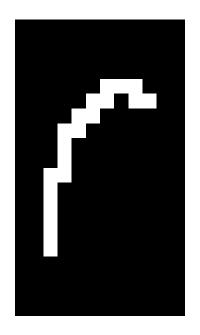
Bayesian Networks – Representation

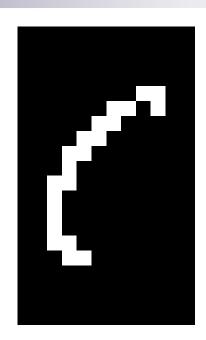
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 19th, 2007

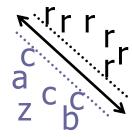
©2005-2007 Carlos Guestrin

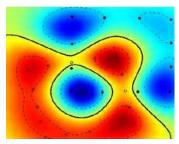
Handwriting recognition





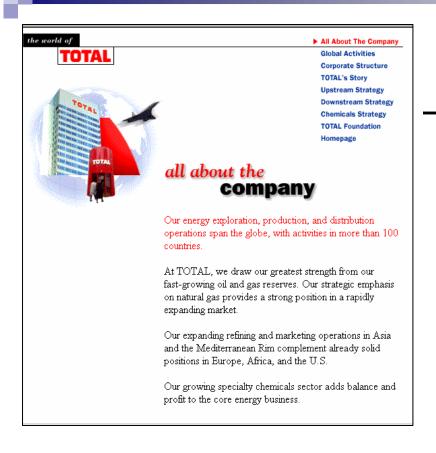
Character recognition, e.g., kernel SVMs





©2005-2007 Carlos Guestrin

Webpage classification



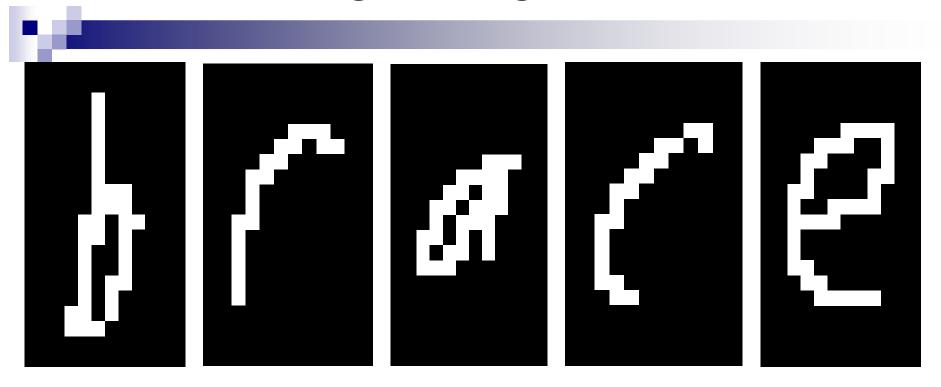
Company home page
vs
Personal home page
vs

University home page

. . .

VS

Handwriting recognition 2



Webpage classification 2

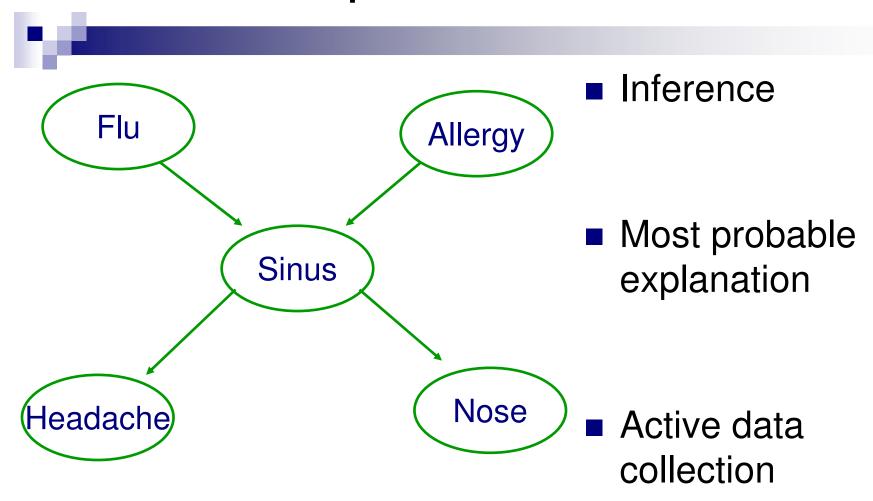
Today – Bayesian networks

- One of the most exciting advancements in statistical AI in the last 10-15 years
- Generalizes naïve Bayes and logistic regression classifiers
- Compact representation for exponentially-large probability distributions
- Exploit conditional independencies

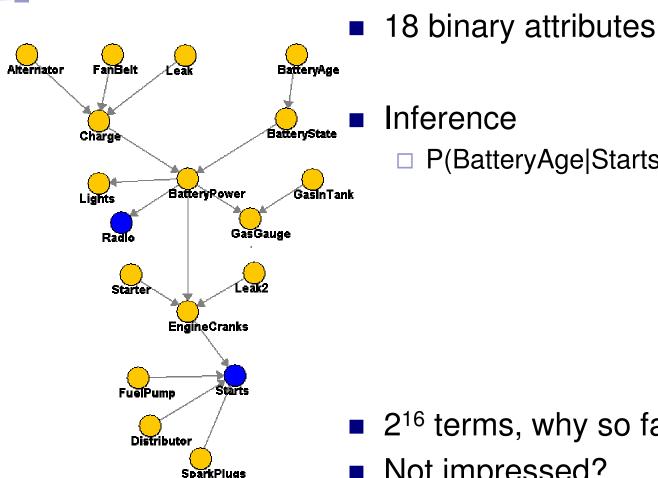
Causal structure

- Suppose we know the following:
 - ☐ The flu causes sinus inflammation
 - Allergies cause sinus inflammation
 - Sinus inflammation causes a runny nose
 - □ Sinus inflammation causes headaches
- How are these connected?

Possible queries



Car starts BN



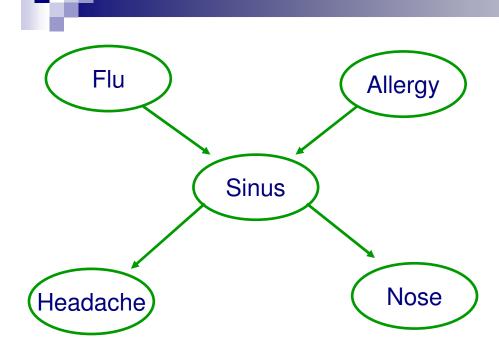
P(BatteryAge|Starts=f)

- 2¹⁶ terms, why so fast?
- Not impressed?
 - HailFinder BN more than 3⁵⁴ = 58149737003040059690390169 terms

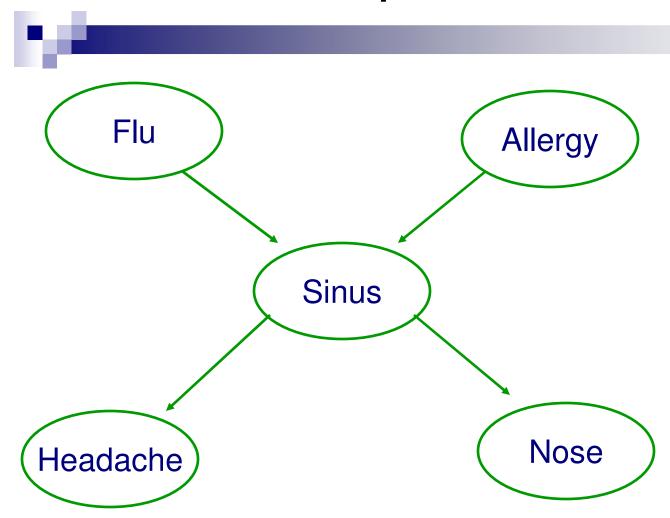
Announcements

- Welcome back!
- One page project proposal due Wednesday
 - □ Individual or groups of two
 - ☐ Must be something related to ML! ☺
 - \square It will be great if it's related to your research \rightarrow it must be something you started this semester
- Midway progress report
 - □ 5 pages NIPS format
 - □ April 16th
 - □ Worth 20%
- Poster presentation
 - ☐ May 4, 2-5pm in the NSH Atrium
 - □ Worth 20%
- Final report
 - May 10th
 - □ 8 pages NIPS format
 - □ Worth 60%
- It will be fun!!! ☺

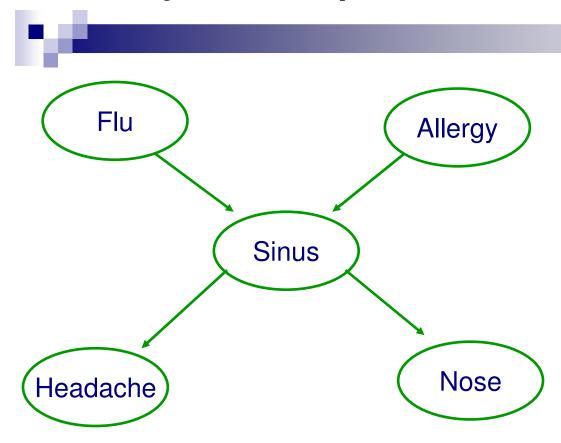
Factored joint distribution - Preview



Number of parameters



Key: Independence assumptions



Knowing sinus separates the variables from each other

(Marginal) Independence

■ Flu and Allergy are (marginally) independent

Flu = t
Flu = f

More Generally:

Allergy = t	
Allergy = f	

	Flu = t	Flu = f
Allergy = t		
Allergy = f		

Marginally independent random variables

- Sets of variables X, Y
- X is independent of Y if

$$\square P \models (X=x\bot Y=y), \forall x\in Val(X), y\in Val(Y)$$

- Shorthand:
 - □ Marginal independence: $P \models (X \perp Y)$
- **Proposition:** P statisfies $(X \perp Y)$ if and only if

$$\square P(X,Y) = P(X) P(Y)$$

Conditional independence

■ Flu and Headache are not (marginally) independent

Flu and Headache are independent given Sinus infection

More Generally:

Conditionally independent random variables

- Sets of variables X, Y, Z
- X is independent of Y given Z if
 - $\square P \models (X=x \perp Y=y|Z=z), \forall x \in Val(X), y \in Val(Y), z \in Val(Z)$
- Shorthand:
 - □ Conditional independence: $P \models (X \perp Y \mid Z)$
 - \square For $P \models (\mathbf{X} \perp \mathbf{Y} \mid \emptyset)$, write $P \models (\mathbf{X} \perp \mathbf{Y})$
- **Proposition:** P statisfies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ if and only if
 - $\square P(X,Y|Z) = P(X|Z) P(Y|Z)$

Properties of independence

Symmetry:

$$\square (X \perp Y \mid Z) \Rightarrow (Y \perp X \mid Z)$$

Decomposition:

$$\square$$
 (X \perp Y,W \mid Z) \Rightarrow (X \perp Y \mid Z)

Weak union:

$$\square$$
 (X \perp Y,W \mid Z) \Rightarrow (X \perp Y \mid Z,W)

Contraction:

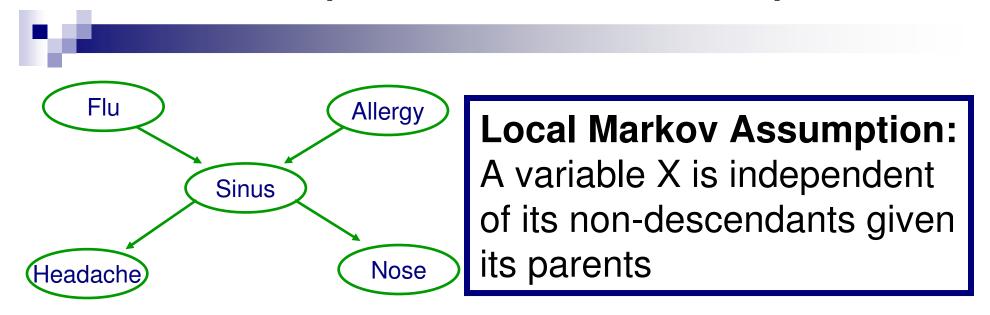
$$\square$$
 (X \perp W | Y,Z) & (X \perp Y | Z) \Rightarrow (X \perp Y,W | Z)

Intersection:

$$\square (X \perp Y \mid W,Z) \& (X \perp W \mid Y,Z) \Rightarrow (X \perp Y,W \mid Z)$$

- Only for positive distributions!
- \square P(α)>0, $\forall \alpha$, $\alpha \neq \emptyset$

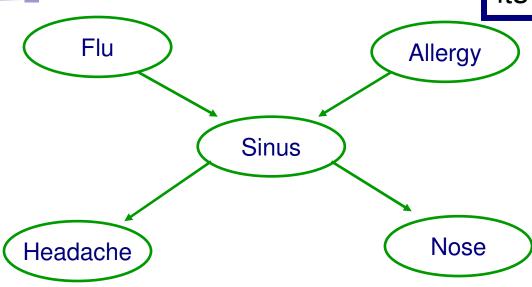
The independence assumption



Explaining away

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

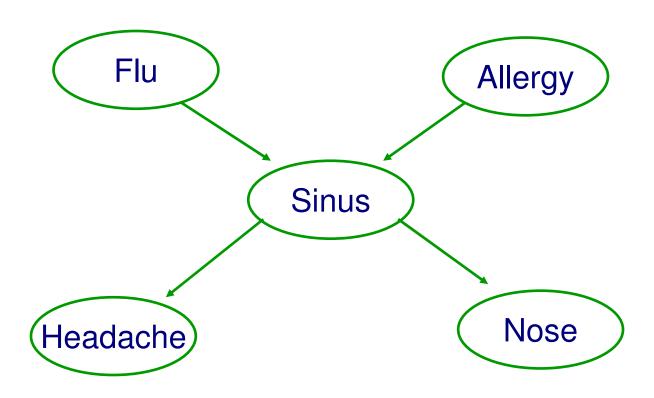


Naïve Bayes revisited

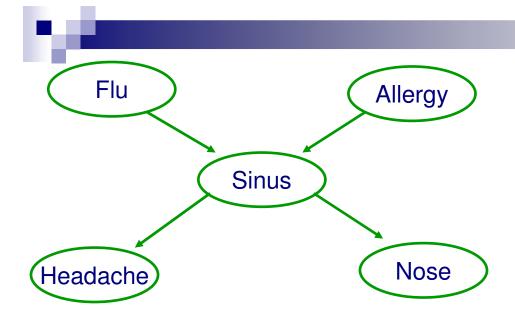
Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

What about probabilities? Conditional probability tables (CPTs)



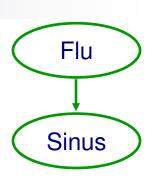
Joint distribution



Why can we decompose? Markov Assumption!

The chain rule of probabilities

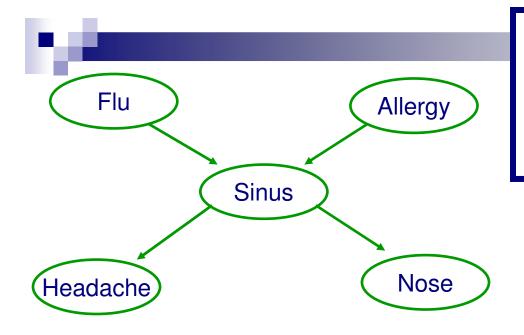
P(A,B) = P(A)P(B|A)



More generally:

$$\Box P(X_1,...,X_n) = P(X_1) \cdot P(X_2|X_1) \cdot ... \cdot P(X_n|X_1,...,X_{n-1})$$

Chain rule & Joint distribution



Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

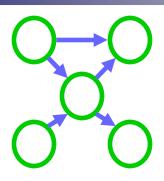
Two (trivial) special cases

Edgeless graph

Fully-connected graph

The Representation Theorem – Joint Distribution to BN

BN:



Encodes independence assumptions

If conditional independencies in BN are subset of conditional independencies in *P*

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Real Bayesian networks applications

- Diagnosis of lymph node disease
- Speech recognition
- Microsoft office and Windows
 - http://www.research.microsoft.com/research/dtg/
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault dianosis
- Modeling sensor network data

A general Bayes net

- Set of random variables
- Directed acyclic graph
 - □ Encodes independence assumptions
- CPTs
- Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

How many parameters in a BN?

- Discrete variables X₁, ..., X_n
- Graph
 - \square Defines parents of X_i , Pa_{X_i}
- \blacksquare CPTs $P(X_i | Pa_{X_i})$

Another example

- Variables:
 - □ B − Burglar
 - □ E Earthquake
 - □ A − Burglar alarm
 - □ N − Neighbor calls
 - □ R Radio report
- Both burglars and earthquakes can set off the alarm
- If the alarm sounds, a neighbor may call
- An earthquake may be announced on the radio

Another example – Building the BN

- B Burglar
- E Earthquake
- A Burglar alarm
- N Neighbor calls
- R Radio report

Independencies encoded in BN

- Ŋ.
 - We said: All you need is the local Markov assumption
 - \square (X_i \perp NonDescendants_{Xi} | **Pa**_{Xi})
 - But then we talked about other (in)dependencies
 - □ e.g., explaining away

- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!

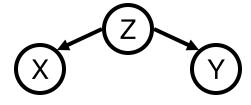
Understanding independencies in BNs

- BNs with 3 nodes Local Markov Assumption:

Indirect causal effect:

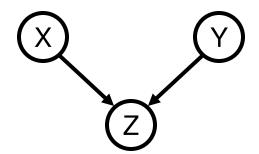
Indirect evidential effect:

Common cause:

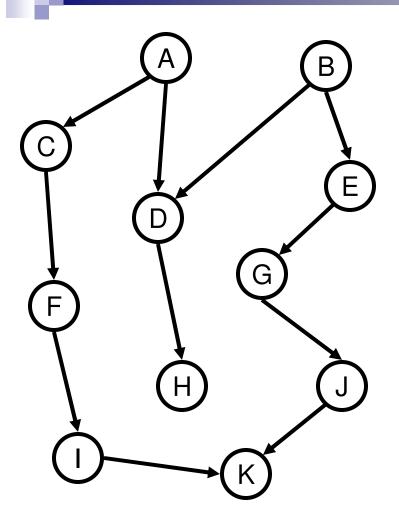


A variable X is independent of its non-descendants given its parents

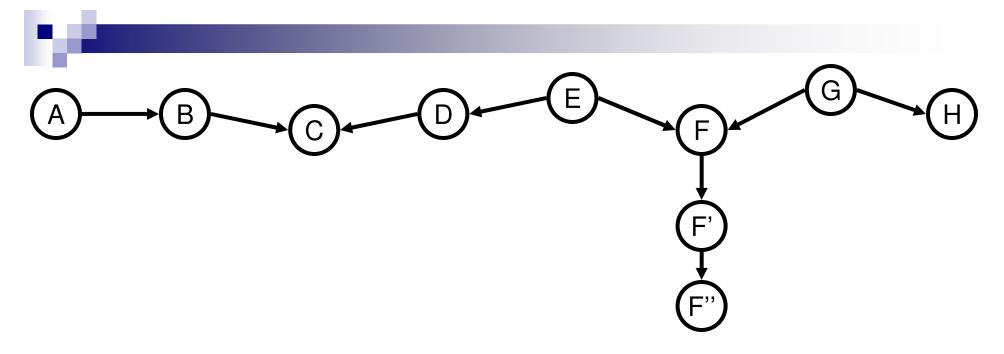
Common effect:



Understanding independencies in BNs – Some examples



An active trail – Example



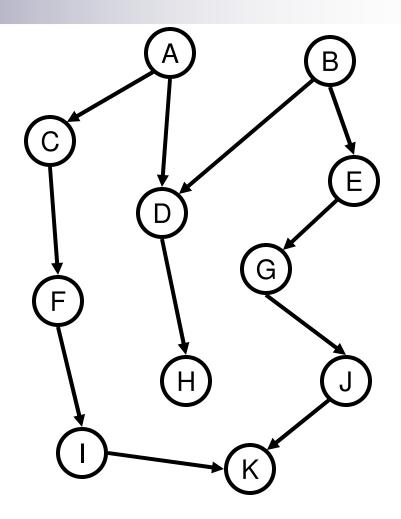
When are A and H independent?

Active trails formalized

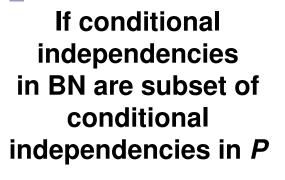
- A path $X_1 X_2 \cdots X_k$ is an **active trail** when variables $O \subseteq \{X_1, ..., X_n\}$ are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin O)$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin O)$
 - $\square X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin O)$
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \in O)$, or one of its descendents

Active trails and independence?

Theorem: Variables X_i and X_j are independent given Z⊆{X₁,...,X_n} if the is no active trail between X_i and X_j when variables Z⊆{X₁,...,X_n} are observed



The BN Representation Theorem



Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Important because:

Every P has at least one BN structure G

If joint probability distribution:

Then conditional independencies in BN are subset of conditional independencies in *P*

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Important because:

Read independencies of P from BN structure G

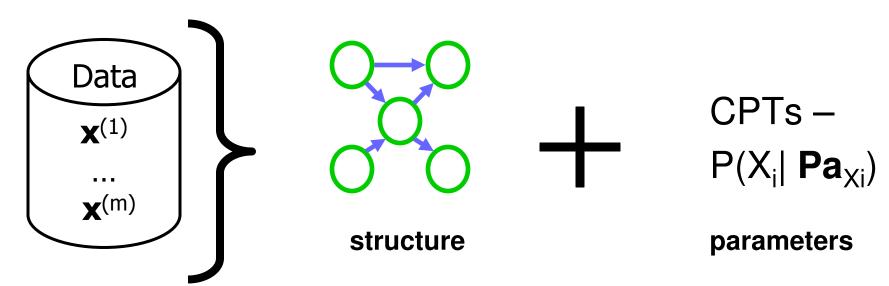
"Simpler" BNs

A distribution can be represented by many BNs:

Simpler BN, requires fewer parameters

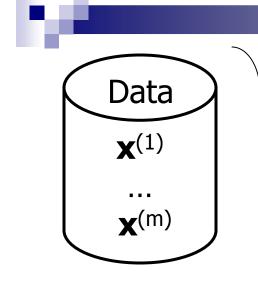
Learning Bayes nets

	Known structure	Unknown structure
Fully observable data		
Missing data		

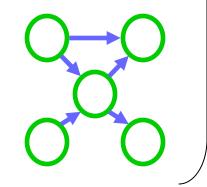


©2005-2007 Carlos Guestrin

Learning the CPTs



For each discrete variable X_i



MLE:
$$P(X_i = x_i \mid X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}$$

Queries in Bayes nets

- Given BN, find:
 - \square Probability of X given some evidence, P(X|e)

 \square Most probable explanation, $\max_{x_1,...,x_n} P(x_1,...,x_n \mid e)$

■ Most informative query

Learn more about these next class

What you need to know

- Bayesian networks
 - A compact representation for large probability distributions
 - □ Not an algorithm
- Semantics of a BN
 - □ Conditional independence assumptions
- Representation
 - Variables
 - Graph
 - □ CPTs
- Why BNs are useful
- Learning CPTs from fully observable data
- Play with applet!!! ②

Acknowledgements

- JavaBayes applet
 - http://www.pmr.poli.usp.br/ltd/Software/javabayes/Home/index.html