
1

©2005-2007 Carlos Guestrin 1

Boosting
Simple Model Selection
Cross Validation
Regularization

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 7th, 2007

©2005-2007 Carlos Guestrin 2

Fighting the bias-variance tradeoff

Simple (a.k.a. weak) learners are good
e.g., naïve Bayes, logistic regression, decision stumps
(or shallow decision trees)
Low variance, don’t usually overfit

Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

Can we make weak learners always good???
No!!!
But often yes…

2

©2005-2007 Carlos Guestrin 3

Voting (Ensemble Methods)
Instead of learning a single (weak) classifier, learn many weak classifiers
that are good at different parts of the input space
Output class: (Weighted) vote of each classifier

Classifiers that are most “sure” will vote with more conviction
Classifiers will be most “sure” about a particular part of the space
On average, do better than single classifier!

But how do you ???
force classifiers to learn about different parts of the input space?
weigh the votes of different classifiers?

©2005-2007 Carlos Guestrin 4

Boosting

Idea: given a weak learner, run it multiple times on
(reweighted) training data, then let learned classifiers vote

On each iteration t:
weight each training example by how incorrectly it was classified
Learn a hypothesis – ht

A strength for this hypothesis – αt

Final classifier:

Practically useful
Theoretically interesting

[Schapire, 1989]

3

©2005-2007 Carlos Guestrin 5

Learning from weighted data
Sometimes not all data points are equal

Some data points are more equal than others
Consider a weighted dataset

D(i) – weight of i th training example (xi,yi)
Interpretations:

i th training example counts as D(i) examples
If I were to “resample” data, I would get more samples of “heavier” data points

Now, in all calculations, whenever used, i th training example counts as
D(i) “examples”

e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count

©2005-2007 Carlos Guestrin 6

4

©2005-2007 Carlos Guestrin 7

©2005-2007 Carlos Guestrin 8

Training error of final classifier is bounded by:

Where

What αt to choose for hypothesis ht?
[Schapire, 1989]

5

©2005-2007 Carlos Guestrin 9

Training error of final classifier is bounded by:

Where

What αt to choose for hypothesis ht?
[Schapire, 1989]

©2005-2007 Carlos Guestrin 10

Training error of final classifier is bounded by:

Where

If we minimize ∏t Zt, we minimize our training error

We can tighten this bound greedily, by choosing αt and ht on each
iteration to minimize Zt.

What αt to choose for hypothesis ht?
[Schapire, 1989]

6

©2005-2007 Carlos Guestrin 11

What αt to choose for hypothesis ht?

We can minimize this bound by choosing αt on each iteration to minimize Zt.

For boolean target function, this is accomplished by [Freund & Schapire ’97]:

You’ll prove this in your homework! ☺

[Schapire, 1989]

©2005-2007 Carlos Guestrin 12

Strong, weak classifiers

If each classifier is (at least slightly) better than random
εt < 0.5

AdaBoost will achieve zero training error (exponentially fast):

Is it hard to achieve better than random training error?

7

©2005-2007 Carlos Guestrin 13

Boosting results – Digit recognition

Boosting often
Robust to overfitting
Test set error decreases even after training error is zero

[Schapire, 1989]

©2005-2007 Carlos Guestrin 14

Boosting generalization error bound

T – number of boosting rounds
d – VC dimension of weak learner, measures complexity of classifier
m – number of training examples

[Freund & Schapire, 1996]

8

©2005-2007 Carlos Guestrin 15

Boosting generalization error bound

T – number of boosting rounds
d – VC dimension of weak learner, measures complexity of classifier
m – number of training examples

[Freund & Schapire, 1996]

Contradicts: Boosting often
Robust to overfitting
Test set error decreases even after training error is zero

Need better analysis tools
we’ll come back to this later in the semester

©2005-2007 Carlos Guestrin 16

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]

errorerror

er
ro

r

9

©2005-2007 Carlos Guestrin 17

©2005-2007 Carlos Guestrin 18

Boosting and Logistic Regression

Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss

10

©2005-2007 Carlos Guestrin 19

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

Boosting minimizes similar loss function!!

Both smooth approximations of 0/1 loss!

©2005-2007 Carlos Guestrin 20

Logistic regression and Boosting

Logistic regression:
Minimize loss fn

Define

where xj predefined

Boosting:
Minimize loss fn

Define

where ht(xi) defined
dynamically to fit data
(not a linear classifier)

Weights αj learned
incrementally

11

©2005-2007 Carlos Guestrin 21

What you need to know about Boosting

Combine weak classifiers to obtain very strong classifier
Weak classifier – slightly better than random on training data
Resulting very strong classifier – can eventually provide zero training
error

AdaBoost algorithm
Boosting v. Logistic Regression

Similar loss functions
Single optimization (LR) v. Incrementally improving classification (B)

Most popular application of Boosting:
Boosted decision stumps!
Very simple to implement, very effective classifier

©2005-2007 Carlos Guestrin 22

OK… now we’ll learn to pick those
darned parameters…

Selecting features (or basis functions)
Linear regression
Naïve Bayes
Logistic regression

Selecting parameter value
Prior strength

Naïve Bayes, linear and logistic regression
Regularization strength

Naïve Bayes, linear and logistic regression
Decision trees

MaxpChance, depth, number of leaves
Boosting

Number of rounds
More generally, these are called Model Selection Problems
Today:

Describe basic idea
Introduce very important concept for tuning learning approaches: Cross-Validation

12

©2005-2007 Carlos Guestrin 23

Test set error as a function of
model complexity

©2005-2007 Carlos Guestrin 24

Simple greedy model selection algorithm

Pick a dictionary of features
e.g., polynomials for linear regression

Greedy heuristic:
Start from empty (or simple) set of
features F0 = ∅
Run learning algorithm for current set
of features Ft

Obtain ht

Select next best feature Xi
e.g., Xj that results in lowest training error
learner when learning with Ft ∪ {Xj}

Ft+1 ← Ft ∪ {Xi}
Recurse

13

©2005-2007 Carlos Guestrin 25

Greedy model selection

Applicable in many settings:
Linear regression: Selecting basis functions
Naïve Bayes: Selecting (independent) features P(Xi|Y)
Logistic regression: Selecting features (basis functions)
Decision trees: Selecting leaves to expand

Only a heuristic!
But, sometimes you can prove something cool about it

e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that
include Naïve Bayes

There are many more elaborate methods out there

©2005-2007 Carlos Guestrin 26

Simple greedy model selection algorithm

Greedy heuristic:
…
Select next best feature Xi

e.g., Xj that results in lowest training error
learner when learning with Ft ∪ {Xj}

Ft+1 ← Ft ∪ {Xi}
Recurse

When do you stop???
When training error is low enough?

14

©2005-2007 Carlos Guestrin 27

Simple greedy model selection algorithm

Greedy heuristic:
…
Select next best feature Xi

e.g., Xj that results in lowest training error
learner when learning with Ft ∪ {Xj}

Ft+1 ← Ft ∪ {Xi}
Recurse

When do you stop???
When training error is low enough?
When test set error is low enough?

©2005-2007 Carlos Guestrin 28

Validation set

Thus far: Given a dataset, randomly split it into two parts:
Training data – {x1,…, xNtrain}
Test data – {x1,…, xNtest}

But Test data must always remain independent!
Never ever ever ever learn on test data, including for model selection

Given a dataset, randomly split it into three parts:
Training data – {x1,…, xNtrain}
Validation data – {x1,…, xNvalid}
Test data – {x1,…, xNtest}

Use validation data for tuning learning algorithm, e.g., model
selection

Save test data for very final evaluation

15

©2005-2007 Carlos Guestrin 29

Simple greedy model selection algorithm

Greedy heuristic:
…
Select next best feature Xi

e.g., Xj that results in lowest training error
learner when learning with Ft ∪ {Xj}

Ft+1 ← Ft ∪ {Xi}
Recurse

When do you stop???
When training error is low enough?
When test set error is low enough?
When validation set error is low enough?

©2005-2007 Carlos Guestrin 30

Simple greedy model selection algorithm

Greedy heuristic:
…
Select next best feature Xi

e.g., Xj that results in lowest training error
learner when learning with Ft ∪ {Xj}

Ft+1 ← Ft ∪ {Xi}
Recurse

When do you stop???
When training error is low enough?
When test set error is low enough?
When validation set error is low enough?
Man!!! OK, should I just repeat until I get tired???

I am tired now…
No, “There is a better way!”

16

©2005-2007 Carlos Guestrin 31

(LOO) Leave-one-out cross validation

Consider a validation set with 1 example:
D – training data
D\i – training data with i th data point moved to validation set

Learn classifier hD\i with D\i dataset
Estimate true error as:

0 if hD\i classifies i th data point correctly
1 if hD\i is wrong about i th data point
Seems really bad estimator, but wait!

LOO cross validation: Average over all data points i:
For each data point you leave out, learn a new classifier hD\i

Estimate error as:

©2005-2007 Carlos Guestrin 32

LOO cross validation is (almost)
unbiased estimate of true error!

When computing LOOCV error, we only use m-1 data points
So it’s not estimate of true error of learning with m data points!
Usually pessimistic, though – learning with less data typically gives worse answer

LOO is almost unbiased!
Let errortrue,m-1 be true error of learner when you only get m-1 data points
In homework, you’ll prove that LOO is unbiased estimate of errortrue,m-1:

Great news!
Use LOO error for model selection!!!

17

©2005-2007 Carlos Guestrin 33

Simple greedy model selection algorithm

Greedy heuristic:
…
Select next best feature Xi

e.g., Xj that results in lowest training error
learner when learning with Ft ∪ {Xj}

Ft+1 ← Ft ∪ {Xi}
Recurse

When do you stop???
When training error is low enough?
When test set error is low enough?
When validation set error is low enough?
STOP WHEN errorLOO IS LOW!!!

©2005-2007 Carlos Guestrin 34

Using LOO error for model selection

18

©2005-2007 Carlos Guestrin 35

Computational cost of LOO

Suppose you have 100,000 data points
You implemented a great version of your learning
algorithm

Learns in only 1 second
Computing LOO will take about 1 day!!!

If you have to do for each choice of basis functions, it will
take fooooooreeeve’!!!

Solution 1: Preferred, but not usually possible
Find a cool trick to compute LOO (e.g., see homework)

©2005-2007 Carlos Guestrin 36

Solution 2 to complexity of computing LOO:
(More typical) Use k-fold cross validation

Randomly divide training data into k equal parts
D1,…,Dk

For each i
Learn classifier hD\Di using data point not in Di
Estimate error of hD\Di on validation set Di:

k-fold cross validation error is average over data splits:

k-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased – using much less data, only m(k-1)/k
Usually, k = 10 ☺

19

©2005-2007 Carlos Guestrin 37

Regularization – Revisited

Model selection 1: Greedy
Pick subset of features that have yield low LOO error

Model selection 2: Regularization
Include all possible features!
Penalize “complicated” hypothesis

©2005-2007 Carlos Guestrin 38

Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:

Regularized least-squares (a.k.a. ridge regression), for λ≥0:

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + …

20

©2005-2007 Carlos Guestrin 39

Other regularization examples

Logistic regression regularization
Maximize data likelihood minus penalty for large parameters

Biases towards small parameter values

Naïve Bayes regularization
Prior over likelihood of features
Biases away from zero probability outcomes

Decision tree regularization
Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
Biases towards smaller trees

©2005-2007 Carlos Guestrin 40

How do we pick magic parameter?

λ in Linear/Logistic Regression
(analogously for # virtual examples in Naïve Bayes,
MaxPvalue in Decision Trees)

Cross Validation!!!!

21

©2005-2007 Carlos Guestrin 41

Regularization and Bayesian learning

We already saw that regularization for logistic
regression corresponds to MAP for zero mean,
Gaussian prior for w

Similar interpretation for other learning approaches:
Linear regression: Also zero mean, Gaussian prior for w
Naïve Bayes: Directly defined as prior over parameters
Decision trees: Trickier to define… but we’ll get back to this

©2005-2007 Carlos Guestrin 42

Occam’s Razor

William of Ockham (1285-1349) Principle of Parsimony:
“One should not increase, beyond what is necessary, the number of
entities required to explain anything.”

Regularization penalizes for “complex explanations”

Alternatively (but pretty much the same), use Minimum
Description Length (MDL) Principle:

minimize length(misclassifications) + length(hypothesis)

length(misclassifications) – e.g., #wrong training examples
length(hypothesis) – e.g., size of decision tree

22

©2005-2007 Carlos Guestrin 43

Minimum Description Length Principle

MDL prefers small hypothesis that fit data well:

LC1(D|h) – description length of data under code C1 given h
Only need to describe points that h doesn’t explain (classify correctly)

LC2(h) – description length of hypothesis h
Decision tree example

LC1(D|h) – #bits required to describe data given h
If all points correctly classified, LC1(D|h) = 0

LC2(h) – #bits necessary to encode tree
Trade off quality of classification with tree size

©2005-2007 Carlos Guestrin 44

Bayesian interpretation of MDL Principle

MAP estimate

Information theory fact:
Smallest code for event of probability p requires –log2p bits

MDL interpretation of MAP:
-log2 P(D|h) – length of D under hypothesis h
-log2 P(h) – length of hypothesis h (there is hidden parameter here)
MAP prefers simpler hypothesis:

minimize length(misclassifications) + length(hypothesis)

In general, Bayesian approach usually looks for simpler
hypothesis – Acts as a regularizer

23

©2005-2007 Carlos Guestrin 45

What you need to know about Model Selection,
Regularization and Cross Validation

Cross validation
(Mostly) Unbiased estimate of true error
LOOCV is great, but hard to compute
k-fold much more practical
Use for selecting parameter values!

Model selection
Search for a model with low cross validation error

Regularization
Penalizes for complex models
Select parameter with cross validation
Really a Bayesian approach

Minimum description length
Information theoretic interpretation of regularization
Relationship to MAP

©2005-2007 Carlos Guestrin 46

Acknowledgements

Part of the boosting material in the presentation
is courtesy of Tom Mitchell

