Co-Training for Semisupervised learning (cont.) Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University April 23rd, 2007 ## Exploiting redundant information in semi-supervised learning - Want to predict Y from features X - $\Box f(X) \longrightarrow Y$ - □ have some labeled data L - □ lots of unlabeled data U - Co-training assumption: X is very expressive - $\square \mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$ - □ can learn - $g_1(\mathbf{X}_1) \longrightarrow Y$ - $g_2(\mathbf{X}_2) \rightarrow Y$ ## Co-Training Algorithm (example of the Co-taining) [Blum & Mitchell '99] ``` Given: labeled data L, unlabeled data U Loop: Train g1 (hyperlink classifier) using L Train g2 (page classifier) using L Allow g1 to label p positive, n negative examps from U Allow g2 to label p positive, n negative examps from U And these self-labeled examples to L MOUL ``` ### Understanding Co-Training: A simple setting - Suppose X_1 and X_2 are discrete $|X_1| = |X_2| = N$ No label noise Suppose X_1 and X_2 are discrete X_1 is described X_1 is described X_1 is described X_2 is described. - Without unlabeled data, how hard is it to learn g_1 (or g_2)? Without unlabeled data, how hard is it to learn $$g_1$$ (IH 1 = 2" hypothesis space is dependent on the specific space of space of the specific space of the specif trining examples is dependent onto $$|n|H| = N \cdot |n|^2$$ $$= 2^n \ln^2$$ ### Co-Training in simple setting Iteration 0 ### Co-Training in simple setting – Iteration 1 # Co-Training in simple setting – after convergence #### Co-Training in simple setting - N: # of the lines Connected components hyperlinks pages My advisor - Suppose infinite unlabeled data - Co-training must have at least one labeled example in each connected component of L+U graph component 95 For k Connected components, how much in g Where g is the jth connected component of graph of L U, m is number of labeled examples Hope: K small compand #### How much unlabeled data? Want to assure that connected components in the underlying distribution, G_D , are connected components in the observed $O(log(N)/\alpha)$ examples assure that with high probability, G_s has same connected components as G_D [Karger, 94] N is size of G_D , α is min cut over all connected components of G_D ### Co-Training theory - Want to predict Y from features X - \Box f(X) \longrightarrow Y - Co-training assumption: **X** is very expressive - \square $X = (X_1, X_2)$ - \square want to learn $g_1(\mathbf{X}_1) \mapsto Y$ and $g_2(\mathbf{X}_2) \mapsto Y$ - Assumption: $\exists g_1, g_2, \forall \mathbf{x} g_1(\mathbf{x}_1) = f(\mathbf{x}), g_2(\mathbf{x}_2) = f(\mathbf{x})$ - One co-training result [Blum & Mitchell '99] - - (X₁ ⊥ X₂ | Y) reverse | - g₁ & g₂ are PAC learnable from noisy data (and thus f) - Then - f is PAC learnable from weak initial classifier plus unlabeled data ### What you need to know about cotraining - Unlabeled data can help supervised learning (a lot) when there are (mostly) independent redundant features - One theoretical result: - □ If $(\mathbf{X}_1 \perp \mathbf{X}_2 \mid \mathbf{Y})$ and $\mathbf{g}_1 \& \mathbf{g}_2$ are PAC learnable from noisy data (and thus f) - □ Then f is PAC learnable from weak initial classifier plus unlabeled data - □ Disagreement between g₁ and g₂ provides bound on error of final classifier - Applied in many real-world settings: - Semantic lexicon generation [Riloff, Jones 99] [Collins, Singer 99],[Jones 05] - Web page classification [Blum, Mitchell 99] - Word sense disambiguation [Yarowsky 95] - □ Speech recognition [de Sa, Ballard 98] - Visual classification of cars [Levin, Viola, Freund 03] #### Announcements - Poster Session - ☐ Friday, May 4th 2-5pm, NSH Atrium - □ It will be fun... ② - □ There will be a prize!!! - Popular vote - □ Print your posters early!!! - Please, please, please fill in your FCEs - □ please ### Transductive SVMs Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University April 23rd, 2007 ### Semi-supervised learning and discriminative models We have seen semi-supervised learning for generative models EM S SE LOG PCS EN - What can we do for discriminative models - Not regular EM don't there P(x) !! we can't compute P(x) we can't compute P(x) - But there are discriminative versions of EM - Co-Training! - Many other tricks... let's see an example #### Linear classifiers – Which line is better? $$\mathbf{w}.\mathbf{x} = \sum_{j} \mathbf{w}^{(j)} \mathbf{x}^{(j)}$$ ### Support vector machines (SVMs) ### What if we have unlabeled data? $$\mathbf{w}.\mathbf{x} = \sum_{i} w^{(j)} x^{(j)}$$ #### n Labeled Data: $$\langle x_1^{(1)}, \dots, x_1^{(m)}, y_1 \rangle$$ $$\vdots$$ $$\langle x_n^{(1)}, \dots, x_n^{(m)}, y_{n_L} \rangle$$ #### **Example i:** $$\left\langle x_i^{(1)},\dots,x_i^{(m)} \right angle \quad -m \text{ features}$$ $y_i \in \{-1,+1\} \quad -\text{class}$ #### n_u Unlabeled Data: $$\left\langle x_1^{(1)}, \dots, x_1^{(m)}, ? \right\rangle$$ $$\vdots$$ $$\left\langle x_n^{(1)}, \dots, x_{n_U}^{(m)}, ? \right\rangle$$ 17 ## Transductive support vector machines (*TSVMs) ## Transductive support vector machines (TSVMs) ### What's the difference between transductive learning and semi-supervised learning? - Not much, and - A lot!!! - Semi-supervised learning: - □ labeled and unlabeled data → learn w - use w on test data - Transductive learning - same algorithms for labeled and unlabeled data, but... - unlabeled data is test data!!! - You are learning on the test data!!! - OK, because you never look at the labels of the test data - can get better classification - - never use test data prediction accuracy to tune parameters, select kernels, etc. #### Adding slack variables #### Transductive SVMs – now with slack variables! [Vapnik 98] Optimizew, $$\{\xi_1,...,\xi_{n_L}\}, \{\hat{y}_1,...,\hat{y}_{n_U}\}, \{\hat{\xi}_1,...,\hat{\xi}_{n_U}\}$$ minimize $$\mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} + \widehat{C} \sum_{u} \widehat{\xi}_{u}$$ $$(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1 - \xi_j, \ \forall j = 1, ..., n_L$$ $$(\mathbf{w}.\mathbf{x}_u + b) \, \hat{y}_u \ge 1 - \hat{\xi}_u, \ \forall u = 1, ..., n_u$$ $$\hat{y}_u \in \{-1, +1\}, \ \forall u = 1, ..., n_u$$ #### Learning Transductive SVMs is hard! Optimizew, $\{\xi_1,...,\xi_{n_L}\}, \{\hat{y}_1,...,\hat{y}_{n_U}\}, \{\hat{\xi}_1,...,\hat{\xi}_{n_U}\}$ minimize $\mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} + \hat{C} \sum_{u} \hat{\xi}_{u}$ $$(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1 - \xi_j, \ \forall j = 1, ..., n_L$$ $$(\mathbf{w}.\mathbf{x}_u + b) \, \hat{y}_u \ge 1 - \hat{\xi}_u, \ \forall u = 1, ..., n_u$$ $$\hat{y}_u \in \{-1, +1\}, \ \forall u = 1, ..., n_u$$ Integer Program - □ NP-hard!!! la Branch & Bound ## A (heuristic) learning algorithm for Transductive SVMs [Joachims 99] minimize $$\mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} + \hat{C} \sum_{u} \hat{\xi}_{u}$$ $$(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1 - \xi_j, \ \forall j = 1, ..., n_L$$ $$(\mathbf{w}.\mathbf{x}_u + b) \, \hat{y}_u \ge 1 - \hat{\xi}_u, \ \forall u = 1, ..., n_u$$ $$\hat{y}_u \in \{-1, +1\}, \ \forall u = 1, ..., n_u$$ - If you $\operatorname{set}\widehat{C}$ to $\operatorname{zero} \to \operatorname{ignore}$ unlabeled data - Intuition of algorithm: - $\hfill\Box$ start with small \widehat{C} - add labels to some unlabeled data based on classifier prediction - slowly increase \widehat{C} - keep on labeling unlabeled data and re-running classifier ## Some results classifying news articles – from [Joachims 99] Figure 6: Average P/R-breakeven point on the Reuters dataset for different training set sizes and a test set size of 3,299. ### What you need to know about transductive SVMs - problems of semi-superish discriminative learning - What is transductive v. semi-supervised learning - Formulation for transductive SVM - □ can also be used for semi-supervised learning - Optimization is hard! - □ Integer program - There are simple heuristic solution methods that work well here # Dimensionality reduction Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University April 23rd, 2007 ### Dimensionality reduction - Input data may have thousands or millions of dimensions! $f(X) \mapsto Y$ $f(X) \mapsto Y$ of dims. (feature) = e.g., text data has $f(X) \mapsto Y$ \mapsto$ - Dimensionality reduction: represent data with fewer dimensions - <u>easier learning</u> fewer parameters - □ visualization hard to visualize more than 3D or 4D - discover "intrinsic dimensionality" of data - high dimensional data that is truly lower dimensional #### Feature selection - Want to learn f:X→Y - $\square X = \langle X_1, \dots, X_n \rangle$ - □ but some features are more important than others - Approach: select subset of features to be used by learning algorithm - □ Score each feature (or sets of features) - □ Select set of features with best score ## Simple greedy forward feature selection algorithm - Pick a dictionary of features - □ e.g., polynomials for linear regression - Greedy heuristic: - □ Start from empty (or simple) set of features $F_o = \emptyset$ - \square Run learning algorithm for current set of features F_t - Obtain h_t - □ Select next best feature X; - e.g., X_j that results in lowest cross-validation error learner when learning with $F_t \cup \{X_i\}$ - $\Box F_{t+1} \leftarrow F_t \cup \{X_i\}$ - Recurse ## Simple greedy **backward** feature selection algorithm - Pick a dictionary of features - □ e.g., polynomials for linear regression - Greedy heuristic: - \square Start from all features $F_0 = F$ - □ Run learning algorithm for current set of features F_t - Obtain *h*_t - □ Select next worst feature X_i - e.g., X_j that results in lowest cross-validation error learner when learning with F_t $\{X_i\}$ - $\Box F_{t+1} \leftarrow F_{t} \{X_{i}\} \text{ renore}$ - □ Recurse ### Impact of feature selection on classification of fMRI data [Pereira et al. '05] Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted line corresponds to the best mean accuracy, obtained using 300 voxels. Voxels scored by p-value of regression to predict voxel value from the task ### Lower dimensional projections existing features Let's see this in the unsupervised setting just X, but no Y #### Linear projection and reconstruction ### Principal component analysis – basic idea - Project n-dimensional data into k-dimensional space while preserving information: - □ e.g., project space of 10000 words into 3-dimensions - □ e.g., project 3-d into 2-d Choose projection with minimum reconstruction error ### Linear projections, a review - Project a point into a (lower dimensional) space: - \square point: $\mathbf{x} = (x_1, \dots, x_n)$ - \square select a basis set of basis vectors $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ - we consider orthonormal basis: - \square $\mathbf{u}_i \leq \mathbf{u}_i = 1$, and $\mathbf{u}_i \leq \mathbf{u}_i = 0$ for $i \neq j$ - \square select a center $-\overline{x}$, defines offset of space - □ **best coordinates** in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (\mathbf{x} \overline{\mathbf{x}}) \le \mathbf{u}_i$ - minimum squared error ## PCA finds projection that minimizes reconstruction error Will represent each point as a projection: #### ■ PCA: □ Given $k \le n$, find $(\mathbf{u}_1, ..., \mathbf{u}_k)$ minimizing reconstruction error: $$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$ ### Understanding the reconstruction error $$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^n z^i_j \mathbf{u}_j$$ $$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad z_j^i = \mathbf{x}^i \cdot \mathbf{u}_j$$ □Given $k \le n$, find $(\mathbf{u}_1, ..., \mathbf{u}_k)$ minimizing reconstruction error: $$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$ Rewriting error: # Reconstruction error and covariance matrix $$error_k = \sum_{i=1}^m \sum_{j=k+1}^n [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$ $$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}^{i} - \bar{\mathbf{x}}) (\mathbf{x}^{i} - \bar{\mathbf{x}})^{T}$$ ## Minimizing reconstruction error and eigen vectors Minimizing reconstruction error equivalent to picking orthonormal basis (u₁,...,u_n) minimizing: $$error_k = \sum_{j=k+1}^n \mathbf{u}_j^T \mathbf{\Sigma} \mathbf{u}_j$$ ■ Eigen vector: Minimizing reconstruction error equivalent to picking (u_{k+1},...,u_n) to be eigen vectors with smallest eigen values ## Basic PCA algoritm - Start from m by n data matrix X - Recenter: subtract mean from each row of X $$\square X_c \leftarrow X - \overline{X}$$ Compute covariance matrix: $$\square \quad \Sigma \leftarrow \mathbf{X_c}^\mathsf{T} \; \mathbf{X_c}$$ - Find eigen vectors and values of Σ - Principal components: k eigen vectors with highest eigen values ## PCA example ## PCA example – reconstruction $$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$ only used first principal component ## Eigenfaces [Turk, Pentland '91] ### Principal components: ## Eigenfaces reconstruction Each image corresponds to adding 8 principal components: ## Relationship to Gaussians $$\square$$ $\mathbf{x} \sim \mathsf{N}(\overline{\mathbf{x}};\Sigma)$ Equivalent to weighted sum of simple Gaussians: $$\mathbf{x} = \bar{\mathbf{x}} + \sum_{j=1}^{n} z_j \mathbf{u}_j; \quad z_j \sim N(0; \sigma_j^2)$$ Selecting top k principal components equivalent to lower dimensional Gaussian approximation: $$\mathbf{x} \approx \mathbf{\bar{x}} + \sum_{j=1}^{k} z_j \mathbf{u}_j + \varepsilon; \quad z_j \sim N(0; \sigma_j^2)$$ \square $\varepsilon \sim N(0; \sigma^2)$, where σ^2 is defined by error_k ## Scaling up - Covariance matrix can be really big! - \square Σ is n by n - \square 10000 features $\rightarrow |\Sigma|$ - ☐ finding eigenvectors is very slow... - Use singular value decomposition (SVD) - ☐ finds to k eigenvectors - □ great implementations available, e.g., Matlab svd ### SVD - Write X = U S V^T - \square X \leftarrow data matrix, one row per datapoint - \Box **U** \leftarrow weight matrix, one row per datapoint coordinate of \mathbf{x}^i in eigenspace - □ **S** ← singular value matrix, diagonal matrix - in our setting each entry is eigenvalue λ_i - □ V^T ← singular vector matrix - in our setting each row is eigenvector v_i ## PCA using SVD algoritm - Start from m by n data matrix X - Recenter: subtract mean from each row of X $$\square X_c \leftarrow X - \overline{X}$$ - Call SVD algorithm on X_c ask for k singular vectors - Principal components: k singular vectors with highest singular values (rows of V^T) - □ Coefficients become: ## Using PCA for dimensionality reduction in classification - Want to learn f:X Y - \square **X**=<X₁,...,X_n> - □ but some features are more important than others - Approach: Use PCA on X to select a few important features ## PCA for classification can lead to problems... Direction of maximum variation may be unrelated to "discriminative" directions: - PCA often works very well, but sometimes must use more advanced methods - □ e.g., Fisher linear discriminant ## What you need to know - Dimensionality reduction - □ why and when it's important - Simple feature selection - Principal component analysis - minimizing reconstruction error - □ relationship to covariance matrix and eigenvectors - □ using SVD - □ problems with PCA