# Co-Training for Semisupervised learning (cont.) 

Machine Learning - 10701/15781 Carlos Guestrin Carnegie Mellon University

April 23rd, 2007

## Exploiting redundant information in semi-supervised learning

- Want to predict $Y$ from features $\mathbf{X}$
$\square f(\mathbf{X}) \mapsto Y$
$\square$ have some labeled data L
$\square$ lots of unlabeled data U
- Co-training assumption: $\mathbf{X}$ is very expressive



## Co-Training Algorithm (example of Co-Training Algorithm [Blum \& Mitchell '99]

Given: labeled data L,
unlabeled data U
Loop:
Train gl (hyperlink classifier) using L
Train g2 (page classifier) using L
Allow g 1 to label $p$ positive, $n$ negative examps from U
Allow g 2 to label $p$ positive, $n$ negative examps from U
ard these self-labeled examples to L
MoVe

Understanding Co-Training: A simple setting

- Suppose $\underline{X}_{1}$ and $\mathbf{X}_{2}$ are discrete
posisherames $\frac{\left|X_{1}\right|=\left|X_{2}\right|=N}{\text { No }}$ by $n$ EHE Binary features, $N=2^{n}$
- Without unlabeled data, how hard is it to learn $g_{1}\left(\operatorname{or} g_{2}\right)$ ?
$|H|=2^{N}$
$x$. hypothesis space
\# training examples
1 $\{4,-\}$
$g_{1} \in H$
$\{\in,-\}$
is dependent on

$$
\begin{aligned}
\ln |H| & =N \cdot \ln 2 \\
& =2^{n} \ln 2
\end{aligned}
$$

Co-Training in simple setting -


## Co-Training in simple setting Iteration 1



## Co-Training in simple setting - after

 convergence $P\left(y=t \mid X_{1}=x_{1}\right)$ is either oi $p\left(y=t \mid x_{2}=x_{2}\right)$

Co-Training in simple setting Connected components

Suppose infinite unlabeled data
Co-training must have at least one labeled example in each connected component of $\mathrm{L}+\mathrm{U}$ graph component jj

- What's probability of making an error?
with $m$ $\exists$ connected Romponet, where no datapuints labeled data was Thablale sum over components. test point $x$
$E[$ error $]=\sum^{\ell} P\left(x \in g_{j}\right) \quad\left(1-p\left(x \in g_{j}\right)\right)^{m}$

- For $k$ Connected components, how mulch training in gyherg is the eth connected component of graph labeled data?
$\begin{aligned} \text { suppose } & P\left(x \in g_{j}\right) \geqslant \alpha \quad \text { Hope: K small } \\ & E[\text { comprorar }]\end{aligned}$
$E[$ error $] \leqslant K(\underbrace{1-\alpha)^{m} \text { to } N \text { notrain date in } g_{j}}$
experanticlly small
with $m, \#$ training examples


## How much unlabeled data?

Want to assure that connected components in the underlying distribution, $\mathrm{G}_{\mathrm{D}}$, are connected components in the observed

$O(\log (\mathrm{~N}) / \alpha)$ examples assure that with high probability, $\mathrm{G}_{\mathrm{S}}$ has same connected components as $\mathrm{G}_{\mathrm{D}}$ [Karger, 94]
$N$ is size of $G_{D}, \alpha$ is min cut over all connected components of $G_{D}$

## Co-Training theory



- Want to predict Y from features $\mathbf{X}$
$\square \mathrm{f}(\mathbf{X}) \mapsto \mathrm{Y}$
- Co-training assumption: $\mathbf{X}$ is very expressive
$\square \mathbf{X}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$
$\square$ want to learn $\mathrm{g}_{1}\left(\mathbf{X}_{1}\right) \longmapsto \mathrm{Y}$ and $\mathrm{g}_{2}\left(\mathbf{X}_{2}\right) \mapsto \mathrm{Y}$
- Assumption: $\exists \mathrm{g}_{1}, \mathrm{~g}_{2}, \forall \mathbf{x} \mathrm{~g}_{1}\left(\mathbf{x}_{1}\right)=\mathrm{f}(\mathbf{x}), \mathrm{g}_{2}\left(\mathbf{x}_{2}\right)=\mathrm{f}(\mathbf{x})$
- One co-training result [Blum \& Mitchell '99]
$\square$ If

- $\mathrm{g}_{1} \& g_{2}$ are PAC learnable from noisy data (and thus f)
$\square$ Then
- $f$ is PAC learnable from weak initial classifier plus unlabeled data


## What you need to know about cotraining

- Unlabeled data can help supervised learning (a lot) when there are (mostly) independent redundant features
- One theoretical result:
$\square$ If $\left(X_{1} \perp \mathbf{X}_{2} \mid Y\right)$ and $g_{1} \& g_{2}$ are PAC learnable from noisy data (and thus f)
$\square$ Then f is PAC learnable from weak initial classifier plus unlabeled data
$\square$ Disagreement between $g_{1}$ and $g_{2}$ provides bound on error of final classifier
- Applied in many real-world settings:

Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99], [Jones 05]
$\square$ Web page classification [Blum, Mitchell 99]
$\square$ Word sense disambiguation [Yarowsky 95]
$\square$ Speech recognition [de Sa, Ballard 98]
Visual classification of cars [Levin, Viola, Freund 03]

## Announcements

- Poster Session
$\square$ Friday, May $4^{\text {th }} 2-5$ pm, NSH Atrium
$\square$ It will be fun... ©
$\square$ There will be a prize!!!
- Popular vote
$\square$ Print your posters early!!!
- Please, please, please fill in your FCEs
$\square$ please


## Transductive SVMs

Machine Learning - 10701/15781 Carlos Guestrin Carnegie Mellon University

April 23 ${ }^{\text {rd }}, 2007$

## Semi-supervised learning and discriminative models

- We have seen semi-supervised learning for generative models$\mathrm{EM} \rightarrow \max _{\theta} \sum_{j=1}^{n}$

$$
\log \underbrace{\text { P( }}_{\sum_{y}^{P(X)} P\left(y, x^{(j)}\right)}
$$

- What can we do for discriminative models
$\square$ Not regular EM
don't
- we can't compute $\mathrm{P}(\mathrm{x})$ only have $P(y(x)$
- But there are discriminative versions of EM
$\square$ Co-Training!
$\square$ Many other tricks... let's see an example


## Linear classifiers - Which line is better?



## Support vector machines (SVMs)



## What if we have unlabeled data?



Transductive support vector

- machines, (TSVMs)



## Transductive support vector machines (TSVMs)



## What's the difference between transductive learning and semi-supervised learning?

- Not much, and
- A lot!!!
- Semi-supervised learning:
$\square$ labeled and unlabeled data $\rightarrow$ learn w
$\square$ use w on test data
- Transductive learning
$\square$ same algorithms for labeled and unlabeled data, but...
$\square$ unlabeled data is test data!!!
- You are learning on the test data!!!
$\square$ OK, because you never look at the labels of the test data
$\square$ can get better classification
$\square$ but be very very very very very very very veryd careful!!!
- never use test data prediction accuracy to tune parameters, select kernels, etc.


## Adding slack variables

## ■

minimize $_{\mathbf{w},\left\{\hat{y}_{1}, \ldots, \widehat{y}_{n_{U}}\right\} \quad \mathbf{w} \cdot \mathbf{w}+c \sum_{j} z_{j}+\hat{C} \sum_{\mu} \tilde{z}_{\sim}, ~}^{z_{j}}$

$$
\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j} \geq 1-q_{j} \forall j \stackrel{\{j \geq 0}{=} 1, \ldots, n_{L}
$$

$$
\left(\mathbf{w} \cdot \mathbf{x}_{u}+b\right) \widehat{y}_{u} \geq 1-\hat{\xi}^{\prime} \forall u=1, \ldots, n_{U}
$$

(

## Transductive SVMs - now with slack

 variables! [Vapnik 98]Optimizew, $,\left\{\xi_{1}, \ldots, \xi_{n_{L}}\right\},\left\{\widehat{y}_{1}, \ldots, \widehat{y}_{n_{U}}\right\},\left\{\hat{\xi}_{1}, \ldots, \widehat{\xi}_{n_{U}}\right\}$ minimize $\quad \mathbf{w} . \mathrm{w}+C \sum_{j} \xi_{j}+\widehat{C} \sum_{u} \widehat{\xi}_{u}$
$\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j} \geq 1-\xi_{j}, \forall j=1, \ldots, n_{L}$
$\left(\mathbf{w} \cdot \mathbf{x}_{u}+b\right) \widehat{y}_{u} \geq 1-\widehat{\xi}_{u}, \forall u=1, \ldots, n_{u}$
$\widehat{y}_{u} \in\{-1,+1\}, \forall u=1, \ldots, n_{u}$


## Learning Transductive SVMs is hard!

Optimizew, $\left\{\xi_{1}, \ldots, \xi_{n_{L}}\right\},\left\{\widehat{y}_{1}, \ldots, \widehat{y}_{n_{U}}\right\},\left\{\hat{\xi}_{1}, \ldots, \widehat{\xi}_{n_{U}}\right\}$ minimize $\quad \mathbf{w} \cdot \mathbf{w}+C \sum_{j} \xi_{j}+\widehat{C} \sum_{u} \widehat{\xi}_{u}$

$$
\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j} \geq 1-\xi_{j}, \forall j=1, \ldots, n_{L}
$$

$$
\left(\mathbf{w} \cdot \mathbf{x}_{u}+b\right) \hat{y}_{u} \geq 1-\hat{\xi}_{u}, \quad \forall u=1, \ldots, n_{u}
$$

$$
\widehat{y}_{u} \in\{-1,+1\}, \forall u=1, \ldots, n_{u}
$$

\&

- Integer Program
$\square$ NP-hardI!? eq., Branch s Bond
Well-studied solution algorithms, but will not scale up to very large problems $\mathrm{nu}=100000$


## A (heuristic) learning algorithm for Transductive SVMs [Joachims 99]

 minimize $\quad \mathbf{w} \cdot \mathbf{w}+C \sum_{j} \xi_{j}+\widehat{C} \sum_{u} \widehat{\xi}_{u}$$$
\left(\mathbf{w} \cdot \mathbf{x}_{j}+b\right) y_{j} \geq 1-\xi_{j}, \forall j=1, \ldots, n_{L}
$$

$$
\left(\mathbf{w} \cdot \mathbf{x}_{u}+b\right) \hat{y}_{u} \geq 1-\widehat{\xi}_{u}, \forall u=1, \ldots, n_{u}
$$

$$
\widehat{y}_{u} \in\{-1,+1\}, \forall u=1, \ldots, n_{u}
$$



## Some results classifying news articles - from [Joachims 99]



## What you need to know about transductive SVMs

- What is transductive v . semi-supervised learning
- Formulation for transductive SVM
$\square$ can also be used for semi-supervised learning
- Optimization is hard!
$\square$ Integer program
- There are simple heuristic solution methods that work well here


## Dimensionality reduction

Machine Learning - 10701/15781 Carlos Guestrin

Carnegie Mellon University
April 23rd, 2007
©2005-2007 Carlos Guestrin

## Dimensionality reduction

- Input data may have thousands or millions of dimensions! $\quad f(x) \mapsto y \quad x$ can have miltions
$\square$ e.g., text data has words 40000
- Dimensionality reduction: represent data with fewer dimensions
( $\square$ easier learning - fewer parameters
$\square$ visualization - hard to visualize more than 3D or 4D
$\square$ discover "intrinsic dimensionality" of data
- high dimensional data that is truly lower dimensional


## Feature selection

- Want to learn $\mathrm{f}: \mathbf{X}-\mathrm{Y}$
$\square X=<X_{1}, \ldots, X_{n}>$
$\square$ but some features are more important than others
- Approach: select subset of features to be used by learning algorithm
$\square$ Score each feature (or sets of features)
$\square$ Select set of features with best score


## Simple greedy forward feature selection algorithm

- Pick a dictionary of features
$\square$ e.g., polynomials for linear regression
- Greedy heuristic:
$\square$ Start from empty (or simple) set of features $F_{0}=\varnothing$
Run learning algorithm for current set of features $F_{t}$
- Obtain $h_{\mathrm{t}}$
$\square$ Select next best feature $\mathbf{X}_{\mathrm{i}}$
- e.g., $X_{j}$ that results in lowest crossvalidation error learner when learning with $F_{t} \cup\left\{\mathrm{X}_{\mathrm{j}}\right\}$
$\square F_{t+1} \leftarrow F_{t} \cup\left\{\mathrm{X}_{\mathrm{i}}\right\}$
$\square$ Recurse


## Simple greedy backward feature selection algorithm

- Pick a dictionary of features
$\square$ e.g., polynomials for linear regression
- Greedy heuristic:
$\square$ Start from all features $F_{0}=F$
$\square$ Run learning algorithm for current set of features $F_{t}$
- Obtain $h_{t}$
$\square$ Select next worst feature $\mathbf{X}_{\mathbf{i}}$
- e.g., $\mathrm{X}_{\mathrm{j}}$ that results in lowest crossvalidation error learner when learning with $F_{t}-\left\{X_{j}\right\}$
$\square F_{t+1} \leftarrow F_{t}-\left\{\mathrm{X}_{\mathrm{i}}\right\}$ remous
Recurse


## Impact of feature selection on classification of fMRI data [Pereira etal: 05]



Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted line corresponds to the best mean accuracy, obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task

Lower dimensional projections

- Rather than picking a subset of the features, we can new features that are combinations of
existing features

$$
x_{1}, x_{2}, x_{3}
$$

$$
x_{2}^{2}, x_{1} x_{0}^{3} \cdots
$$

Select some of these
projection:
new feature, e-g. $)^{1}$

feature

- Let's see this in the unsupervised setting


## Linear projection and reconstruction



## Principal component analysis -

 basic idea- Project n-dimensional data into k-dimensional space while preserving information:
$\square$ e.g., project space of 10000 words into 3-dimensions
$\square$ e.g., project 3-d into 2-d
- Choose projection with minimum reconstruction error


## Linear projections, a review

- Project a point into a (lower dimensional) space:
$\square$ point: $\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
$\square$ select a basis - set of basis vectors - ( $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ )
- we consider orthonormal basis:
$\square \mathbf{u}_{\mathrm{i}} \leq \mathbf{u}_{\mathrm{i}}=1$, and $\mathbf{u}_{\mathrm{i}} \leq \mathbf{u}_{\mathrm{j}}=0$ for $\mathrm{i} \neq \mathrm{j}$
$\square$ select a center $-\overline{\mathbf{x}}$, defines offset of space
$\square$ best coordinates in lower dimensional space defined by dot-products: $\left(z_{1}, \ldots, z_{k}\right), z_{i}=(\mathbf{x}-\overline{\mathbf{x}}) \leq \mathbf{u}_{i}$
- minimum squared error


## PCA finds projection that minimizes reconstruction error

- Given $m$ data points: $\mathbf{x}^{i}=\left(x_{1}{ }^{i}, \ldots, x_{n}{ }^{i}\right), i=1 \ldots m$
- Will represent each point as a projection:
$\square \hat{\mathbf{x}}^{i}=\overline{\mathrm{x}}+\sum_{j=1}^{k} z_{j}^{i} \mathbf{u}_{j}$ where: $\overline{\mathrm{x}}=\frac{1}{m} \sum_{i=1}^{m} \mathrm{x}^{i}$ and $z_{j}^{i}=\mathrm{x}^{i} \cdot \mathbf{u}_{j}$
- PCA:
$\square$ Given $\mathrm{k} \leq \mathrm{n}$, find $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{k}}\right)$ minimizing reconstruction error:

$$
\operatorname{error}_{k}=\sum_{i=1}^{m}\left(\mathbf{x}^{i}-\widehat{\mathbf{x}}^{i}\right)^{2}
$$



## Understanding the reconstruction

## error

- Note that $\mathbf{x}^{i}$ can be represented exactly by $n$-dimensional projection:

$$
\mathrm{x}^{i}=\overline{\mathrm{x}}+\sum_{j=1}^{n} z_{j}^{i} \mathbf{u}_{j}
$$

$$
\begin{aligned}
& \widehat{\mathbf{x}}^{i}=\overline{\mathbf{x}}+\sum_{j=1}^{k} z_{j}^{i} \mathbf{u}_{j} \quad z_{j}^{i}=\mathbf{x}^{i} \cdot \mathbf{u}_{j} \\
& \square \text { Given } \mathrm{k} \leq \mathrm{n} \text {, find }\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathrm{k}}\right) \\
& \quad \text { minimizing reconstruction error: }
\end{aligned}
$$

$\operatorname{error}_{k}=\sum_{i=1}^{m}\left(\mathbf{x}^{i}-\widehat{\mathbf{x}}^{i}\right)^{2}$

- Rewriting error:


## Reconstruction error and covariance matrix

$$
\text { error }_{k}=\sum_{i=1}^{m} \sum_{j=k+1}^{n}\left[\mathbf{u}_{j} \cdot\left(\mathrm{x}^{i}-\overline{\mathbf{x}}\right)\right]^{2}
$$

$$
\Sigma=\frac{1}{m} \sum_{i=1}^{m}\left(\mathrm{x}^{i}-\overline{\mathrm{x}}\right)\left(\mathrm{x}^{i}-\overline{\mathrm{x}}\right)^{T}
$$

## Minimizing reconstruction error and eigen vectors

- Minimizing reconstruction error equivalent to picking orthonormal basis $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)$ minimizing:

$$
\text { error }_{k}=\sum_{j=k+1}^{n} \mathbf{u}_{j}^{T} \Sigma \mathbf{u}_{j}
$$

- Eigen vector:
- Minimizing reconstruction error equivalent to picking $\left(\mathbf{u}_{k+1}, \ldots, \mathbf{u}_{\mathrm{n}}\right)$ to be eigen vectors with smallest eigen values


## Basic PCA algoritm

- Start from $m$ by $n$ data matrix $\mathbf{X}$
- Recenter: subtract mean from each row of $\mathbf{X}$
$\square \mathrm{X}_{\mathrm{c}} \leftarrow \mathrm{X}-\overline{\mathrm{X}}$
- Compute covariance matrix:
$\square \Sigma \leftarrow \mathbf{X}_{\mathrm{c}}{ }^{\top} \mathbf{X}_{\mathrm{c}}$
- Find eigen vectors and values of $\Sigma$
- Principal components: $k$ eigen vectors with highest eigen values


## PCA example

$$
\hat{\mathbf{x}}^{i}=\overline{\mathrm{x}}+\sum_{j=1}^{k} z_{j}^{i} \mathbf{u}_{j}
$$




## PCA example - reconstruction

$$
\hat{\mathbf{x}}^{i}=\overline{\mathrm{x}}+\sum_{j=1}^{k} z_{j}^{i} \mathbf{u}_{j}
$$

only used first principal component


## Eigenfaces [Turk, Pentland '91]

- Input images:

- Principal components:



## Eigenfaces reconstruction

- Each image corresponds to adding 8 principal components:



## Relationship to Gaussians

- PCA assumes data is Gaussian
$\square \mathbf{x} \sim N(\bar{x} ; \Sigma)$
- Equivalent to weighted sum of simple Gaussians:

$$
\mathbf{x}=\overline{\mathbf{x}}+\sum_{j=1}^{n} z_{j} \mathbf{u}_{j} ; \quad z_{j} \sim N\left(0 ; \sigma_{j}^{2}\right)
$$

- Selecting top k principal components equivalent to lower dimensional Gaussian approximation:

$$
\mathbf{x} \approx \overline{\mathrm{x}}+\sum_{j=1}^{k} z_{j} \mathbf{u}_{j}+\varepsilon ; \quad z_{j} \sim N\left(0 ; \sigma_{j}^{2}\right)
$$

$\square \varepsilon \sim N\left(0 ; \sigma^{2}\right)$, where $\sigma^{2}$ is defined by error $_{k}$

## Scaling up

- Covariance matrix can be really big!
$\square \Sigma$ is $n$ by $n$
$\square 10000$ features $\rightarrow|\Sigma|$
$\square$ finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
$\square$ finds to $k$ eigenvectors
$\square$ great implementations available, e.g., Matlab svd


## SVD

- Write $\mathbf{X}=\mathbf{U S} \mathbf{V}^{\top}$
$\square \mathbf{X} \leftarrow$ data matrix, one row per datapoint
$\square \mathbf{U} \leftarrow$ weight matrix, one row per datapoint - coordinate of $\mathbf{x}^{\mathbf{i}}$ in eigenspace
$\square \mathbf{S} \leftarrow$ singular value matrix, diagonal matrix
- in our setting each entry is eigenvalue $\lambda_{\mathrm{j}}$
$\square \mathbf{V}^{\boldsymbol{\top}} \leftarrow$ singular vector matrix
- in our setting each row is eigenvector $\mathbf{v}_{\mathrm{j}}$


## PCA using SVD algoritm

- Start from $m$ by $n$ data matrix $\mathbf{X}$
- Recenter: subtract mean from each row of $\mathbf{X}$
$\square \mathbf{X}_{\mathrm{c}} \leftarrow \mathbf{X}-\overline{\mathbf{X}}$
- Call SVD algorithm on $X_{c}$ - ask for $k$ singular vectors
- Principal components: $k$ singular vectors with highest singular values (rows of $\mathbf{V}^{\top}$ )
$\square$ Coefficients become:


## Using PCA for dimensionality reduction in classification

- Want to learn f:X Y
$\square \mathrm{X}=<\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}>$
$\square$ but some features are more important than others
- Approach: Use PCA on $\mathbf{X}$ to select a few important features


## PCA for classification can lead to problems...

- Direction of maximum variation may be unrelated to "discriminative" directions:
- PCA often works very well, but sometimes must use more advanced methods
$\square$ e.g., Fisher linear discriminant


## What you need to know

- Dimensionality reduction
$\square$ why and when it's important
- Simple feature selection
- Principal component analysis
$\square$ minimizing reconstruction error
$\square$ relationship to covariance matrix and eigenvectors
$\square$ using SVD
$\square$ problems with PCA

