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Lower dimensional projections

 Rather than picking a subset of the features, we
can new features that are combinations of
existing features

 Let’s see this in the unsupervised setting
 just X, but no Y
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Linear projection and reconstruction

x1

x2

project into
1-dimension z1

reconstruction:
only know z1, 

what was (x1,x2)
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Principal component analysis –
basic idea
 Project n-dimensional data into k-dimensional

space while preserving information:
 e.g., project space of 10000 words into 3-dimensions
 e.g., project 3-d into 2-d

 Choose projection with minimum reconstruction
error
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Linear projections, a review

 Project a point into a (lower dimensional) space:
 point: x = (x1,…,xn)
 select a basis – set of basis vectors – (u1,…,uk)

 we consider orthonormal basis:
 ui·ui=1, and ui·uj=0 for i≠j

 select a center – x, defines offset of space
 best coordinates in lower dimensional space defined

by dot-products: (z1,…,zk), zi = (x-x)·ui
 minimum squared error
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PCA finds projection that minimizes
reconstruction error
 Given m data points: xi = (x1

i,…,xn
i), i=1…m

 Will represent each point as a projection:

       where:                           and

 PCA:
 Given k·n, find (u1,…,uk)
    minimizing reconstruction error:

x1

x2
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Understanding the reconstruction
error

 Note that xi can be represented
exactly by n-dimensional projection:

 Rewriting error:

Given k·n, find (u1,…,uk)
    minimizing reconstruction error:
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Reconstruction error and
covariance matrix
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Minimizing reconstruction error and
eigen vectors

 Minimizing reconstruction error equivalent to picking
orthonormal basis (u1,…,un) minimizing:

 Eigen vector:

 Minimizing  reconstruction error equivalent to picking
(uk+1,…,un) to be eigen vectors with smallest eigen values
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Basic PCA algoritm

 Start from m by n data matrix X
 Recenter: subtract mean from each row of X

 Xc Ã X – X
 Compute covariance matrix:

  Σ Ã Xc
T Xc

 Find eigen vectors and values of Σ
 Principal components: k eigen vectors with

highest eigen values
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PCA example
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PCA example – reconstruction

only used first principal component
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Eigenfaces [Turk, Pentland ’91]

 Input images:  Principal components:
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Eigenfaces reconstruction

 Each image corresponds to adding 8 principal
components:
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Relationship to Gaussians

 PCA assumes data is Gaussian
 x ~ N(x;Σ)

 Equivalent to weighted sum of simple
Gaussians:

 Selecting top k principal components
equivalent to lower dimensional Gaussian
approximation:

  ε~N(0;σ2),  where σ2 is defined by errork

x1

x2
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Scaling up

 Covariance matrix can be really big!
  Σ is n by n
 10000 features ! |Σ|
 finding eigenvectors is very slow…

 Use singular value decomposition (SVD)
 finds to k eigenvectors
 great implementations available, e.g., Matlab svd
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SVD

 Write X = U S VT

 X ← data matrix, one row per datapoint
 U ← weight matrix, one row per datapoint – coordinate of xi in eigenspace
 S ← singular value matrix, diagonal matrix

 in our setting each entry is eigenvalue λj

 VT ← singular vector matrix
 in our setting each row is eigenvector vj
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PCA using SVD algoritm

 Start from m by n data matrix X
 Recenter: subtract mean from each row of X

 Xc ← X – X
 Call SVD algorithm on Xc – ask for k singular vectors
 Principal components: k singular vectors with highest

singular values (rows of VT)
 Coefficients become:
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Using PCA for dimensionality
reduction in classification

 Want to learn f:XaY
 X=<X1,…,Xn>
 but some features are more important than others

 Approach: Use PCA on X to select a few
important features
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PCA for classification can lead to
problems…

 Direction of maximum variation may be unrelated to “discriminative”
directions:

 PCA often works very well, but sometimes must use more advanced
methods
 e.g., Fisher linear discriminant
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What you need to know

 Dimensionality reduction
 why and when it’s important

 Simple feature selection
 Principal component analysis

 minimizing reconstruction error
 relationship to covariance matrix and eigenvectors
 using SVD
 problems with PCA


