Fighting the bias-variance tradeoff

- **Simple (a.k.a. weak) learners are good**
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don’t usually overfit

- **Simple (a.k.a. weak) learners are bad**
 - High bias, can’t solve hard learning problems

- Can we make weak learners always good???
 - **No!!**
 - **But often yes...**
Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
 - Classifiers that are most “sure” will vote with more conviction
 - Classifiers will be most “sure” about a particular part of the space
 - On average, do better than single classifier!

- But how do you ???
 - force classifiers to learn about different parts of the input space?
 - weigh the votes of different classifiers?

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (rewighted) training data, then let learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis – h_t
 - A strength for this hypothesis – α_t

- Final classifier:
 - Practically useful
 - Theoretically interesting
Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others
- Consider a weighted dataset
 - \(D(i) \) – weight of \(i \)th training example \((x_i, y_i)\)
 - Interpretations:
 - \(i \)th training example counts as \(D(i) \) examples
 - If I were to “resample” data, I would get more samples of “heavier” data points
- Now, in all calculations, whenever used, \(i \)th training example counts as \(D(i) \) “examples”
 - e.g., MLE for Naïve Bayes, redefine \(\text{Count}(Y=y) \) to be weighted count

Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)

Initialize \(D_1(i) = 1/m \).

For \(t = 1, \ldots, T \):

- Train base learner using distribution \(D_t \).
- Get base classifier \(h_t : X \rightarrow \mathbb{R} \).
- Choose \(\alpha_t \in \mathbb{R} \).
- Update:
 \[
 D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
 \]
 where \(Z_t \) is a normalization factor
 \[
 Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
 \]

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]

Figure 1: The boosting algorithm AdaBoost.
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_1(i) = 1/m\).
For \(t = 1, \ldots, T\):

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t : X \rightarrow \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

\[
\epsilon_t = P_{i \sim D_t}[x_i \neq y_i]
\]

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

<table>
<thead>
<tr>
<th>What (\alpha_t) to choose for hypothesis (h_t)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Schapire, 1989]</td>
</tr>
</tbody>
</table>

Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))
\]

Where \(f(x) = \sum_t \alpha_t h_t(x); H(x) = \text{sign}(f(x))\)
What \(\alpha_t \) to choose for hypothesis \(h_t \)?

[Schapire, 1989]

Training error of final classifier is bounded by:

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_t Z_t
\]

Where \(f(x) = \sum_t \alpha_t h_t(x) \); \(H(x) = \text{sign}(f(x)) \).

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

If we minimize \(\prod_t Z_t \), we minimize our training error.

We can tighten this bound greedily, by choosing \(\alpha_t \) and \(h_t \) on each iteration to minimize \(Z_t \):
What α_t to choose for hypothesis h_t?

[Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

You’ll prove this in your homework! 😊

Strong, weak classifiers

- If each classifier is (at least slightly) better than random
 - $\epsilon_t < 0.5$

- AdaBoost will achieve zero training error (exponentially fast):

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} (1/2 - \epsilon_t)^2 \right)$$

- Is it hard to achieve better than random training error?
Boosting results – Digit recognition

[Schapire, 1989]

- Boosting often
 - Robust to overfitting
 - Test set error decreases even after training error is zero

Boosting generalization error bound

[Freund & Schapire, 1996]

\[
error_{true}(H) \leq error_{train}(H) + \hat{O}\left(\sqrt{\frac{Td}{m}}\right)
\]

- \(T\) – number of boosting rounds
- \(d\) – VC dimension of weak learner, measures complexity of classifier
- \(m\) – number of training examples
Boosting generalization error bound

\[\text{error}_{\text{true}}(H) \leq \text{error}_{\text{train}}(H) + \hat{O}\left(\frac{Td}{m}\right) \]

- **Contradicts**: Boosting often
 - Robust to overfitting
 - Test set error decreases even after training error is zero
- **Need better analysis tools**
 - We’ll come back to this later in the semester

- \(T \) – number of boosting rounds
- \(d \) – VC dimension of weak learner, measures complexity of classifier
- \(m \) – number of training examples

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(D|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \]
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss
\[
\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i)))
\]

Boosting minimizes similar loss function!!
\[
\frac{1}{m} \sum_{i} \exp(-y_if(x_i)) = \prod_{t} Z_t
\]
Both smooth approximations of 0/1 loss!

Logistic regression and Boosting

Logistic regression:
- Minimize loss fn
 \[
 \sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i)))
 \]
- Define
 \[
 f(x) = \sum_{j} w_j x_j
 \]
 where \(x_j\) predefined

Boosting:
- Minimize loss fn
 \[
 \sum_{i=1}^{m} \exp(-y_if(x_i))
 \]
- Define
 \[
 f(x) = \sum_{t} \alpha_t h_t(x)
 \]
 where \(h_t(x)\) defined dynamically to fit data
 (not a linear classifier)
- Weights \(\alpha_t\) learned incrementally
What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier

OK... now we’ll learn to pick those darned parameters...

- Selecting features (or basis functions)
 - Linear regression
 - Naive Bayes
 - Logistic regression
- Selecting parameter value
 - Prior strength
 - Naive Bayes, linear and logistic regression
 - Regularization strength
 - Naive Bayes, linear and logistic regression
 - Decision trees
 - MaxpChance, depth, number of leaves
 - Boosting
 - Number of rounds
- More generally, these are called Model Selection Problems
- Today:
 - Describe basic idea
 - Introduce very important concept for tuning learning approaches: Cross-Validation
Test set error as a function of model complexity

Simple greedy model selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select next best feature X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse
Greedy model selection

- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand
- Only a heuristic!
 - But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that include Naïve Bayes
- There are many more elaborate methods out there

Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select next best feature X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} = F_t \cup \{X_i\}$
 - Recurse

When do you stop???
- When training error is low enough?
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} = F_t \cup \{X_i\}$
 - Recurse

When do you stop???
- When training error is low enough?
- When test set error is low enough?

Validation set

- Thus far: Given a dataset, **randomly** split it into two parts:
 - Training data – $\{x_1, \ldots, x_{N_{\text{train}}}\}$
 - Test data – $\{x_1, \ldots, x_{N_{\text{test}}}\}$

- But **Test data must always remain independent**!
 - Never ever ever ever learn on test data, including for model selection

- Given a dataset, **randomly** split it into three parts:
 - Training data – $\{x_1, \ldots, x_{N_{\text{train}}}\}$
 - Validation data – $\{x_1, \ldots, x_{N_{\text{valid}}}\}$
 - Test data – $\{x_1, \ldots, x_{N_{\text{test}}}\}$

- Use validation data for tuning learning algorithm, e.g., model selection
 - Save test data for very final evaluation
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select next best feature X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse

When do you stop???
- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?

Man!!! OK, should I just repeat until I get tired???
- I am tired now...
- No, “There is a better way!”
(LOO) Leave-one-out cross validation

Consider a validation set with 1 example:
- D – training data
- $D_{\setminus i}$ – training data with ith data point moved to validation set

Learn classifier $h_{D_{\setminus i}}$ with $D_{\setminus i}$ dataset

Estimate true error as:
- 0 if $h_{D_{\setminus i}}$ classifies ith data point correctly
- 1 if $h_{D_{\setminus i}}$ is wrong about ith data point
- Seems really bad estimator, but wait!

LOO cross validation: Average over all data points i:
- For each data point you leave out, learn a new classifier $h_{D_{\setminus i}}$
- Estimate error as:
 \[
 \text{error}_{\text{LOO}} = \frac{1}{m} \sum_{i=1}^{m} 1\left(h_{D_{\setminus i}}(x^i) \neq y^i\right)
 \]

LOO cross validation is (almost) unbiased estimate of true error!

When computing LOOCV error, we only use $m-1$ data points
- So it’s not estimate of true error of learning with m data points!
- Usually pessimistic, though – learning with less data typically gives worse answer

LOO is almost unbiased!
- Let $\text{error}_{\text{true},m-1}$ be true error of learner when you only get $m-1$ data points
- In homework, you’ll prove that LOO is unbiased estimate of $\text{error}_{\text{true},m-1}$:
 \[
 E_D[\text{error}_{\text{LOO}}] = \text{error}_{\text{true},m-1}
 \]

Great news!
- Use LOO error for model selection!!!
Simple greedy model selection algorithm

- Greedy heuristic:
 - Select next best feature X_i
 - e.g., X_i that results in lowest training error learner when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} = F_t \cup \{X_i\}$
 - Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- STOP WHEN error_{LOO} IS LOW!!!

Using LOO error for model selection
Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - Learns in only 1 second
- Computing LOO will take about 1 day!!!
 - If you have to do for each choice of basis functions, it will take foooooooreeeeee’!!!
- Solution 1: Preferred, but not usually possible
 - Find a cool trick to compute LOO (e.g., see homework)

Solution 2 to complexity of computing LOO:
(More typical) **Use k-fold cross validation**

- Randomly divide training data into k equal parts
 - D_1, \ldots, D_k
- For each i
 - Learn classifier h_{D_i} using data point not in D_i
 - Estimate error of h_{D_i} on validation set D_i

\[
error_{D_i} = \frac{k}{m} \sum_{(x', y') \in D_i} 1 \left(h_{D_i}(x') \neq y' \right)
\]

- **k-fold cross validation error is average** over data splits:

\[
error_{k\text{-fold}} = \frac{1}{k} \sum_{i=1}^{k} error_{D_i}
\]

- k-fold cross validation properties:
 - Much faster to compute than LOO
 - More (pessimistically) biased – using much less data, only $m(k-1)/k$
 - Usually, $k = 10$ 😁
Regularization – Revisited

- **Model selection 1:** **Greedy**
 - Pick subset of features that have yield low LOO error

- **Model selection 2:** **Regularization**
 - Include all possible features!
 - Penalize “complicated” hypothesis

Regularization in linear regression

- Overfitting usually leads to very large parameter choices, e.g.:

 \[-2.2 + 3.1 X - 0.30 X^2 \quad -1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + \ldots\]

- Regularized least-squares (a.k.a. ridge regression), for $\lambda \geq 0$:

 $$
 w^* = \arg\min_w \sum_j \left(t(x_j) - \sum_i w_i h_i(x_j) \right)^2 + \lambda \sum_i w_i^2
 $$
Other regularization examples

- **Logistic regression** regularization
 - Maximize data likelihood minus penalty for large parameters
 \[\arg \max_w \sum_j \ln P(y^j|x^j, w) - \lambda \sum_i w_i^2 \]
 - Biases towards small parameter values

- **Naïve Bayes** regularization
 - Prior over likelihood of features
 - Biases away from zero probability outcomes

- **Decision tree** regularization
 - Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
 - Biases towards smaller trees

How do we pick magic parameter?

Cross Validation!!!!

- \(\lambda \) in Linear/Logistic Regression
 - (analogously for # virtual examples in Naïve Bayes, MaxPvalue in Decision Trees)
Regularization and Bayesian learning

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

- We already saw that regularization for logistic regression corresponds to MAP for zero mean, Gaussian prior for \(w \)

- Similar interpretation for other learning approaches:
 - Linear regression: Also zero mean, Gaussian prior for \(w \)
 - Naïve Bayes: Directly defined as prior over parameters
 - Decision trees: Trickier to define… but we’ll get back to this

Occam’s Razor

- William of Ockham (1285-1349) Principle of Parsimony:
 - “One should not increase, beyond what is necessary, the number of entities required to explain anything.”
- Regularization penalizes for “complex explanations”

- Alternatively (but pretty much the same), use Minimum Description Length (MDL) Principle:
 - minimize \(\text{length(misclassifications)} + \text{length(hypothesis)} \)

- \(\text{length(misclassifications)} \) – e.g., #wrong training examples
- \(\text{length(hypothesis)} \) – e.g., size of decision tree
Minimum Description Length Principle

- MDL prefers small hypothesis that fit data well:
 \[h_{MDL} = \arg\min_h L_{C_1}(D \mid h) + L_{C_2}(h) \]

 - \(L_{C_1}(D\mid h) \) – description length of data under code \(C_1 \) given \(h \)
 - Only need to describe points that \(h \) doesn’t explain (classify correctly)
 - \(L_{C_2}(h) \) – description length of hypothesis \(h \)

Decision tree example

 - \(L_{C_1}(D\mid h) \) – #bits required to describe data given \(h \)
 - If all points correctly classified, \(L_{C_1}(D\mid h) = 0 \)
 - \(L_{C_2}(h) \) – #bits necessary to encode tree
 - Trade off quality of classification with tree size

Bayesian interpretation of MDL Principle

- MAP estimate
 \[h_{MAP} = \arg\max_h [P(D \mid h)P(h)] \]
 \[= \arg\max_h [\log_2 P(D \mid h) + \log_2 P(h)] \]
 \[= \arg\min_h [\log_2 P(D \mid h) - \log_2 P(h)] \]

- Information theory fact:
 - Smallest code for event of probability \(p \) requires \(-\log_2 p \) bits

- MDL interpretation of MAP:
 - \(-\log_2 P(D\mid h)\) – length of \(D \) under hypothesis \(h \)
 - \(-\log_2 P(h)\) – length of hypothesis \(h \) (there is hidden parameter here)
 - MAP prefers simpler hypothesis:
 - minimize length(misclassifications) + length(hypothesis)

- In general, Bayesian approach usually looks for simpler hypothesis – Acts as a regularizer
What you need to know about Model Selection, Regularization and Cross Validation

- **Cross validation**
 - (Mostly) Unbiased estimate of true error
 - LOOCV is great, but hard to compute
 - k-fold much more practical
 - Use for selecting parameter values!

- **Model selection**
 - Search for a model with low cross validation error

- **Regularization**
 - Penalizes for complex models
 - Select parameter with cross validation
 - Really a Bayesian approach

- **Minimum description length**
 - Information theoretic interpretation of regularization
 - Relationship to MAP

Acknowledgements

- Part of the boosting material in the presentation is courtesy of Tom Mitchell