Unsupervised learning or Clustering -K-means Gaussian mixture models

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
April 4 ${ }^{\text {th }}, 2007$
©2005-2007 Carlos Guestrin

Some Data

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until terminated!

©2005-2007 Carlos Guestrin

K-means

- Randomly initialize k centers
$\square \mu^{(0)}=\mu_{1}{ }^{(0)}, \ldots, \mu_{k}{ }^{(0)}$
- Classify: Assign each point $j \in\{1, \ldots m\}$ to nearest center:
$\square C^{(t)}(j) \leftarrow \arg \min _{i}\left\|\mu_{i}-x_{j}\right\|^{2}$
■ Recenter: μ_{i} becomes centroid of its point:
$\square \mu_{i}^{(t+1)} \leftarrow \arg \min _{\mu} \sum_{j: C(j)=i}\left\|\mu-x_{j}\right\|^{2}$
Equivalent to $\mu_{\mathrm{i}} \leftarrow$ average of its points!

What is K-means optimizing?

- Potential function $\mathrm{F}(\mu, \mathrm{C})$ of centers μ and point allocations C:
$\square \quad F(\mu, C)=\sum_{j=1}^{m}\left\|\mu_{C(j)}-x_{j}\right\|^{2}$
- Optimal K-means:
$\square \min _{\mu} \min _{C} \mathrm{~F}(\mu, \mathrm{C})$

Does K-means converge??? Part 1

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix μ, optimize C

Does K-means converge??? Part 2

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix C, optimize μ

Coordinate descent algorithms

$-1 \quad$ mimporm

- Want: $\min _{\mathrm{a}} \min _{\mathrm{b}} \mathrm{F}(\mathrm{a}, \mathrm{b})$
- Coordinate descent:
\square fix a, minimize b
\square fix b, minimize a
\square repeat
- Converges!!!
\square if F is bounded
\square to a (often good) local optimum
- as we saw in applet (play with it!)
- K-means is a coordinate descent algorithm!

(One) bad case for k-means

- Clusters may overlap
- Some clusters may be "wider" than others

```
0
```

○

0
0

0


```
00
o
\(0 \quad 0\)
```


Gaussian Bayes Classifier Reminder

$$
\begin{aligned}
& P\left(y=i \mid \mathbf{x}_{j}\right)=\frac{p\left(\mathbf{x}_{j} \mid y=i\right) P(y=i)}{p\left(\mathbf{x}_{j}\right)} \\
& P\left(y=i \mid \mathbf{x}_{j}\right) \propto \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
\end{aligned}
$$

Predicting wealth from age

Predicting wealth from age

Learning modelyear, mpg ---> maker
 $$
\Sigma=\left(\begin{array}{cccc} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m} \\ \sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}^{2} \end{array}\right)
$$

General: $O\left(m^{2}\right)$ parameters

$$
\Sigma=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}^{2}
\end{array}\right)
$$

Aligned: O(m)
 parameters

$$
\Sigma=\left(\begin{array}{cccccc}
\sigma_{1}^{2} & 0 & 0 & \cdots & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \sigma^{2}{ }_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \sigma^{2}{ }_{m-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & \sigma^{2}{ }_{m}
\end{array}\right)
$$

maker = america

maker = asia

(prior $=0.201531$)
maker $=$ europe
(prior $=0.173469$)

Aligned: O(m) parameters

$$
\Sigma=\left(\begin{array}{cccccc}
\sigma_{1}^{2} & 0 & 0 & \cdots & 0 & 0 \\
0 & \sigma^{2} 2_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \sigma_{3}^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \sigma_{m-1}^{2} & 0 \\
0 & 0 & 0 & \cdots & 0 & \sigma_{m}^{2}
\end{array}\right)
$$

Spherical: $O(1)$ cov parameters

$\Sigma=\left(\begin{array}{cccccc}\sigma^{2} & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^{2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma^{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^{2} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^{2}\end{array}\right)$

Spherical: O(1) cov parameters

$$
\Sigma=\left(\begin{array}{cccccc}
\sigma^{2} & 0 & 0 & \cdots & 0 & 0 \\
0 & \sigma^{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \sigma^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \sigma^{2} & 0 \\
0 & 0 & 0 & \cdots & 0 & \sigma^{2}
\end{array}\right)
$$

Next... back to Density Estimation

What if we want to do density estimation with multimodal or clumpy data?

But we don't see class labels!!!

- MLE:
$\square \operatorname{argmax} \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{y}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}}\right)$

- But we don't know y_{j} 's!!!
- Maximize marginal likelihood:
$\square \operatorname{argmax} \prod_{j} \mathrm{P}\left(\mathrm{x}_{\mathrm{j}}\right)=\operatorname{argmax} \prod_{\mathrm{j}} \sum_{\mathrm{i}=1}{ }^{\mathrm{k}} \mathrm{P}\left(\mathrm{y}_{\mathrm{j}}=\mathrm{i}, \mathrm{x}_{\mathrm{j}}\right)$

Special case: spherical Gaussians and hard assignments

$$
P\left(y=i \mid \mathbf{x}_{j}\right) \propto \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
$$

- If $\mathrm{P}(\mathrm{X} \mid \mathrm{Y}=\mathrm{i})$ is spherical, with same σ for all classes:

$$
P\left(\mathbf{x}_{j} \mid y=i\right) \propto \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{i}\right\|^{2}\right]
$$

- If each x_{j} belongs to one class $\mathrm{C}(\mathrm{j})$ (hard assignment), marginal likelihood:

$$
\prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \propto \prod_{j=1}^{m} \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{C(j)}\right\|^{2}\right]
$$

- Same as K-means!!!

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} \boldsymbol{I}$

Each data point is generated according to the following recipe:

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} \boldsymbol{I}$

Each data point is generated according to the following recipe:

1. Pick a component at random:

Choose component i with probability $P(y=i)$

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} \boldsymbol{I}$

Each data point is generated according to the following recipe:

1. Pick a component at random:

Choose component i with probability $P(y=i)$
2. Datapoint $\sim \mathrm{N}\left(\mu_{i}, \sigma^{2} \boldsymbol{I}\right)$

The General GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix Σ_{i}

Each data point is generated according to the following recipe:

1. Pick a component at random:

Choose component i with probability $P(y=i)$
2. Datapoint $\sim \mathrm{N}\left(\mu_{i}, \Sigma_{i}\right)$

Unsupervised Learning: not as hard as it looks

Sometimes easy

Sometimes impossible

IN CASE YOU'RE
WONDERING WHAT
THESE DIAGRAMS ARE,
THEY SHOW 2-d
UNLABELED DATA (X
VECTORS)
DISTRIBUTED IN 2-d
SPACE. THE TOP ONE
HAS THREE VERY
CLEAR GAUSSIAN
CENTERS

and sometimes in between

Marginal likelihood for general case

$$
P\left(y=i \mid \mathbf{x}_{j}\right) \propto \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
$$

- Marginal likelihood:

$$
\begin{aligned}
\prod_{j=1}^{m} P\left(\mathbf{x}_{j}\right) & =\prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \\
& =\prod_{j=1}^{m} \sum_{i=1}^{k} \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
\end{aligned}
$$

Special case 2: spherical Gaussians and soft assignments

- If $\mathrm{P}(\mathrm{X} \mid \mathrm{Y}=\mathrm{i})$ is spherical, with same σ for all classes:

$$
P\left(\mathbf{x}_{j} \mid y=i\right) \propto \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{i}\right\|^{2}\right]
$$

- Uncertain about class of each x_{j} (soft assignment), marginal likelihood:

$$
\prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{i}\right\|^{2}\right] P(y=i)
$$

Unsupervised Learning: Mediumly Good News

We now have a procedure s.t. if you give me a guess at $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}$
I can tell you the prob of the unlabeled data given those μ 's.

Suppose x 's are 1-dimensional.
(From Duda and Hart)
There are two classes; w_{1} and w_{2}
$\mathrm{P}\left(\mathrm{y}_{1}\right)=1 / 3 \quad \mathrm{P}\left(\mathrm{y}_{2}\right)=2 / 3 \quad \sigma=1$.
There are 25 unlabeled datapoints
DATA SCATTERGRAM
$x_{1}=0.608$
$x_{2}=-1.590$
$x_{3}=0.235$
$x_{4}=3.949$
$x_{25}=-0.712$

Duda \& Hart's Example

We can graph the
I prob. dist. function of data given our μ_{1} and μ_{2} estimates.

We can also graph the true function from which the data was randomly generated.

- They are close. Good.
- The $2^{\text {nd }}$ solution tries to put the " $2 / 3$ " hump where the " $1 / 3$ " hump should go, and vice versa.
- In this example unsupervised is almost as good as supervised. If the x_{1}.. x_{25} are given the class which was used to learn them, then the results are ($\mu_{1}=-2.176, \mu_{2}=1.684$). Unsupervised got ($\mu_{1}=-2.13, \mu_{2}=1.668$).

Duda \& Hart's Example ${ }^{\mu_{2}}$

Graph of $\log \mathrm{P}\left(x_{1}, x_{2} . . x_{25} \mid \mu_{1}, \mu_{2}\right)$ against $\mu_{1}(\rightarrow)$ and $\mu_{2}(\uparrow)$

Max likelihood $=\left(\mu_{1}=-2.13, \mu_{2}=1.668\right)$
Local minimum, but very close to global at ($\mu_{1}=2.085, \mu_{2}=-1.257$)*

* corresponds to switching y_{1} with y_{2}.

Finding the max likelihood $\mu_{1}, \mu_{2} . . \mu_{k}$

We can compute P(data | $\left.\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}\right)$
How do we find the $\boldsymbol{\mu}_{i}$'s which give max. likelihood?

- The normal max likelihood trick:

Set $\frac{\partial}{\partial \mu_{i}} \log \operatorname{Prob}(\ldots)=0$
and solve for μ_{i} s.
\# Here you get non-linear non-analytically- solvable equations

- Use gradient descent

Slow but doable
■ Use a much faster, cuter, and recently very popular method...

©2005-2007 Carlos Guestrin

Tha E.M. Algorithm

- We'll get back to unsupervised learning soon.
- But now we'll look at an even simpler case with hidden information.
- The EM algorithm
$\square \quad$ Can do trivial things, such as the contents of the next few slides.
\square An excellent way of doing our unsupervised learning problem, as we'll see.
\square Many, many other uses, including inference of Hidden Markov Models (future lecture).

Silly Example

Let events be "grades in a class"

$$
\begin{array}{ll}
w_{1}=\text { Gets an } A & P(A)=1 / 2 \\
w_{2}=\text { Gets a } B & P(B)=\mu \\
w_{3}=\text { Gets a C } & P(C)=2 \mu \\
w_{4}=\text { Gets a } \quad D & P(D)=1 / 2-3 \mu
\end{array}
$$

(Note $0 \leq \mu \leq 1 / 6$)
Assume we want to estimate μ from data. In a given class there were

$$
\begin{array}{ll}
\text { a A's } \\
\text { b } & \text { B's } \\
\text { c } & \text { C's } \\
\text { d } & \text { D's }
\end{array}
$$

What's the maximum likelihood estimate of μ given a, b, c, d ?

Trivial Statistics

$P(A)=1 / 2 \quad P(B)=\mu \quad P(C)=2 \mu \quad P(D)=1 / 2-3 \mu$
$P(a, b, c, d \mid \mu)=K(1 / 2)^{a}(\mu)^{b}(2 \mu)^{c}(1 / 2-3 \mu)^{d}$
$\log P(a, b, c, d \mid \mu)=\log K+a \log 1 / 2+b \log \mu+c \log 2 \mu+d \log (1 / 2-3 \mu)$
FOR MAX LIKE $\mu, \operatorname{SET} \frac{\partial \operatorname{LogP}}{\partial \mu}=0$
$\frac{\partial \log P}{\partial \mu}=\frac{b}{\mu}+\frac{2 c}{2 \mu}-\frac{3 d}{1 / 2-3 \mu}=0$
Gives max like $\mu=\frac{b+c}{6(b+c+d)}$
So if class got

A	B	C	D
14	6	9	10

Max like $\mu=\frac{1}{10}$

Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's $+\mathrm{B}^{\prime} \mathrm{s}$) $=h$
Number of C's $=c$

$$
\begin{aligned}
& \text { REMEMBER } \\
& P(A)=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu
\end{aligned}
$$

Number of D's $=d$
What is the max. like estimate of μ now?

Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's $+\mathrm{B}^{\prime} \mathrm{s}$) $=h$
Number of C's $=c$
Number of D's $=d$

$$
\begin{aligned}
& \text { REMEMBER } \\
& \mathrm{P}(\mathrm{~A})=1 / 2 \\
& \mathrm{P}(\mathrm{~B})=\mu \\
& \mathrm{P}(\mathrm{C})=2 \mu \\
& \mathrm{P}(\mathrm{D})=1 / 2-3 \mu
\end{aligned}
$$

What is the max. like estimate of μ now?
We can answer this question circularly:
EXPECTATION
If we know the value of μ we could compute the expected value of a and b
Since the ratio a:b should be the same as the ratio $1 / 2: \mu \quad b a=\frac{1 / 2}{1 / 2+\mu} h \quad b=\frac{\mu}{1 / 2+\mu} h$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ

$$
\mu=\frac{b+c}{6(b+c+d)}
$$

E.M. for our Trivial Problem

We begin with a guess for μ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates

REMEMBER

$$
\begin{aligned}
& P(A)=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu
\end{aligned}
$$ of μ and a and b.

Define $\mu^{(t)}$ the estimate of μ on the t'th iteration
$b^{(t)}$ the estimate of b on t'th iteration

Continue iterating until converged.
Good news: Converging to local optimum is assured.
Bad news: I said "local" optimumpor carlos Guestrin

E.M. Convergence

- Convergence proof based on fact that $\operatorname{Prob}($ data $\mid \mu)$ must increase or remain same between each iteration [Not obvious]
- But it can never exceed 1 [obvious]

So it must therefore converge [obvious]

In our example, suppose we had

$$
\begin{aligned}
\mathrm{h} & =20 \\
\mathrm{c} & =10 \\
\mathrm{~d} & =10 \\
\mu^{(0)} & =0
\end{aligned}
$$

Convergence is generally linear: error decreases by a constant factor each time step.

t	$\mu^{(\mathrm{t})}$	$\mathrm{b}^{(\mathrm{t})}$
0	0	0
1	0.0833	2.857
2	0.0937	3.158
3	0.0947	3.185
4	0.0948	3.187
5	0.0948	3.187
6	0.0948	3.187

Back to Unsupervised Learning of GMMs - a simple case

Remember:

We have unlabeled data $\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{\mathrm{m}}$
We know there are k classes
We know $P\left(y_{1}\right) P\left(y_{2}\right) P\left(y_{3}\right) \ldots P\left(y_{k}\right)$
We don't know $\mu_{1} \mu_{2} . . \mu_{k}$
We can write $\mathrm{P}\left(\right.$ data $\left.\mid \boldsymbol{\mu}_{1} \ldots \mu_{\mathrm{k}}\right)$

$$
\begin{aligned}
& =\mathrm{p}\left(x_{1} \ldots x_{m} \mid \mu_{1} \ldots \mu_{k}\right) \\
& =\prod_{j=1}^{m} \mathrm{p}\left(x_{j} \mid \mu_{1} \ldots \mu_{k}\right) \\
& =\prod_{j=1}^{m} \sum_{i=1}^{k} \mathrm{p}\left(x_{j} \mid \mu_{i}\right) \mathrm{P}(y=i) \\
& \propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{j}-\mu_{i}\right\|^{2}\right) \mathrm{P}(y=i)
\end{aligned}
$$

EM for simple case of GMMs: The E-step

■ If we know $\mu_{1}, \ldots, \mu_{\mathrm{k}} \rightarrow$ easily compute prob. point x_{j} belongs to class $y=i$

$$
\mathrm{p}\left(y=i \mid x_{j}, \mu_{1} \ldots, \mu_{k}\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{j}-\mu_{i}\right\|^{2}\right) \mathrm{P}(y=i)
$$

EM for simple case of GMMs: The M-step

- If we know prob. point x_{j} belongs to class $y=i$
\rightarrow MLE for μ_{i} is weighted average
\square imagine k copies of each x_{j}, each with weight $\mathrm{P}\left(\mathrm{y}=\mathrm{i} \mid \mathrm{x}_{\mathrm{j}}\right)$:

$$
\mu_{i}=\frac{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right) x_{j}}{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right)}
$$

E.M. for GMMs

E-step

Compute "expected" classes of all datapoints for each class

$$
\mathrm{p}\left(y=i \mid x_{j}, \mu_{1} \ldots \mu_{k}\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}} \| x_{j}-\left.\mu_{i}\right|^{2}\right) \mathrm{P}(y=i)
$$

M-step

Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\mu_{i}=\frac{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right) x_{j}}{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right)}
$$

E.M. Convergence

- EM is coordinate ascent on an interesting potential function
- Coord. ascent for bounded pot. func. ! convergence to a local optimum guaranteed
- See Neal \& Hinton reading on class webpage

- This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data

E.M. for General GMMs

Iterate. On the t th iteration let our estimates be

$$
\lambda_{t}=\left\{\mu_{1}^{(t)}, \mu_{2}^{(t)} \ldots \mu_{k}(t), \Sigma_{1}^{(t)}, \Sigma_{2}(t) \ldots \Sigma_{k}^{(t)}, p_{1}^{(t)}, p_{2}(t) \ldots p_{k}^{(t)}\right\}
$$

$p_{i}^{(t)}$ is shorthand for estimate of $P(y=i)$ on t'th iteration

E-step

Compute "expected" classes of all datapoints for each class

$$
\mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right) \propto p_{i}^{(t)} \mathrm{p}\left(x_{j} \mid \mu_{i}^{(t)}, \Sigma_{i}^{(t)}\right), \begin{aligned}
& \text { Just evaluate } \\
& \text { a Gaussian at } \\
& x_{j}
\end{aligned}
$$

M-step
Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\begin{gathered}
\grave{\mathrm{I}}_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right) x_{j}}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)} \quad \Sigma_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)\left[x_{j}-\mu_{i}^{(t+1)}\left\lceil x_{j}-\mu_{i}^{(t+1)}\right]\right.}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)} \\
p_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)}{m} \quad m=\text { \#records }
\end{gathered}
$$

Gaussian Mixture Example: Start

©2005-2007 Carlos Guestrin

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

©2005-2007 Carlos Guestrin

GMM clustering of the assay data

©2005-2007 Carlos Guestrin Density
Estimator

Compound $=$

Three classes of

 assay(each learned with it's own mixture model)

©2005-2007 Carlos Guestrin

Resulting Bayes Classifier

©2005-2007 Carlos Guestrin

Resulting Bayes Classifier, using posterior probabilities to alert about ambiguity and anomalousness

Cyan means ambiguous

What you should know

- K-means for clustering:
\square algorithm
\square converges because it's coordinate ascent
- EM for mixture of Gaussians:
\square How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Understand the two examples of E.M. given in these notes
- Remember, E.M. can get stuck in local minima, and empirically it DOES

Acknowledgements

- K-means \& Gaussian mixture models presentation contains material from excellent tutorial by Andrew Moore:
\square http://www.autonlab.org/tutorials/
- K-means Applet:
$\square \underline{\text { http://www.elet.polimi.it/upload/matteucc/Clustering/tu }}$ torial html/AppletKM.html
- Gaussian mixture models Applet:
\square http://www.neurosci.aist.go.jp/\~akaho/MixtureEM. html

