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Exploiting redundant information in 
semi-supervised learning

� Want to predict Y from 
features X
� f(X) � Y
� have some labeled data L
� lots of unlabeled data U

� Co-training assumption: X is 
very expressive 
� X = (X1,X2)
� can learn 

� g1(X1) � Y 
� g2(X2) � Y 
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Co-Training Algorithm 
[Blum & Mitchell ’99] 
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Understanding Co-Training: A 
simple setting
� Suppose X1 and X2 are discrete

� |X1| = |X2| = N

� No label noise
� Without unlabeled data, how hard is it to learn g1 (or g2)?



5
©2005-2007 Carlos Guestrin

Co-Training in simple setting –
Iteration 0



6
©2005-2007 Carlos Guestrin

Co-Training in simple setting –
Iteration 1
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Co-Training in simple setting – after 
convergence
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Co-Training in simple setting –
Connected components

� Suppose infinite unlabeled data
� Co-training must have at least one labeled 

example in each connected component of L+U 
graph

� What’s probability of making an error?

� For k Connected components, how much 
labeled data?
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How much unlabeled data?
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Co-Training theory
� Want to predict Y from features X

� f(X) � Y
� Co-training assumption: X is very expressive 

� X = (X1,X2)
� want to learn g1(X1) � Y and g2(X2) � Y 

� Assumption: ∃ g1, g2, ∀ x g1(x1) = f(x), g2(x2) = f(x) 
� One co-training result [Blum & Mitchell ’99]

� If 
� (X1 ⊥ X2 | Y)
� g1 & g2 are PAC learnable from noisy data (and thus f)

� Then
� f is PAC learnable from weak initial classifier plus unlabeled data
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What you need to know about co-
training

� Unlabeled data can help supervised learning (a lot) when 
there are (mostly) independent redundant features

� One theoretical result:
� If (X1 ⊥ X2 | Y) and g1 & g2 are PAC learnable from noisy data 

(and thus f)
� Then f is PAC learnable from weak initial classifier plus 

unlabeled data
� Disagreement between g1 and g2 provides bound on error of final 

classifier
� Applied in many real-world settings:

� Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99], 
[Jones 05]

� Web page classification [Blum, Mitchell 99]
� Word sense disambiguation [Yarowsky 95]
� Speech recognition [de Sa, Ballard 98]
� Visual classification of cars [Levin, Viola, Freund 03]
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Announcements

� Poster Session
� Friday, May 4th 2-5pm, NSH Atrium
� It will be fun… ☺

� There will be a prize!!!
� Popular vote

� Print your posters early!!!

� Please, please, please fill in your FCEs
� please
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Semi-supervised learning and 
discriminative models
� We have seen semi-supervised learning for 

generative models
� EM

� What can we do for discriminative models
� Not regular EM

� we can’t compute P(x)
� But there are discriminative versions of EM

� Co-Training! 
�Many other tricks… let’s see an example
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Linear classifiers – Which line is better?

Data:

Example i:

w.x = ∑j w(j) x(j)
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Support vector machines (SVMs)

w
.x

+ 
b 

= 
+1

w
.x

+ 
b 

= 
-1

w
.x

+ 
b 

= 
0

margin γ

� Solve efficiently by quadratic 
programming (QP)
� Well-studied solution algorithms

� Hyperplane defined by support 
vectors
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What if we have unlabeled data?
nL Labeled Data:

Example i:

w.x = ∑j w(j) x(j)

nU Unlabeled Data:
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Transductive support vector 
machines (TSVMs)

w.x
+ b 

= +1

w.x
+ b 

= -1

w.x
+ b 

= 0

margin γ
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Transductive support vector 
machines (TSVMs)

w.x
+ b 

= +1

w.x
+ b 

= -1

w.x
+ b 

= 0

margin γ
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What’s the difference between transductive
learning and semi-supervised learning?
� Not much, and
� A lot!!!

� Semi-supervised learning:
� labeled and unlabeled data → learn w
� use w on test data

� Transductive learning
� same algorithms for labeled and unlabeled data, but…
� unlabeled data is test data!!!

� You are learning on the test data!!!
� OK, because you never look at the labels of the test data
� can get better classification 
� but be very very very very very very very very careful!!!

� never use test data prediction accuracy to tune parameters, select kernels, etc.
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Adding slack variables

w.x
+ b 

= +1

w.x
+ b 

= -1

w.x
+ b 

= 0

margin γ
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Transductive SVMs – now with slack 
variables!  [Vapnik 98] 

w.x
+ b 

= +1

w.x
+ b 

= -1

w.x
+ b 

= 0

margin γ
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Learning Transductive SVMs is hard!

w.x
+ b 

= +1

w.x
+ b 

= -1

w.x
+ b 

= 0

margin γ

� Integer Program
� NP-hard!!!
�Well-studied solution algorithms, 

but will not scale up to very large 
problems
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A (heuristic) learning algorithm for 
Transductive SVMs [Joachims 99]

w.x
+ b 

= +1

w.x
+ b 

= -1

w.x
+ b 

= 0

margin γ

� If you set     to zero → ignore unlabeled data
� Intuition of algorithm:

� start with small
� add labels to some unlabeled data based on classifier 

prediction
� slowly increase
� keep on labeling unlabeled data and re-running 

classifier 
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Some results classifying news 
articles – from [Joachims 99]
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What you need to know about 
transductive SVMs
� What is transductive v. semi-supervised learning

� Formulation for transductive SVM
� can also be used for semi-supervised learning

� Optimization is hard!
� Integer program

� There are simple heuristic solution methods that 
work well here
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Dimensionality reduction

� Input data may have thousands or millions of 
dimensions!
� e.g., text data has 

� Dimensionality reduction: represent data with 
fewer dimensions
� easier learning – fewer parameters
� visualization – hard to visualize more than 3D or 4D
� discover “intrinsic dimensionality” of data

� high dimensional data that is truly lower dimensional 
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Feature selection

� Want to learn f:X�Y
� X=<X1,…,Xn>
� but some features are more important than others

� Approach: select subset of features to be used 
by learning algorithm
� Score each feature (or sets of features)
� Select set of features with best score
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Simple greedy forward feature selection 
algorithm
� Pick a dictionary of features

� e.g., polynomials for linear regression
� Greedy heuristic:

� Start from empty (or simple) set of 
features F0 = ∅

� Run learning algorithm for current set 
of features Ft
� Obtain ht

� Select next best feature Xi
� e.g., Xj that results in lowest cross-

validation error learner when learning with 
Ft ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse
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Simple greedy backward feature 
selection algorithm
� Pick a dictionary of features

� e.g., polynomials for linear regression
� Greedy heuristic:

� Start from all features F0 = F
� Run learning algorithm for current set 

of features Ft
� Obtain ht

� Select next worst feature Xi
� e.g., Xj that results in lowest cross-

validation error learner when learning with 
Ft - {Xj}

� Ft+1 ← Ft  - {Xi}
� Recurse
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Impact of feature selection on 
classification of fMRI data [Pereira et al. ’05] 
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Lower dimensional projections

� Rather than picking a subset of the features, we 
can new features that are combinations of 
existing features

� Let’s see this in the unsupervised setting 
� just X, but no Y
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Linear projection and reconstruction

x1

x2

project into
1-dimension z1

reconstruction:
only know z1, 

what was (x1,x2)
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Principal component analysis –
basic idea
� Project n-dimensional data into k-dimensional 

space while preserving information:
� e.g., project space of 10000 words into 3-dimensions
� e.g., project 3-d into 2-d

� Choose projection with minimum reconstruction 
error
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Linear projections, a review

� Project a point into a (lower dimensional) space:
� point: x = (x1,…,xn) 
� select a basis – set of basis vectors – (u1,…,uk)

� we consider orthonormal basis: 
� ui·ui=1, and ui·uj=0 for i≠j

� select a center – x, defines offset of space 
� best coordinates in lower dimensional space defined 

by dot-products: (z1,…,zk), zi = (x-x)·ui
� minimum squared error
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PCA finds projection that minimizes 
reconstruction error
� Given m data points: xi = (x1

i,…,xn
i), i=1…m

� Will represent each point as a projection:

� where:                           and 

� PCA:
� Given k·n, find (u1,…,uk) 

minimizing reconstruction error:

x1

x2
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Understanding the reconstruction 
error

� Note that xi can be represented 
exactly by n-dimensional projection:

� Rewriting error:

�Given k·n, find (u1,…,uk) 
minimizing reconstruction error:
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Reconstruction error and 
covariance matrix
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Minimizing reconstruction error and 
eigen vectors

� Minimizing reconstruction error equivalent to picking 
orthonormal basis (u1,…,un) minimizing:

� Eigen vector:

� Minimizing  reconstruction error equivalent to picking 
(uk+1,…,un) to be eigen vectors with smallest eigen values
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Basic PCA algoritm

� Start from m by n data matrix X
� Recenter: subtract mean from each row of X

� Xc ← X – X

� Compute covariance matrix:
� Σ← Xc

T Xc

� Find eigen vectors and values of Σ
� Principal components: k eigen vectors with 

highest eigen values
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PCA example
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PCA example – reconstruction 

only used first principal component
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Eigenfaces [Turk, Pentland ’91]

� Input images: � Principal components:
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Eigenfaces reconstruction

� Each image corresponds to adding 8 principal 
components:
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Relationship to Gaussians
� PCA assumes data is Gaussian

� x ~ N(x;Σ)
� Equivalent to weighted sum of simple 

Gaussians:

� Selecting top k principal components 
equivalent to lower dimensional Gaussian 
approximation:

� ε~N(0;σ2),  where σ2 is defined by errork

x1

x2
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Scaling up

� Covariance matrix can be really big!
� Σ is n by n
� 10000 features → |Σ|
� finding eigenvectors is very slow…

� Use singular value decomposition (SVD)
� finds to k eigenvectors
� great implementations available, e.g., Matlab svd
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SVD
� Write X = U S VT

� X ← data matrix, one row per datapoint
� U ← weight matrix, one row per datapoint – coordinate of xi in eigenspace
� S ← singular value matrix, diagonal matrix

� in our setting each entry is eigenvalue λj

� VT ← singular vector matrix
� in our setting each row is eigenvector vj
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PCA using SVD algoritm

� Start from m by n data matrix X
� Recenter: subtract mean from each row of X

� Xc ← X – X
� Call SVD algorithm on Xc – ask for k singular vectors
� Principal components: k singular vectors with highest 

singular values (rows of VT)
� Coefficients become:



50
©2005-2007 Carlos Guestrin

Using PCA for dimensionality 
reduction in classification
� Want to learn f:X�Y

� X=<X1,…,Xn>
� but some features are more important than others

� Approach: Use PCA on X to select a few 
important features
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PCA for classification can lead to 
problems…

� Direction of maximum variation may be unrelated to “discriminative”
directions:

� PCA often works very well, but sometimes must use more advanced 
methods
� e.g., Fisher linear discriminant
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What you need to know

� Dimensionality reduction
� why and when it’s important

� Simple feature selection
� Principal component analysis

�minimizing reconstruction error
� relationship to covariance matrix and eigenvectors
� using SVD
� problems with PCA


