Co-Training for Semi-supervised learning (cont.)

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 23rd, 2007
Exploiting redundant information in semi-supervised learning

- Want to predict Y from features X
 - \(f(X) \rightarrow Y \)
 - have some labeled data \(L \)
 - lots of unlabeled data \(U \)

- Co-training assumption: X is very expressive
 - \(X = (X_1, X_2) \)
 - can learn
 - \(g_1(X_1) \rightarrow Y \)
 - \(g_2(X_2) \rightarrow Y \)

\[\text{can do a lot with unlabeled data, especially if } X_1 \perp X_2 | Y \]
Co-Training Algorithm
[Blum & Mitchell ’99]

Given: labeled data \(L \), unlabeled data \(U \)

Loop:
- Train \(g_1 \) (hyperlink classifier) using \(L \)
- Train \(g_2 \) (page classifier) using \(L \)
- Allow \(g_1 \) to label \(p \) positive, \(n \) negative examps from \(U \)
- Allow \(g_2 \) to label \(p \) positive, \(n \) negative examps from \(U \)
- Add these self-labeled examples to \(L \)

(example of the Co-training principle)
Understanding Co-Training: A simple setting

- Suppose X_1 and X_2 are discrete
 - $|X_1| = |X_2| = N$ (number of possible values)

- No label noise

- Without unlabeled data, how hard is it to learn g_1 (or g_2)?

\[|H| = 2^N \] \# training examples

\[\{0, -3\} \quad g_i \in H \]

\[\{1, -3\} \]

\[\vdots \]

\[\{n, -3\} \]

\[|\ln|H| = N \cdot \ln 2 \]
Co-Training in simple setting – Iteration 0

You get a web page with $X_1 = 12$ and $X_2 = 18$. You get the text of hyperlinks for two textons. The set of webpages are labeled data.

One webpage $X_1 = 16$ and $X_2 = 17$.

My advisor means X_1 and X_2 co-occur on a webpage.

No label noise.

Edge $X_1 = x_1$ to $X_2 = x_2$.
Co-Training in simple setting – Iteration 1
Co-Training in simple setting – after convergence

Connected component

No edge between them, because no label noise

Component
Co-Training in simple setting – Connected components

- Suppose infinite **unlabeled** data
 - Co-training must have at least one labeled example in each connected component of L+U graph

- What’s probability of making an error?
 - For k Connected components, how much labeled data?

\[
E[\text{error}] = \sum_{j} P(x \in g_j) \left(1 - P(x \in g_j) \right)^m
\]

Where \(g_j \) is the \(j \)th connected component of graph of L+U, \(m \) is number of labeled examples.
How much unlabeled data?

Want to assure that connected components in the underlying distribution, G_D, are connected components in the observed sample, G_S

$O(\log(N)/\alpha)$ examples assure that with high probability, G_S has same connected components as G_D [Karger, 94]

N is size of G_D, α is min cut over all connected components of G_D
Co-Training theory

- Want to predict Y from features X
 - \(f(X) \) a Y
- Co-training assumption: X is very expressive
 - \(X = (X_1, X_2) \)
 - want to learn \(g_1(X_1) \) a Y and \(g_2(X_2) \) a Y

Assumption: \(\exists g_1, g_2, \forall x \ g_1(x_1) = f(x), g_2(x_2) = f(x) \)

- One co-training result [Blum & Mitchell '99]
 - If
 - \((X_1 \perp X_2 \mid Y) \)
 - \(g_1 \) & \(g_2 \) are PAC learnable from noisy data (and thus f)
 - Then
 - f is PAC learnable from weak initial classifier plus unlabeled data
What you need to know about co-training

- Unlabeled data can help supervised learning (a lot) when there are (mostly) independent redundant features

- One theoretical result:
 - If \((X_1 \perp X_2 \mid Y)\) and \(g_1 \& g_2\) are PAC learnable from noisy data (and thus \(f\))
 - Then \(f\) is PAC learnable from weak initial classifier plus unlabeled data
 - Disagreement between \(g_1\) and \(g_2\) provides bound on error of final classifier

- Applied in many real-world settings:
 - Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99], [Jones 05]
 - Web page classification [Blum, Mitchell 99]
 - Word sense disambiguation [Yarowsky 95]
 - Speech recognition [de Sa, Ballard 98]
 - Visual classification of cars [Levin, Viola, Freund 03]
Semi-supervised learning and discriminative models

- We have seen semi-supervised learning for generative models
 - EM

- What can we do for discriminative models
 - Not regular EM
 - we can’t compute $P(x)$
 - But there are discriminative versions of EM
 - Co-Training!
 - Many other tricks… let’s see an example
Linear classifiers – Which line is better?

Data:

\[\langle x_1^{(1)}, \ldots, x_1^{(m)}, y_1 \rangle \]
\[\vdots \]
\[\langle x_n^{(1)}, \ldots, x_n^{(m)}, y_n \rangle \]

Example i:

\[\langle x_i^{(1)}, \ldots, x_i^{(m)} \rangle \quad \text{— m features} \]
\[y_i \in \{-1, +1\} \quad \text{— class} \]

\[w \cdot x = \sum_j w^{(j)} x^{(j)} \]
Support vector machines (SVMs)

\[w \cdot x + b = +1 \]
\[w \cdot x + b = 0 \]
\[w \cdot x + b = -1 \]

- Margin \(\gamma \)
- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
- Hyperplane defined by support vectors

\[
\minimize_w \quad w \cdot w \\
\left(w \cdot x_j + b \right) y_j \geq 1, \quad \forall j
\]
What if we have unlabeled data?

\[\mathbf{w} \cdot \mathbf{x} = \sum_j w^{(j)} x^{(j)} \]

n_L Labeled Data:
\[\langle x_1^{(1)}, \ldots, x_1^{(m)}, y_1 \rangle \]
\[\vdots \]
\[\langle x_n^{(1)}, \ldots, x_n^{(m)}, y_{n_L} \rangle \]

Example i:
\[\langle x_i^{(1)}, \ldots, x_i^{(m)} \rangle \quad \text{— m features} \]
\[y_i \in \{-1, +1\} \quad \text{— class} \]

n_U Unlabeled Data:
\[\langle x_1^{(1)}, \ldots, x_1^{(m)}, ? \rangle \]
\[\vdots \]
\[\langle x_n^{(1)}, \ldots, x_n^{(m)}, ? \rangle \]
Transductive support vector machines (TSVMs)

\[\min_w \quad w \cdot w \]

\[(w \cdot x_j + b) y_j \geq 1, \quad \forall j \]
Transductive support vector machines (TSVMs)

\[w \cdot x + b = +1 \]
\[w \cdot x + b = -1 \]
\[w \cdot x + b = 0 \]

margin \(\gamma \)

\[
\begin{align*}
\text{minimize}_{w, \{\hat{y}_1, \ldots, \hat{y}_{n_U}\}} & \quad w \cdot w \\
\left(w \cdot x_j + b \right) y_j & \geq 1, \quad \forall j = 1, \ldots, n_L \\
\left(w \cdot x_u + b \right) \hat{y}_u & \geq 1, \quad \forall u = 1, \ldots, n_U \\
\hat{y}_u & \in \{-1, +1\}, \quad \forall u = 1, \ldots, n_U
\end{align*}
\]
What’s the difference between transductive learning and semi-supervised learning?

- Not much, and
- A lot!!!

Semi-supervised learning:
- labeled and unlabeled data! learn w
- use w on test data

Transductive learning
- same algorithms for labeled and unlabeled data, but…
- unlabeled data is test data!!!

You are learning on the test data!!!
- OK, because you never look at the labels of the test data
- can get better classification
- but be very careful!!!
 - never use test data prediction accuracy to tune parameters, select kernels, etc.
Adding slack variables

$$\begin{align*}
\text{minimize}_{w, \{\hat{y}_1, \ldots, \hat{y}_{n_U}\}} & \quad w \cdot w \\
(w \cdot x_j + b) y_j & \geq 1 \quad \forall j = 1, \ldots, n_L \\
(w \cdot x_u + b) \hat{y}_u & \geq 1 \quad \forall u = 1, \ldots, n_U \\
\hat{y}_u & \in \{-1, +1\}, \quad \forall u = 1, \ldots, n_U
\end{align*}$$
Transductive SVMs – now with slack variables! [Vapnik 98]

Optimize $w, \{\xi_1, \ldots, \xi_{n_L}\}, \{\tilde{y}_1, \ldots, \tilde{y}_{n_U}\}, \{\tilde{\xi}_1, \ldots, \tilde{\xi}_{n_U}\}$

minimize $w . w + C \sum_j \xi_j + \tilde{C} \sum_u \tilde{\xi}_u$

$(w . x_j + b) y_j \geq 1 - \xi_j, \ \forall j = 1, \ldots, n_L$

$(w . x_u + b) \tilde{y}_u \geq 1 - \tilde{\xi}_u, \ \forall u = 1, \ldots, n_u$

$\tilde{y}_u \in \{-1, +1\}, \ \forall u = 1, \ldots, n_u$
Learning Transductive SVMs is hard!

Optimize \(w, \{ \xi_1, \ldots, \xi_{n_L} \}, \{ \hat{y}_1, \ldots, \hat{y}_{n_U} \}, \{ \tilde{\xi}_1, \ldots, \tilde{\xi}_{n_U} \} \)

minimize \(w \cdot w + C \sum_j \xi_j + \tilde{C} \sum_u \tilde{\xi}_u \)

\((w \cdot x_j + b) y_j \geq 1 - \xi_j, \ \forall j = 1, \ldots, n_L \)

\((w \cdot x_u + b) \hat{y}_u \geq 1 - \tilde{\xi}_u, \ \forall u = 1, \ldots, n_u \)

\(\hat{y}_u \in \{-1, +1\}, \ \forall u = 1, \ldots, n_u \)

- Integer Program
 - NP-hard!!!
 - Well-studied solution algorithms, but will not scale up to very large problems
A (heuristic) learning algorithm for Transductive SVMs [Joachims 99]

minimize \(w \cdot w + C \sum_j \xi_j + \tilde{C} \sum_u \tilde{\xi}_u \)

\[
\left(w \cdot x_j + b \right) y_j \geq 1 - \xi_j, \quad \forall j = 1, \ldots, n_L
\]

\[
\left(w \cdot x_u + b \right) \tilde{y}_u \geq 1 - \tilde{\xi}_u, \quad \forall u = 1, \ldots, n_u
\]

\(\tilde{y}_u \in \{-1, +1\}, \quad \forall u = 1, \ldots, n_u \)

- If you set \(\tilde{C} \) to zero → ignore unlabeled data
- Intuition of algorithm:
 - start with small \(\tilde{C} \)
 - add labels to some unlabeled data based on classifier prediction
 - slowly increase \(\tilde{C} \)
 - keep on labeling unlabeled data and re-running classifier
Some results classifying news articles – from [Joachims 99]

Figure 6: Average P/R-breakeven point on the Reuters dataset for different training set sizes and a test set size of 3,299.
What you need to know about transductive SVMs

- What is transductive v. semi-supervised learning

- Formulation for transductive SVM
 - can also be used for semi-supervised learning

- Optimization is hard!
 - Integer program

- There are simple heuristic solution methods that work well here
Dimensionality reduction

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 23rd, 2007
Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., text data has

- **Dimensionality reduction**: represent data with fewer dimensions
 - easier learning – fewer parameters
 - visualization – hard to visualize more than 3D or 4D
 - discover “intrinsic dimensionality” of data
 - high dimensional data that is truly lower dimensional
Feature selection

- Want to learn \(f: X \rightarrow Y \)
 - \(X = <X_1, \ldots, X_n> \)
 - but some features are more important than others

- **Approach**: select subset of features to be used by learning algorithm
 - **Score** each feature (or sets of features)
 - **Select** set of features with best score
Simple greedy **forward** feature selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression

- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select **next best feature** X_i
 - e.g., X_j that results in lowest cross-validation error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse

©2005-2007 Carlos Guestrin
Simple greedy \textbf{backward} feature selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression

- Greedy heuristic:
 - Start from all features $F_0 = F$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select next worst feature X_i
 - e.g., X_j that results in lowest cross-validation error learner when learning with $F_t - \{X_j\}$
 - $F_{t+1} \leftarrow F_t - \{X_i\}$
 - Recurse
Impact of feature selection on classification of fMRI data [Pereira et al. ’05]

<table>
<thead>
<tr>
<th>#voxels</th>
<th>mean</th>
<th>subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>233B</td>
</tr>
<tr>
<td>50</td>
<td>0.735</td>
<td>0.783</td>
</tr>
<tr>
<td>100</td>
<td>0.742</td>
<td>0.767</td>
</tr>
<tr>
<td>200</td>
<td>0.737</td>
<td>0.783</td>
</tr>
<tr>
<td>300</td>
<td>0.75</td>
<td>0.8</td>
</tr>
<tr>
<td>400</td>
<td>0.742</td>
<td>0.8</td>
</tr>
<tr>
<td>800</td>
<td>0.735</td>
<td>0.833</td>
</tr>
<tr>
<td>1600</td>
<td>0.698</td>
<td>0.8</td>
</tr>
<tr>
<td>all (~2500)</td>
<td>0.638</td>
<td>0.767</td>
</tr>
</tbody>
</table>

Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted line corresponds to the best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task
Lower dimensional projections

- Rather than picking a subset of the features, we can create new features that are combinations of existing features.

Let’s see this in the unsupervised setting:
- just X, but no Y
Linear projection and reconstruction

project into 1-dimension

reconstruction: only know z_1, what was (x_1, x_2)
Principal component analysis – basic idea

- Project n-dimensional data into k-dimensional space while preserving information:
 - e.g., project space of 10000 words into 3-dimensions
 - e.g., project 3-d into 2-d

- Choose projection with minimum reconstruction error
Linear projections, a review

- Project a point into a (lower dimensional) space:
 - **point**: \(x = (x_1, \ldots, x_n) \)
 - **select a basis** – set of basis vectors – \((u_1, \ldots, u_k)\)
 - we consider orthonormal basis:
 - \(u_i \cdot u_i = 1 \), and \(u_i \cdot u_j = 0 \) for \(i \neq j \)
 - **select a center** – \(\bar{x} \), defines offset of space
 - **best coordinates** in lower dimensional space defined by dot-products: \((z_1, \ldots, z_k)\), \(z_i = (x - \bar{x}) \cdot u_i \)
 - minimum squared error
PCA finds projection that minimizes reconstruction error

- Given m data points: \(x^i = (x_1^i, \ldots, x_n^i), i=1\ldots m \)
- Will represent each point as a projection:

\[
\hat{x}^i = \bar{x} + \sum_{j=1}^{k} z_j^i u_j \quad \text{where:} \quad \bar{x} = \frac{1}{m} \sum_{i=1}^{m} x^i \quad \text{and} \quad z_j^i = x^i \cdot u_j
\]

- PCA:
 - Given k·n, find \((u_1, \ldots, u_k)\) minimizing reconstruction error:

\[
\text{error}_k = \sum_{i=1}^{m} (x^i - \hat{x}^i)^2
\]
Understanding the reconstruction error

- Note that x^i can be represented exactly by n-dimensional projection:

$$x^i = \bar{x} + \sum_{j=1}^{n} z_j^i u_j$$

- Rewriting error:

$$\hat{x}^i = \bar{x} + \sum_{j=1}^{k} z_j^i u_j \quad z_j^i = x^i \cdot u_j$$

Given $k \cdot n$, find $(u_1, ..., u_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^{m} (x^i - \hat{x}^i)^2$$
Reconstruction error and covariance matrix

\[\text{error}_k = \sum_{i=1}^{m} \sum_{j=k+1}^{n} [u_j \cdot (x^i - \bar{x})]^2 \]

\[\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^i - \bar{x})(x^i - \bar{x})^T \]
Minimizing reconstruction error and eigen vectors

- Minimizing reconstruction error equivalent to picking orthonormal basis \((u_1, \ldots, u_n)\) minimizing:

 \[
 \text{error}_k = \sum_{j=k+1}^{n} u_j^T \Sigma u_j
 \]

- Eigen vector:

- Minimizing reconstruction error equivalent to picking \((u_{k+1}, \ldots, u_n)\) to be eigen vectors with smallest eigen values
Basic PCA algorithm

- Start from m by n data matrix X
- **Recenter**: subtract mean from each row of X
 - $X_c \leftarrow X - \overline{X}$
- Compute covariance matrix:
 - $\Sigma \leftarrow X_c^T X_c$
- Find **eigen vectors and values** of Σ
- **Principal components**: k eigen vectors with highest eigen values
PCA example

\[\hat{x}^i = \bar{x} + \sum_{j=1}^{k} z_j^i u_j \]
PCA example – reconstruction

\[\hat{x}^i = \bar{x} + \sum_{j=1}^{k} z_j^i u_j \]

only used first principal component
Eigenfaces [Turk, Pentland ’91]

- Input images:
- Principal components:
Eigenfaces reconstruction

- Each image corresponds to adding 8 principal components:
Relationship to Gaussians

- PCA assumes data is Gaussian
 \[\mathbf{x} \sim \mathcal{N}(\mathbf{x}; \Sigma) \]

- Equivalent to weighted sum of simple Gaussians:
 \[\mathbf{x} = \bar{\mathbf{x}} + \sum_{j=1}^{n} z_j \mathbf{u}_j; \quad z_j \sim \mathcal{N}(0; \sigma_j^2) \]

- Selecting top k principal components equivalent to lower dimensional Gaussian approximation:
 \[\mathbf{x} \approx \bar{\mathbf{x}} + \sum_{j=1}^{k} z_j \mathbf{u}_j + \epsilon; \quad z_j \sim \mathcal{N}(0; \sigma_j^2) \]

- \(\epsilon \sim \mathcal{N}(0; \sigma^2) \), where \(\sigma^2 \) is defined by error_k
Scaling up

- Covariance matrix can be really big!
 - Σ is n by n
 - 10000 features! $|\Sigma|$
 - finding eigenvectors is very slow…

- Use singular value decomposition (SVD)
 - finds to k eigenvectors
 - great implementations available, e.g., Matlab svd
SVD

Write $X = U \Sigma V^T$

- $X \leftarrow$ data matrix, one row per datapoint
- $U \leftarrow$ weight matrix, one row per datapoint – coordinate of x_i in eigenspace
- $\Sigma \leftarrow$ singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_j
- $V^T \leftarrow$ singular vector matrix
 - in our setting each row is eigenvector v_j
PCA using SVD algorithm

- Start from an m by n data matrix \(X \)

- **Recenter**: subtract mean from each row of \(X \)
 \[x_c \leftarrow x - \bar{x} \]

- Call SVD algorithm on \(X_c \) – ask for k singular vectors

- **Principal components**: k singular vectors with highest singular values (rows of \(V^\top \))
 \[\text{Coefficients} \] become:
Using PCA for dimensionality reduction in classification

- Want to learn $f: X \rightarrow Y$
 - $X = <X_1, \ldots, X_n>$
 - but some features are more important than others

- **Approach**: Use PCA on X to select a few important features
PCA for classification can lead to problems...

- Direction of maximum variation may be unrelated to “discriminative” directions:

- PCA often works very well, but sometimes must use more advanced methods
 - e.g., Fisher linear discriminant
What you need to know

- Dimensionality reduction
 - why and when it’s important
- Simple feature selection
- Principal component analysis
 - minimizing reconstruction error
 - relationship to covariance matrix and eigenvectors
 - using SVD
 - problems with PCA