Unsupervised learning or Clustering -K-means

 Gaussian mixture models

 Gaussian mixture models}

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
April 4 ${ }^{\text {th }}, 2007$
©2005-2007 Carlos Guestrin

©2005-2007 Carlos Guestrin

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns...
5. .. and jumps there
6. ...Repeat until terminated!

K-means

$$
\begin{aligned}
& \begin{array}{l}
\text { min squars } \\
\mu \text { forrointer } \\
\text { center of }
\end{array} \\
& \text { mass } \\
& \text { 三 }
\end{aligned}
$$

- Randomly initialize k centers
$\square \mu^{(0)}=\mu_{1}{ }^{(0)}, \ldots, \mu_{k}{ }^{(0)}$
- Classify: Assign each point $j \in\{1, \ldots \mathrm{~m}\}$ to nearest center: strmation t
$\square C^{(t)}(j) \underset{\sim}{\text { duta poîth } j} \underset{\sim}{\arg \min }\left\|\mu_{i}-x_{j}\right\|^{2}$
- Recenter: μ_{i} becomes centroid of its point:
$\square \underline{\mu_{i}^{(t+1)}} \leftarrow \underset{-}{\arg \min _{\mu}} \underbrace{\sum_{j: C(j)=i}\left\|\mu-x_{j}\right\|^{2}}$
\square Equivalent to $\mu_{i} \leftarrow$ average of its points!

What is K-means optimizing?

- Potential function $\mathrm{F}(\mu, \mathrm{C})$ of centers μ and point allocations C: distance between x_{j}^{\prime} \& $\square \quad F(\mu, C)=\sum_{j=1}^{m}\left\|\mu_{C(j)}-x_{j}\right\|^{2}$
$\mu(j) \epsilon_{\text {nearest }}$ diction center of $f_{X_{j}}$
- Optimal K-means:

Does K-means converge??? Part 1

- Optimize potential function:

$$
\min _{\underline{\mu}} \min _{\underline{C}} \underbrace{F(\mu, C)}=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix μ, optimize C
set μ to $\hat{\mu}$, opt. over C

$$
\begin{aligned}
& \min _{C} \sum_{i=1}^{k} \sum_{C(j)=i}\left\|\tilde{\mu}_{i}-x_{j}\right\|^{2}=\min _{c} \sum_{j=1}^{m}\left\|\hat{\mu}_{c(j)}-x_{j}\right\|^{2} \\
& \left.=\sum_{j=1}^{m} \min _{c(j)} \| \tilde{\mu}_{c(j)}-x_{j}\right) \|^{2} \longleftarrow \\
& \text { independetitly pitch } \\
& C(j)=\underset{\operatorname{argmin}_{i}}{ }\left\|\mu_{i}^{2}-x_{j}\right\|^{2} \\
& \text { assign of }(S) \text { is } \text { cor independent }(y \\
& \text { of } C(l)
\end{aligned}
$$

Does K-means converge??? Part 2

- Optimize potential function:

$$
\min _{\mu} \min _{C} F(\mu, C)=\min _{\mu} \min _{C} \sum_{i=1}^{k} \sum_{j: C(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}
$$

- Fix C, optimize μ set C to \hat{C}

$$
\begin{aligned}
& \min _{\mu} \sum_{i=1}^{k} \sum_{j i \hat{c}(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2}=\text { can pick creations } \mu_{i} \text { independently } \\
&= \sum_{i=1}^{k} \min _{\mu_{i}} \sum_{\mu_{j i} \tilde{c}(j)=i}\left\|\mu_{i}-x_{j}\right\|^{2} \\
& \underbrace{\operatorname{argmin}}_{\text {recenter }} \sum_{\mu_{i}} \tilde{c}(j)=i
\end{aligned}
$$

Coordinate descent algorithms

\square to a (often good) local optimum

- as we saw in applet (play with it!)
- K-means is a coordinate descent algorithm!

(One) bad case for k-means

- Clusters may overlap

- Some clusters may be

Gaussian Bayes Classifier

Predicting wealth from age

Predicting wealth from age

Learning modelyear , $\quad\left(\begin{array}{llll}\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m}\end{array}\right.$ mpg ---> maker
 $$
P(x \mid y=1)=N\left(\mu_{i}, \Sigma_{i}\right)\left[\begin{array}{cccc} \vdots & \vdots & \ddots & \vdots \\ \sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}^{2} \end{array}\right)
$$

General: $O\left(m^{2}\right)$ parameters

$$
\Sigma=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 m} \\
\vdots & \vdots & \cdots & \vdots \\
\sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}^{2}
\end{array}\right)
$$

Aligned: $O(m)$ parameters

maker = asia
 (prior $=0.201531$)

$\begin{array}{llll}1 & \text { mean cov } & \\ & & & \\ \mathrm{mpg} & 27.6029 & 43.2988 & 0\end{array}$
modelyear $\begin{array}{llll}75.6765 & 0 & 11.7147\end{array}$ modelyear

Aligned: $O(m)$
 parameters

$$
\Sigma=\left(\begin{array}{cccccc}
\sigma_{1}^{2} & 0 & 0 & \cdots & 0 & 0 \\
0 & \sigma^{2} 2_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \sigma_{3}^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \sigma_{m-1}^{2} & 0 \\
0 & 0 & 0 & \cdots & 0 & \sigma_{m}^{2}
\end{array}\right)
$$

Spherical: O(1) cov parameters

every clavp
Sune
Sigres
0

0 \& 0 \& \sigma^{2} \& \cdots \& 0 \& 0

\vdots \& \vdots \& \vdots \& \ddots \& \vdots \& \vdots

0 \& 0 \& 0 \& \cdots \& \sigma^{2} \& 0

0 \& 0 \& 0 \& \cdots \& 0 \& \sigma^{2}\end{array}\right)\)

Spherical: O(1) cov parameters

$$
\Sigma=\left(\begin{array}{cccccc}
\sigma^{2} & 0 & 0 & \cdots & 0 & 0 \\
0 & \sigma^{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \sigma^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \sigma^{2} & 0 \\
0 & 0 & 0 & \cdots & 0 & \sigma^{2}
\end{array}\right)
$$

Next... back to Density Estimation
What if we want to do density estimation with multimodal or clumpy data?

But we don't see class labels!!!

Special case: spherical Gaussians and hard assignments

$$
P\left(y=i \mid \mathbf{x}_{j}\right) \propto \underbrace{\frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)}_{\text {\&features }}
$$

$1 / k \pi$ uniform

\max

$$
\left.\underset{\mu}{\max _{C}} \max \prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \propto \prod_{j=1}^{\log _{m}} \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{C(j)}\right\|^{2}\right]=\sum_{j=1}^{m}-\frac{1}{2 \sigma^{2}} \| x_{j}-\mu_{C(j)}\right)^{7}
$$

- Same as K-means!!!
narrow special case of fitting mixtures of Gaussian

Gcusim Mixture Modes
 The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix σ^{2} l e.g., $\Sigma=\left[\begin{array}{cc}\sigma^{2} & G \\ c^{\prime} \cdot \sigma \\ 0\end{array}\right]$
Each data point is generated according to the following recipe:

The GMM assumption

- There are k components
- Component ihas an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix σ^{2} I

Each data point is generated according to the following recipe:

1. Pick a component at random: Choose component i with probability $P(y=i)$

The GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix σ^{2} I

Each data point is generated according to the following recipe:

1. Pick a component at random:

Choose component i with probability $P(y=i)$
2. Datapoint $\sim N\left(\mu, \sigma^{2} \boldsymbol{I}\right)$

The General GMM assumption

- There are k components
- Component i has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix Σ_{i}

Each data point is generated according to the following
 recipe:

1. Pick a component at random:

Choose component i with probability $P(y=i)$ \& gerestal
covariona matrix
2. Datapoint $\sim N\left(\mu_{i}, \Sigma_{j}\right)$

Unsupervised Learning: not as hard as it looks

and sometimes in between

Marginal likelihood for general case

$$
P\left(y=i \mid \mathbf{x}_{j}\right) \propto \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i)
$$

den. of $\quad X_{j} \longleftarrow$ observed

$$
\begin{aligned}
& \text { - Marginal likelihood: } \\
& \log \prod_{j=1}^{m} P\left(\mathbf{x}_{j}\right)={ }^{\circ} \prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \\
& =\prod_{j=1}^{m} \sum_{i=1}^{k} \frac{1}{(2 \pi)^{m / 2}\left\|\Sigma_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{j}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}_{j}-\mu_{i}\right)\right] P(y=i) \\
& =\sum_{j=1}^{m} \log \sum_{i=1}^{k} \\
& P\left(x_{j}\right) \approx \sum_{i} P\left(y_{i} i\right) \cdot P\left(x_{j} \mid y_{i}\right) \\
& \text { don't osserne gl } \\
& \Rightarrow \text { max } P\left(x_{j}\right) \text { gl Gaussian }
\end{aligned}
$$

 Gaussian and soft assignments

If $\mathrm{P}(\mathrm{X} \mid \mathrm{Y}=\mathrm{i})$ is spherical, with same σ for all classes: $a d d_{x_{3 s e s}}$

$$
P\left(\mathbf{x}_{j} \mid y=i\right) \propto \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{i}\right\|^{2}\right]
$$

- Uncertain about class of each x_{j} (soft assignment), marginal likelihood:

$$
\begin{aligned}
& \prod_{j=1}^{m} \sum_{i=1}^{k} P\left(\mathbf{x}_{j}, y=i\right) \propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp \left[-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}_{j}-\mu_{i}\right\|^{2}\right] P(y=i)
\end{aligned}
$$

C guess $\mu_{1} \ldots \mu_{k} \rightarrow$ compute $P\left(x_{j} \mid y_{i}\right)$
recompute centers weighed by prob.

Unsupervised Learning: Mediumly Good News

We now have a procedure sit. if you give me a guess at $\boldsymbol{\mu}_{g} \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}$,
I can tell you the prob of the unlabeled data given those μ es.

$$
\begin{gathered}
\text { for each } x \quad P(x \mid y)=N\left(\mu, \sigma^{2}\right) \\
\text { given } \mu
\end{gathered}
$$

Suppose \boldsymbol{x} 's are 1-dimensional.
(From Luda and Hart)
There are two classes; w_{1} and w_{2} Set $\sigma=1$
$\underbrace{P\left(y_{1}\right)=1 / 3} \quad P\left(y_{2}\right)=2 / 3, \sigma=1$.
There are 25 unlabeled datapoints

DATA SCATTERGRAM

$$
\begin{gather*}
x_{1}=0.608 \\
x_{2}=-1.590 \\
x_{3}=0.235 \\
x_{4}=3.949 \\
\\
\quad: \\
x_{25}=-0.712
\end{gather*}
$$

Duda \& Hart's Examplep $(x) \quad P(x) x_{\mu_{1}=2}^{w, z}$

We can graph the prob. dist. function of data given our μ_{1} and μ_{2} estimates.

We can also graph the true function from which the data was randomly generated.

- They are close. Good.
- The $2^{\text {nd }}$ solution tries to put the " $2 / 3$ " hump where the " $1 / 3$ " hump should go, and vice versa.

$$
P(y=1)=2, \quad P(\bar{y}=2)=1 / 3
$$

- In this example unsupervised is almost as good as supervised. If the x_{1}.. x_{25} are given the class which was used to learn them, then the results are ($\mu_{1}=-2.176, \mu_{2}=1.684$). Unsupervised got ($\mu_{1}=-2.13, \mu_{2}=1.668$).

Duda \& Hart's Example ${ }^{n_{2}}$

Finding the max likelihood $\mu_{1}, \mu_{2} . . \mu_{k}$

We can compute P(data | $\left.\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . \boldsymbol{\mu}_{k}\right)$
How do we find the $\boldsymbol{\mu}_{i}$'s which give max. likelihood?

- The normal max likelihood trick:

$$
\text { Set } \frac{\partial}{\partial \mu_{i}} \log \operatorname{Prob}(\ldots .)=0
$$

and solve for μ_{i} s.
\# Here you get non-linear non-analytically- solvable equations

- Use gradient descent

Slow but doable

- Use a much faster, cuter, and recently very popular method...

©2005-2007 Carlos Guestrin

ThaE.M. Algorithm

- We'll get back to unsupervised learning soon.

■ But now we'll look at an even simpler case with hidden information.

- The EM algorithm
$\square \quad$ Can do trivial things, such as the contents of the next few slides.
\square An excellent way of doing our unsupervised learning problem, as we'll see.
\square Many, many other uses, including inference of Hidden Markov Models (future lecture).

Silly Example

Let events be "grades in a class"

$$
\begin{array}{ll}
w_{1}=\text { Gets an } A & P(A)=1 / 2 \\
w_{2}=\text { Gets a } B & P(B)=\mu \\
w_{3}=\text { Gets a C } & P(C)=2 \mu \\
w_{4}=\text { Gets a } \quad D & P(D)=1 / 2-3 \mu
\end{array}
$$

(Note $0 \leq \mu \leq 1 / 6$)
Assume we want to estimate μ from data. In a given class there were

$$
\begin{array}{ll}
\text { a } & \text { A's } \\
\text { b } & \text { B's } \\
\text { c } & \text { C's } \\
\text { d } & \text { D's }
\end{array}
$$

What's the maximum likelihood estimate of μ given a, b, c, d ?

Trivial Statistics

$P(A)=1 / 2 \quad P(B)=\mu \quad P(C)=2 \mu \quad P(D)=1 / 2-3 \mu$
$P(a, b, c, d \mid \mu)=K(1 / 2)^{a}(\mu)^{b}(2 \mu)^{c}(1 / 2-3 \mu)^{d}$
$\log P(a, b, c, d \mid \mu)=\log K+a \log 1 / 2+b \log \mu+c \log 2 \mu+d \log (1 / 2-3 \mu)$
FOR MAX LIKE $\quad \mu$, SET $\frac{\partial \log P}{\partial \mu}=0$
$\frac{\partial \log \mathrm{P}}{\partial \mu}=\frac{b}{\mu}+\frac{2 c}{2 \mu}-\frac{3 d}{1 / 2-3 \mu}=0$
Gives max like $\mu=\frac{b+c}{6(b+c+d)}$
So if class got

A	B	C	D
14	6	9	10

Max like $\quad \mu=\frac{1}{10}$

Same Problem with Hidden Information

What is the max. like estimate of μ now?

Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's + B's) $=h$
Number of C's $=c$
Number of D's $=d$

$$
\begin{aligned}
& \text { REMEMBER } \\
& \text { P(A) }=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu
\end{aligned}
$$

What is the max. like estimate of μ now?
We can answer this question circularly:
EXPECTATION
If we know the value of μ we could compute the expected value of a and b
Since the ratio a:b should be the same as the ratio $1 / 2: \mu \quad a=\frac{1 / 2}{1 / 2+\mu} h$

$$
b=\frac{\mu}{1 / 2+\mu} h
$$

MAXI MI ZATI ON

$$
\mu=\frac{b+c}{6(b+c+d)}
$$

E.M. for our Trivial Problem

We begin with a guess for μ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates

$$
\begin{aligned}
& P(A)=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu
\end{aligned}
$$ of μ and a and b.

Define $\mu^{(t)}$ the estimate of μ on the t^{\prime} th iteration
$b^{(t)}$ the estimate of b on t^{\prime} th iteration

Continue iterating until converged.
Good news: Converging to local optimum is assured.
Bad news: I said "local" optimum

E.M. Convergence

- Convergence proof based on fact that $\operatorname{Prob}($ data $\mid \mu)$ must increase or remain same between each iteration [not obvious]
- But it can never exceed 1 [obvious]

So it must therefore converge [obvious]

In our example, suppose we had

$$
\begin{aligned}
\mathrm{h} & =20 \\
c & =10 \\
d & =10 \\
\mu^{(0)} & =0
\end{aligned}
$$

Convergence is generally linear: error decreases by a constant factor each time step.

t	$\mu^{(t)}$	$\mathrm{b}^{(t)}$
0	0	0
1	0.0833	2.857
2	0.0937	3.158
3	0.0947	3.185
4	0.0948	3.187
5	0.0948	3.187
6	0.0948	3.187

Back to Unsupervised Learning of GMMs - a simple case

Remember:

We have unlabeled data $\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{\mathrm{m}}$
We know there are k classes
We know $P\left(y_{1}\right) P\left(y_{2}\right) P\left(y_{3}\right) \ldots P\left(y_{k}\right)$
We don't know $\boldsymbol{\mu}_{1} \boldsymbol{\mu}_{2} . . \mu_{\mathrm{k}}$
We can write $P\left(\right.$ data $\left.\mid \mu_{1} \ldots . \mu_{\mathrm{k}}\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(x_{1} \ldots x_{m} \mid \mu_{1} \ldots \mu_{k}\right) \\
& =\prod_{j=1}^{m} \mathrm{P}\left(x_{j} \mid \mu_{1} \ldots \mu_{k}\right) \\
& =\prod_{j=1}^{m} \sum_{i=1}^{k} \mathrm{P}\left(x_{j} \mid \mu_{i}\right) \mathrm{P}(y=i) \\
& \propto \prod_{j=1}^{m} \sum_{i=1}^{k} \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{j}-\mu_{i}\right\|^{2}\right) \mathrm{P}(y=i)
\end{aligned}
$$

EM for simple case of GMMs: The E-step

- If we know $\mu_{1}, \ldots, \mu_{\mathrm{k}} \rightarrow$ easily compute prob. point x_{j} belongs to class $y=i$

$$
\mathrm{p}\left(y=i \mid x_{j}, \mu_{l} . \mu_{k}\right) \times \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{j}-\mu_{\mu}\right\|^{2}\right) \mathrm{P}(y=i)
$$

EM for simple case of GMMs: The M-step

- If we know prob. point x_{j} belongs to class $y=i$
\rightarrow MLE for μ_{i} is weighted average
\square imagine k copies of each x_{j}, each with weight $\mathrm{P}\left(\mathrm{y}=\mathrm{i} \mid \mathrm{x}_{\mathrm{j}}\right)$:

$$
\mu_{i}=\frac{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right) x_{j}}{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right)}
$$

E.M. for GMMs

E-step

Compute "expected" classes of all datapoints for each class

$$
\mathrm{p}\left(y=i \mid x_{j}, \mu_{1} \ldots \mu_{k}\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{j}-\mu_{i}\right\|^{2}\right) \mathrm{P}(y=i)
$$

M-step

Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\mu_{i}=\frac{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right) x_{j}}{\sum_{j=1}^{m} P\left(y=i \mid x_{j}\right)}
$$

E.M. Convergence

- EM is coordinate ascent on an interesting potential function
- Coord. ascent for bounded pot. func. \rightarrow convergence to a local optimum guaranteed
- See Neal \& Hinton reading on class webpage

- This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data

E.M. for General GMMs

Iterate. On the t th iteration let our estimates be

$$
\lambda_{t}=\left\{\mu_{1}^{(t)}, \mu_{2}^{(t)} \ldots \mu_{k}^{(t)}, \Sigma_{1}^{(t)}, \Sigma_{2}^{(t)} \ldots \Sigma_{k}^{(t)}, p_{1}^{(t)}, p_{2}^{(t)} \ldots p_{k}^{(t)}\right\}
$$

$p_{i}^{(t)}$ is shorthand for estimate of $P(y=i)$ on t'th iteration

E-step

Compute "expected" classes of all datapoints for each class

Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\mu_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right) x_{j}}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)} \quad \Sigma_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)\left[x_{j}-\mu_{i}^{(t+1)}\left[x_{j}-\mu_{i}^{(t+1)}\right]^{T}\right.}{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)}
$$

$$
p_{i}^{(t+1)}=\frac{\sum_{j} \mathrm{P}\left(y=i \mid x_{j}, \lambda_{t}\right)}{m}=m=\text { \#records }
$$

Gaussian Mixture Example: Start

© 2005-2007 Carlos Guestrin

After first iteration

After 2nd iteration

After 3rd iteration

©2005-2007 Carlos Guestrin

After 4th iteration

-

After 5th iteration

©2005-2007 Carlos Guestrin

After 6th iteration

After 20th iteration

Some Bio Assay data

-

©2005-2007 Carlos Guestrin

GMM clustering of the assay data

Resulting

 Density Estimator

Compound $=$

Three classes of assay (each learned with it's own mixture model)

©2005-2007 Carlos Guestrin
 Classifier, using posterior probabilities to alert about ambiguity and anomalousness

Cyan means ambiguous

What you should know

- K-means for clustering:
\square algorithm
\square converges because it's coordinate ascent
- EM for mixture of Gaussians:
\square How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Understand the two examples of E.M. given in these notes
- Remember, E.M. can get stuck in local minima, and empirically it DOES

Acknowledgements

- K-means \& Gaussian mixture models presentation contains material from excellent tutorial by Andrew Moore:
$\square \underline{\text { http://www.autonlab.org/tutorials/ }}$
- K-means Applet:
$\square \underline{\text { http://www.elet.polimi.it/upload/matteucc/Clustering/tu }}$ torial html/AppletKM.html
- Gaussian mixture models Applet:
\square http://www.neurosci.aist.go.jp/\~akaho/MixtureEM. html

