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Co-Training Algorithm (72772
. V\’\C(,p
[Blum & Mitchell '99] Y
" I

Given: labeled data L,
unlabeled data U

Loop:
5 X

Train gl (hyperlink classifier) using L

— S—

. z .
Train g2 (page classifier) using L

— —

Allow g1 to label p positive, n negative examps from U

—_—

Allow g2 to label p positive, n negative examps from U

——

Add these self-labeled examples to L
MoV

N
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Understanding Co-Training: A

= Suppose X, and X, are discrete . 1q Aasertbed

X1 = I > o g S
= No label noise Lochioes , NZ27
m Without unlabeled data, how hard is it to learn g, (or g,)?
\H [ < ZN gy Prsming Lx«m/ﬂu
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Co-Training in simple setting —

lteration O
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Co-Training in simple setting —
lteration 1

hyperlinks I
 t @t
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Co-Training in simple setting — after
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Co-Training in simple setting —
Connected components
= SN

= Suppose infinite unlabeled data My advisor

Co-training must have at least one labeled
example in each connected component of L+U

graph s .

m \What's probability of making an error? wikh "
('_onr\,Lo"’.uA (pm/’)uh”‘}m No WPUI'\'{S ) ]
Ot wes  falebld e —e.

m

pesk point % ) ( y @ ¢
LTS = € et C— Henoll= 3 Peeg - Pxeg))
\ o fhm\‘mi"j j
m Fork ConneCt%d Components’ how much N '3’&""here g 1s the jth connected component of graph
labeled data? of L+U." m is number of labeled examples
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How much unlabeled data?
" I

Want to assure that connected components in the underlying

distribution, G, are connected components 1n the observed
sample. G

VANV

O(log(N)/a) examples assure that with high probability, G¢ has same
connected components as Gp, [Karger, 94]

N 1s s1ze of Gy, o 1s min cut over all connected components of G
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Co-Training theory
"

m Want to predict Y from features X
f(X)aY

m Co-training assumption: X is very expressive
X = (X1, X,)
want to learn g,(X;) a Y and g,(X,)a Y

m Assumption: 3 g4, 95, V X g4(Xx4) = f(X), g,(X5) = f(x)
m One co-training result [Blum & Mitchell *99]

If

= (X L X ]Y)

= g, & g, are PAC learnable from noisy data (and thus f)
Then

m fis PAC learnable from weak initial classifier plus unlabeled data

10
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What you need to know about co-

] traininﬁ

m Unlabeled data can help supervised learning (a lot) when
there are (mostly) independent redundant features

m One theoretical result:

If (X, L X,|Y)and g, & g, are PAC learnable from noisy data
(and thus f)

Then fis PAC learnable from weak initial classifier plus
unlabeled data

Disagreement between g, and g, provides bound on error of final
classifier

m Applied in many real-world settings:

Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99],
[Jones 03]

Web page classification [Blum, Mitchell 99]
Word sense disambiguation [Yarowsky 95]
Speech recognition [de Sa, Ballard 98]

Visual classification of cars [Levin, Viola, Freund 03] 11
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Semi-supervised learning and
_ discriminative models
JE

m \We have seen semi-supervised learning for
generative models

EM

m \What can we do for discriminative models
Not regular EM

= we can’'t compute P(x)
m But there are discriminative versions of EM

Co-Training!
Many other tricks... let's see an example

13
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Linear classifiers — Which line is better?

W.X = Y, wl) x0)

©2005-2007 Carlos Guestrin

Example i:
<x§1), .. ,wzgm)> — m features

y; € {—1,41} — class

14



Support vector machines (SVMs)

minimizew wW.w
(W.Xj -+ b) y; > 1, Vg
- m  Solve efficiently by quadratic

programming (QP)
Well-studied solution algorithms

m Hyperplane defined by support
vectors

15
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What if we have unlabeled data”

W.X = Y, wl) x0)

©2005-2007 Carlos Guestrin

n, Labeled Data:
<ZE§1) ..... xgm), y1>

Example i:
<:p§1), .. ,:cgm)> — m features

y; € {—1,41} — class

n, Unlabeled Data:



Transductive support vector

_ machines ‘TSVMS)

minimizew wW.w
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(W.Xj b) y; =1, Vj
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Transductive support vector

_ machines ‘TSVMS)

minimize W. W

W {G1,..Ungr }

(w x]+b) y;i>1, Vj=1,..,n
Ju€{—1,41}, Vu=1,..,n

U
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What's the difference between transductive
_Iearning and semi-supervised learning?

m Not much, and
m A lot!l!

m Semi-supervised learning:
labeled and unlabeled data ! learn w
use w on test data

m Transductive learning
same algorithms for labeled and unlabeled data, but...
unlabeled data is test data!!!

m You are learning on the test data!!!
OK, because you never look at the labels of the test data
can get better classification

but be very very very very very very very very careful!!!

m never use test data prediction accuracy to tune parameters, select kernels, etc.
19
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ok

Adding slack variables

minimizey, g, . oy} WW

(wx;+b)y; =1 Vi=1,..,np

yu € {—1,41}, Vu=1,....,ny

©2005-2007 Carlos Guestrin

20



Transductive SVMs — now with slack

variables! [vapnik 9s] o
OptlmlzeW {‘glw 7§77JL} {y]_?'”v:/y\nU}v{gla°°°7€nU}

minimize ww4+CY, &+ 0, &
(w.x; —|—b> yi >1—&, Vj=1,..,nr
:/y\u — {—1,+1}, \V/’U, — 1, ceeqy Ny

21
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Learning Transductive SVMs is hard!
"Optimizew, {£1, ..., &n, b {015 - Ung b {€1s onr Engr }
minimize w.w4+CY &+ C> &
(wx;+b)y; >1-¢, Vi=1,..,nf
(WxXy +0)Ju > 1 — &y, Yu=1,...,n4

:/y\u & {—1,+1}, \VI’UJ — 1, ceeqy Ny

I oF

m Integer Program
NP-hard!!!

Well-studied solution algorithms,
but will not scale up to very large

problems
22
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A (heuristic) learning algorithm for
Transductive SVMS [Joachims 99]
minimize w.w+CY, &+ 0, &

(wx;+b)y; >1-¢, Vi=1,..,np
(WXy+0)Ju>1—E&, Yu=1,...,ny

gu € {—1,+1}, Vu=1,...,ny

= If you set( to zero — ignore unlabeled data

m [ntuition of algorithm:
,,« start with small O

add labels to some unlabeled data based on classifier
prediction

slowly increase C

keep on labeling unlabeled data and re-running
classifier

23
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Some results classifying news
articles — from [Joachims 99]
.
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Figure 6: Average P/R-breakeven point on the
Reuters dataset for different training set sizes and a
test set size of 3,209,

©2005-2007 Carlos Guestrin



What you need to know about

transductive SVMs
JE

m What is transductive v. semi-supervised learning

m Formulation for transductive SVM
can also be used for semi-supervised learning

m Optimization is hard!
Integer program

m [here are simple heuristic solution methods that
work well here

25
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Dimensionality reduction

" A
m Input data may have thousands or millions of
dimensions!
e.g., text data has

m Dimensionality reduction: represent data with
fewer dimensions
easier learning — fewer parameters
visualization — hard to visualize more than 3D or 4D

discover “intrinsic dimensionality” of data
= high dimensional data that is truly lower dimensional

©2005-2007 Carlos Guestrin
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Feature selection
" A
m Want to learn f: XY
X=<X,,.... X >
but some features are more important than others

m Approach: select subset of features to be used
by learning algorithm
Score each feature (or sets of features)
Select set of features with best score

©2005-2007 Carlos Guestrin
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Simple greedy forward feature selection

algorithm
" A
m Pick a dictionary of features

e.g., polynomials for linear regression

m Greedy heuristic:

Start from empty (or simple) set of
features F, = &

Run learning algorithm for current set
of features F,

= Obtain h,

Select next best feature X,

= eg., X that results in lowest cross-

validation error learner when learning with
Fr U{X}

F.., < F, U{X}

Recurse 29
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Simple greedy backward feature

s_election alﬂorithm

m Pick a dictionary of features
e.g., polynomials for linear regression

m Greedy heuristic:
Start from all features F, = F

Run learning algorithm for current set
of features F,

= Obtain h,
Select next worst feature X,

= eg., X that results in lowest cross-
validation error learner when learning with
Fr -1X}
Frog < F - {Xi}
Recurse

30
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Impact of feature selection on

CIaSS|f|Cat|On Of ﬂVI RI data [Pereira et al. '05]
o

Accuracy classifying
category of word read

by subject
I
#voxels mean | subjects

2338 320  332B 424B  474B 4968 7B 868

50 0.735 | 0.783 0.817 0.55  0.783  0.75 0.8 0.65 0.75
100 0.742 0.767 0.8 0.533 0.817 0.85 0.783 0.6 0.783
200 0.737 | 0.783 0.783  0.517 0817 0.883  0.75 0.583  0.783
300 0.75 0.8 0.817 0.567 0.833 0.883 0.75 0.583 0.767

400 0.742 0.8 0.783 0583 085 0.833 0.75 0583  0.75

800 0.735 0.833 0.817 0.567 0.833 0.833 0.7 0.55 0.75

1600 0.698 0.8 0.817 045  0.783  0.833 0.633 0.5 0.75
all (~2500) 0.638 | 0.767 0.767  0.25 0.75  0.833 0.567 0.433 0.733

Table 1. Average accuracy across all pairs of categories, restricting the procedure to
use a certain number of voxels for each subject. The highlighted line corresponds to the
best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task

31
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Lower dimensional projections

" J
m Rather than picking a subset of the features, we
can new features that are combinations of
existing features

m Let's see this in the unsupervised setting
just X, butnoY

32
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Linear projection and reconstruction

project into
1-dimension >

reconstruction:
only know z,,
what was (x4,X

33
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Principal component analysis —
basic idea
" A

m Project n-dimensional data into k-dimensional
space while preserving information:
e.g., project space of 10000 words into 3-dimensions
e.g., project 3-d into 2-d

m Choose projection with minimum reconstruction
error

34
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Linear projections, a review
" J
m Project a point into a (lower dimensional) space:
point: X = (X,...,X,)
select a basis — set of basis vectors — (u,,...,u,)

m we consider orthonormal basis:
u-u=1, and u;-u;=0 for i=]

select a center — X, defines offset of space

best coordinates in lower dimensional space defined
by dot-products: (z,,...,2,), Z; = (X-X)-u,
= mMinimum squared error

35
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PCA finds projection that minimizes

reconstruction error
A

m Given m data points: x' = (x,,...,x.)"), i=1...m
m Will represent each point as a projection:
X=X+ ) zju; where: x="Y x' and zi=x' u
j=1 m;—1
m PCA: X2

Given k-n, find (u,,..., u,)
minimizing reconstruction error:

™m
errory = Z (x' — %42 ° R
=1

36
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Understanding the reconstructlon

error =54 Yy =i,
" /=
Given k-n, find (uy,..., u,)
m Note that X' can be represented minimizing reconstruction error:
m
exactly by n- dlmenS|onaI projection: error, = 3 (x! — %1)2
Z 1=1

m Rewriting error:

37
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Reconstruction error and
covariance matrix
JEE

|
m n 1 P i
errory — Z Z [uj . (Xi _ )_()]2 E Z (X — X) (X — X)T
i=1j=k+1 1=1

38
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Minimizing reconstruction error and

] eiﬂen vectors

m Minimizing reconstruction error equivalent to picking
orthonormal basis (uy,...,u,) minimizing:
n

errory, = Z ujTZuj
. j=k+1
m Eigen vector:

m Minimizing reconstruction error equivalent to picking
(u..q,-..,u,) to be eigen vectors with smallest eigen values

39
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Basic PCA algoritm
"

m Start from m by n data matrix X

m Recenter: subtract mean from each row of X
X.AX-X

m Compute covariance matrix:
SAXTX,

m Find eigen vectors and values of X

m Principal components: k eigen vectors with
highest eigen values

©2005-2007 Carlos Guestrin
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PCA example

k
X'=X+ ) zu;
j=1

I [ [ Fguel =10l x|
Fie Edit Wiew Insert Tools Deskioo  window  Heb k"l Fie Edi iew Insert Took Deskbop  Window  Help o
DeE&|F KM 0B |8 O Neda||: 2ams |/ 0E a0
9r 9.
g Lo a Lo
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z o Bl mean o _
\ F_|rst
5t Bh elgenvector
4 oo Ar cooo
3 o 3t o]
Second
2 © & @ eigenvector
1r 1k
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PCA example — reconstruction
" S

=1 - Z 1 only used first principal component
J7J
j=1
J Figure 1 =101 %] =10| x|
Fie Edi ‘Wiew Inzert Took Deskbop  Window  Help File Edt Yiew Insert Tools Deskbop  Window  Help -
NEE&|: Radme | 0 00O NeEa|keaads|E|/0l@ oo
9p 9.
Bl o at o
7t o 7t D.}
sl mean o | l .
\ s «—First .
5t ¢ eigenvector 5 d
\\\ ‘G -\\.
41 o o at 3, O N
3 L :\ 3 I {} ‘3
Second
o eigenvector 2l o
1F 1l
D : D i i i i i i
0 2 3 4 ) = 7 a =l 3 1 5 5 7 3




Eigenfaces [Turk, Pentland '91]

m Input images: m Principal components:

I - - oIt gt " -t o
! . - P .
g ~ ~Z =
.
< :
o ¥

43
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Eigenfaces reconstruction

" A
m Each image corresponds to adding 8 principal

components:

©2005-2007 Carlos Guestrin
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Relationship to Gaussians
" I i

m PCA assumes data is Gaussian

x ~ N(X;X)
m Equivalent to weighted sum of simple
Gaussians: o
x=X4 ) zjuj ZjNN(O;U?> o
=1

m  Selecting top k principal components
equivalent to lower dimensional Gaussian
approximation:

X%}_(—I—szuj'—ké‘; ZjNN(O;O?)
j=1

e~N(0;0%), where o? is defined by error,

©2005-2007 Carlos Guestrin
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Scaling up
" J
m Covariance matrix can be really big!
2isnbyn
10000 features ! [Z]
finding eigenvectors is very slow...

m Use singular value decomposition (SVD)
finds to k eigenvectors
great implementations available, e.g., Matlab svd

©2005-2007 Carlos Guestrin
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SVD
" S

m Write X=USV'
X < data matrix, one row per datapoint
U < weight matrix, one row per datapoint — coordinate of x! in eigenspace

S < singular value matrix, diagonal matrix
= in our setting each entry is eigenvalue A,
VT < singular vector matrix
= in our setting each row is eigenvector v,

a7
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PCA using SVD algoritm
"

m Start from m by n data matrix X
m Recenter: subtract mean from each row of X

X, < X=X
m Call SVD algorithm on X_ — ask for k singular vectors

m Principal components: k singular vectors with highest
singular values (rows of VT)
Coefficients become:

©2005-2007 Carlos Guestrin
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Using PCA for dimensionality
reduction in classification
.

m \Want to learn f: XY

X=<X,,.... X >
but some features are more important than others

m Approach: Use PCA on X to select a few
important features

49
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PCA for classification can lead to

] Eroblems. ..

m Direction of maximum variation may be unrelated to “discriminative”
directions:

m PCA often works very well, but sometimes must use more advanced
methods

e.g., Fisher linear discriminant

50
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What you need to know
" A
m Dimensionality reduction
why and when it's important
m Simple feature selection
m Principal component analysis

minimizing reconstruction error

relationship to covariance matrix and eigenvectors
using SVD
problems with PCA
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