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Exploiting redundant information in

semi-sugervised learning

m \Want to predict Y from

features X
f(X)IEPY

have some labeled data L
lots of unlabeled data U

m Co-training assumption: X is

very expressive
X = (X1, X))
can learn

m g, (X)BY
m gy (X ERY
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Co-Training Algorithm ﬁ;‘:‘}_‘:,iimj
. ’)V\"\Cz,o
[Blum & Mitchell "99]
" JE

Given: labeled data L,
unlabeled data U

Loop:
5 X

Train gl (hyperlink classifier) using L

——

Train g2 (page clfﬁssifier) using L

—_—

Allow g1 to label p positive, n negative examps from U

———— - )

Allow g2 to label p positive, n negative examps from U

—

Adds these self-labeled examples toL
MOk

./
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Understanding Co-Training: A

m Suppose X, and_\)(_2 are discrete X i A scribed

{:_
X4 =X, =N D, ‘ Sy e

o sb T o= e L J
"**a No label noise 3 ﬁ.‘_e.;)umq?%[\-}::zh

m Without unlabeled data, how hard is it to learn g, (or g,)?
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Co-Training in simple setting —

lteration O
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Co-Training in simple setting —

lteration 1
"




Co-Training In simple setting — after
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Co-Training In simple setting — &% %c..
Connected components .. > 4%
JEmm

= Suppose infinite yplabeled data My advisor

Co-training must have at least one labeled
example in each connected component of L+U

graph

[’o»,;zr\a_/ﬂ- j&
m What's probability of making an error? wirh o
/(a/%;)um‘ﬁ

‘3 Connected (pm')rw'!) wl\mc/{” no
|edotlid Pcto- e {"[:;u'.(um ovm/ Co ~pongdy \

+ J, b\’\"- 7(»
CS rf 'E Z P(LE Q \ —‘F( L5 6
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%Cw B L“')_a‘ mﬁ s raining
= For k Connected Componen ow mugh | \n jb\’he g 1s the jth connected component of graph
Iab6|ed dataf) \,\DPL : S'V\k“ of LAU. m is number of labeled examples
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How much unlabeled data?
" A

Want to assure that connected components in the underlying
distribution, G, are connected components 1n the observed

. .H_,,,:
; s o S ampled
oll - B s
edgss e o J
M%»'{;‘f*uw( Gs kbl

O(log(N)/o) examples assure that with high probability, G¢ has same
connected components as Gy, [Karger, 94]

=2

Nissize of G 1s min cut over all connected components of Gy
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Co-Training theory

" EE— Y &

m Want to predict Y from features X
fX)EPY
m Co-training assumption: X is very expressive
X= (X, X)
want to learn g,(X)¥=2Y and g,(X,)r=23Y
m Assumption: 3 g4, 9,, V X g;(X;) = f(X), g,(X5) = f(X)

m One co-training result [Blum & Mitchell '99]

If 1= IR
O mrat ol neisr
n (X LX|Y) AT = leslo 44 NIl
e —JE— :
= g, & g, are PAC learnable from noisy data (and thus )
Then

m fis PAC learnable from weak initial classifier plus unlabeled data

=

10
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What you need to know about co-

] training

m Unlabeled data can help supervised learning (a lot) when
there are (mostly) independent redundant features

m One theoretical result:

If (X; L X,]Y)and g, &g, are PAC learnable from noisy data
(and thus f)

Then f is PAC learnable from weak initial classifier plus
unlabeled data

Disagreement between g, and g, provides bound on error of final
classifier

m Applied in many real-world settings:

Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99],
[Jones 05]

Web page classification [Blum, Mitchell 99]

Word sense disambiguation [Yarowsky 95]

Speech recognition [de Sa, Ballard 98]

Visual classification of cars [Levin, Viola, Freund 03]

11
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Announcements

=
m Poster Session
Friday, May 4th 2-5pm, NSH Atrium
It will be fun... ©
There will be a prize!!!
= Popular vote
Print youwm

m Please, please, please fill in your FCEs
please

©2005-2007 Carlos Guestrin
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Semi-supervised learning and
discriminative models
= JEE

m \We have seen semi-supervised learning for
generative models

EM —5 ey 2 g P

= What can we do for discriminative models

Not regular EM lonit o heve PO ) \
= we can’'t compute P(X) 0nly hewe (Y
m But there are discriminative versions of EM

Co-Training!
Many other tricks... let’'s see an example

14
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Linear classifiers — Which line Is better?
" B

Example i:

azgm)> — m features

......

y; € {—1,4+1} — class

W.x = 3 WO x0 s
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Support vector machines (SVMs)

/

Mminimizew W.W
(woxj+b)y; > 1, Vj

olve efficiently by quadratic
programming (QP)
Well-studied solution algorithms

m Hyperplane defined by support
vectors

16
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What if we have unlabeled (;Iata?

el

/ et @%Labeled Data:

+ o (m)
,yl
n 7777 n 7ynL>

Example i:
<w§1) ..... azgm)> — m features

y; € {—1,4+1} — class

ny Unlabeled Data:
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Transductive support vector

machlnesi‘TSVI\/Is)

,,> minimizeyw, Ww.w

(s Y und
{?/v-\l_&_g;ts N WALLe/A.o{ Ace

(W.Xj b) Y > iwjk] ¢h)

(w.'xwe)b; %) #ien,
bv\,l@(a—ulca(
an Woslef Ui 6 (-1, +15
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Transductive support vector

mach|n§ ‘ SVI\/Is)

>minimize W. W

WHY1,-Ung; )

W&+®%>1W=Lwn

ny

\V\){( Lv /‘d%
anlebeled 5 F j

b vl
SLohr C_‘m oV

e %V\W
\/‘0-0\’6«;
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What's the difference between transductive

_Iearninﬁ and semi-supervised learning?

m Not much, and
m Alot!ll

m Semi-supervised learning:
labeled and unlabeled data — learn w

use w on test data
—j

m Transductive learning
same algorithms for labeled and unlabeled data, but...
unlabeled data is test data!!!

®m You are learning on the test data!!!
QK, because you never look at the labels of the test data
can get better classification
but be_ly_ery very very very very very very veny careful!!!

m nhever use test data prediction accuracy to tune parameters, select kernels, etc.
20
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Adding slack variables

" J
L] L] L] /\

L C23
miNiMizey (5, . gn, 3 W-W ¢ 333 ¥ %ﬁﬂ—
’2'35,0

(W.Xj -+ b) Y; > 1~ i‘b \V/j — 1, ceey T
b @uE {-1,—'—1}, Yu = 1 nry

c
sM“‘o <
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Transductive SVMs — naw with slack
variables! [Vapnik 98]

.Omm Enp b Y1 - a@nU}a{éla--oaénU}
minimize w.w+CY, &4+ 0>, &
(wx;+b)y; >1-¢, Vi=1,..,nf
(WXy +0)gu>1—&, Yu=1,.., ny
Ju€ {—1,+1}, Vu=1,...,ny

22
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Learning Transductive SVMs is hard!
“Optimizew, {€1, ..., ény }, {15 - Irgs b {815 s Eng }
minimize w.w4+CY; &+ CY, &
(wx;+b)y; >1-¢, Vi=1,..,nf
(Wxy +0)gu>1—Eu, Yu=1,...,ny
Ju€ {(~1,+1}, Vu=1,..,n,

$+

m |nteger Program
Van
NP-hardlI— 1

Well-studied solution algorithms,
but will not scale up to very large
problems Nw = (oo 0ev

h B Bered

23
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A (heuristic) learning algorithm for
Transductive SVMS [Joachims 99]
S =

minimize w.w+CY,; &+ C Yy &u

(W.Xj -|— b) Y; Z 1 — fj, V] — 1,...,nL
(WXxy +0) gy >1—E&, Yu=1,... . ny
yu € {—1,41}, Vu=1,...,ny

<Y

o m Ifyou setC’ to zero — ignore unlabeled data
" m Intuition of algorithm:

Py

start with small C
—ree

I add labels to some unlabeled data based on classifier
< prediction
L% 3 slowly increase C'

:‘j‘ I keep on labeling unlabeled data and re-running

£ classifier
il

24

©2005-2007 Carlos Guestrin




Some results classifying news

articles — from [Joachims 99]
S

100

T T
¥ " B
\0 fsi) /( _*___-::ﬁ . i—---'T*T .....
g
-
i
:
@
&
-
=y
T , Transductive SV ==
SV -
515 (}J Mawe Bayss -8
\ zl‘nru’ wo QXG-MP
i 1 1 | .

T 2 46 Ea 1'.!':_ 328 G40 1200 24 8603

oo 4801
Ewamples in framing s=t
- H -
| il frin Aate
Figure 6: Average P/R-breakeven point on the
Reuters dataset for different training set sizes and a
test set size of 3,299,
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What you need to know about
transductive SVMS

(~ xwrl"w}x yLrsch'M?/‘mq"e (/ﬂarnr’*y
m \What is transductive v. semi-supervised learning

T ee——

m Formulation for transductive SVM ﬁ
can also be used for semi-supervised learning

m Optimization is hard!
Integer program

m There are simple heuristic solution methods that
work well here

26
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Dimensionality reduction
" J
m Input data may have thousands or millions of

i ' | L) &= Y X can hact milkos
dimensions! £ (%) N SF At (Eentant)

e.g., text data has “°*"°C 44 ooo

-

m Dimensionality reduction: represent data with
fewer dimensions

[ 0 easier learning — fewer parameters

— 3

visualization — hard to visualize more than 3D or 4D

| discover “intrinsic dimensionality” of data
= high dimensional data that Is truly Tower dimensional

28
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Feature selection

=
m \Want to learn f:XB¥
X=<X oo, X >
but some features are more important than others

m Approach: select subset of features to be used
by learning algorithm
Score each feature (or sets of features)
Select set of features with best score

©2005-2007 Carlos Guestrin
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Simple greedy forward feature selection
algorithm

m Pick a dictionary of features
e.g., polynomials for linear regression

m Greedy heuristic:

Start from empty (or simple) set of
features Fy = &

Run learning algorithm for current set
of features F,

= Obtainh,
Select next best feature X

m eg., X that results in lowest cross-
validation error learner when learning with
Fo o {X}

|:t+1 A |:t U{Xi}
Recurse

30
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Simple greedy backward feature

selection algorithm

m Pick a dictionary of features
e.g., polynomials for linear regression

m Greedy heuristic:

Start from- all featu_res Fo=F
Run learning algorithm for current set
of features F,

= ODbtain h,

Select next worst feature X;

meg., X that results in lowest cross-
validation error learner when learning with

Ft B {Xj}
Fow < F - {Xi} oot

Recurse

©2005-2007 Carlos Guestrin
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Impact of feature selection on
classification of fMRI data (ereira et al. ‘o5

Accuracy classifying
category of word read

by subject // — 5 %—; .

78 / O/ A#ﬁ")

~—

p— \ 4

Hyoxels mean | sybjects
2338 3298 332 4248 4748 44968 778 868
50 (0.735 0.783 0.817 0.55 0.783 0.75 (.8 0.65 0.75
o 100 (0.742 0.767 0.8 0.533  0.817 0.85 0.783 0.6 (0.783
‘f‘ 200 0.737 0.783 0.783 0517 0817  0.883 0.75 0.5%3  0.783
"\C’ 300 0.75 0.8 0.817 0.567 0.833 0.883 0.75 0.583 0.767
?i 400 0.742 0.8 0.783  0.583 0.85 ().833 0.75 .583 0.75
300 0.735 0.833 0.817 0567 0833  0.333 0.7 0.55 0.75
1600 (0.6G98 0.8 0.817 0.45 0.783 ().833 0.633 0.5 0.75

all (~2500)  0.638 0.767 0.767 (.25 0.75 0.833  0.567  0.433  0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to
use a certain number of voxels for each subject. The highlighted line corresponds to the
best mean accuracy. obtained using 300 voxels.

Voxels scored by p-value of regression to predict voxel value from the task
32
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Lower dimensional projections
" B L

m Rather than picking a subset of the features, we
can new features that are combinations of

S rechen
existing features preie ﬁ”
La'}""' A - ,:
th 7(.,’ 1%5 ne w (, 7 )
Xoo X Ka X/\Am = 0-5X; - 0-7¢ %
(l: 4—( 7 + O - 11— )(; -
elee
A
Qirme G(’)\/(M,s Lo

‘)(\Lc\ ']vm(

m Let’s see this in the unsupervised setting

but noY o -
33
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Linear projection and reconstruction

project into
1-dimension

/1
o e X
0 1
/\' » s reconstruction:
Wa only know z,,
® < what was (X;,X

©2005-2007 Carlos Guestrin



Principal component analysis —
basic idea
" JE——

m Project n-dimensional data into k-dimensional

—

space while preserving information:
e.g., project space of 10000 words into 3-dimensions
. . \ \—’
e.g., project 3-d into 2-d

m Choose projection with minimum reconstruction

error

35
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Linear projections, a review

=

m Project a point into a (lower dimensional) space:
point: X = (Xy,...,X,)
select a basis — set of basis vectors — (U,,...,uU,)

m we consider orthonormal basis:
u;<u;=1, and u;<u;=0 for i

select a center — X, defines offset of space

best coordinates in lower dimensional space defined
by dot-products: (z,,...,2,), z, = (X-X)<u,
= Minimum squared error

36
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PCA finds projection that minimizes
reconstruction error
" B

m Given m data points: x' = (X,,...,X.1), i=1...m
m Will represent each point as a projection:

m

in and zi-zxi-uj

k
X'=%X+ ) zju; where: x = :

1
j=1 m,—1

m PCA: |
Given k<n, find (uy,...,u,)
minimizing reconstruction error:

m . .
error, = » (x' — %)2
1=1

©2005-2007 Carlos Guestrin
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Understanding the reconstruction

error =%+ 3 Gu z=x"u
=1
= Given k<n, find (Up.....u.)
m Note that X! can be represented minimizing reconstruction error:
] ] ] L] m . .
exactly by n-dimensional projection: error, = 3 (x — %%)2
- & i=1

1 = Loy .
X =X+ lejuj
]:

m Rewriting error:

38
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Reconstruction error and
covariance matrix
=

m n 1 & i = i =
errory = Z z [uj.(:)ci—:)_c)]2 2 :Ez’;@( —X)(x _X)T

i=1j=k+1

39



Minimizing reconstruction error and

] eigen vectors

m Minimizing reconstruction error equivalent to picking

orthonormal basis (u,,...,u,) minimizing:
n
error;, = Z ujTZuj
_ j=k+1
m Eigen vector:

® Minimizing reconstruction error equivalent to picking
(Ug,q:---,U,) tO be eigen vectors with smallest eigen values

40
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Basic PCA algoritm
" J

m Start from m by n data matrix X
m Recenter: subtract mean from each row of X

X, X=X
m Compute covariance matrix:
T+ XX,
m Find eigen vectors and values of X

m Principal components: k eigen vectors with
highest eigen values

©2005-2007 Carlos Guestrin
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PCA example
'm

) = 1
X =X Z: U4
+ U
=1

) rigure 1 -oix| T Lo/ x)
Fie Edit Wiew Insert Tools Deskioo  Window  Heb L'l Fie Edi ‘iew Insett Took Desktop Window  Help ~
W IR EIEREEE nsda||: Ram®|E 0@ a0

9r g

8 o gt o

i a 7 o

mean
i o B o .
\ F_|rst

£+ 5 eigenvector

4 o] 8} 4+ ] ]

K] o 3t o

Second
2 [a] 2 s -
elgenvector

1r 11

D 1 1 1 1 1 1 1 1 D L L L L L !

1] 1 2 3 i 5 5 7 g 0 1 2 3 4 £ 5 T a =]




k
i = i
X =x4 E 25U,
=1

Fie Edic Wiew Insert Teak Deskbop  Uindow  Help

PCA example — reconstruction
=

only used first principal component

File Edt Yiews Insert Tools Deskbop  Windos  Help

=] |

h=eES|: Radme|E 0B e d

NE&E|fRaa® (@ 0B =o

9 -
ar o
7 o
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\ F_|r5t
5t elgenvector
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Eigenfaces [Turk, Pentland *91]
"

m |Input images:

. g 8

44
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Eigenfaces reconstruction

"
m Each image corresponds to adding 8 principal
components:

©2005-2007 Carlos Guestrin
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Relationship to Gaussians
" JE i

m PCA assumes data is Gaussian

X ~ N(GZ)
m Equivalent to weighted sum of simple
Gaussians: o
@)
X=>_<—|—szuj; ZjNN(O;U?) o
=1

v

m  Selecting top k principal components
equivalent to lower dimensional Gaussian

approximation:

k
X%)_(—l—ZZju]‘—I-E; ZJNN(O,JJQ)
J=1

e~N(0;02), where o2 is defined by error,

©2005-2007 Carlos Guestrin
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Scaling up

=

m Covariance matrix can be really big!
Yisnbyn
10000 features — ||
finding eigenvectors is very slow...

m Use singular value decomposition (SVD)
finds to k eigenvectors
great implementations available, e.g., Matlab svd

©2005-2007 Carlos Guestrin
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SVD

" J
m Write X=USVT
X <« data matrix, one row per datapoint
U < weight matrix, one row per datapoint — coordinate of x! in eigenspace
S « singular value matrix, diagonal matrix
= in our setting each entry is eigenvalue 2,

VT « singular vector matrix
= in our setting each row is eigenvector v;

48
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PCA using SVD algoritm
S

Start from m by n data matrix X
Recenter: subtract mean from each row of X

Xs < X=X
Call SVD algorithm on X, — ask for k singular vectors

Principal components: k singular vectors with highest
singular values (rows of VT)

Coefficients become:

©2005-2007 Carlos Guestrin
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Using PCA for dimensionality
reduction In classification
" SN

m \WWant to learn f: X01Y

but some features are more important than others

m Approach: Use PCA on X to select a few
Important features

50



PCA for classification can lead to

groblems. .

m Direction of maximum variation may be unrelated to “discriminative”
directions:

m PCA often works very well, but sometimes must use more advanced
methods

e.g., Fisher linear discriminant

51
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What you need to know

o
m Dimensionality reduction
why and when it's important

m Simple feature selection

m Principal component analysis
minimizing reconstruction error
relationship to covariance matrix and eigenvectors
using SVD
problems with PCA

©2005-2007 Carlos Guestrin
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