Bayesian Networks -(Structure) Learning

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
April $2_{\text {e2005-2007 Canos }}^{\text {nd }}, 2007$

Review

- Bayesian Networks
\square Compact representation for probability distributions
\square Exponential reduction in number of parameters
- Fast probabilistic inference using variable elimination
\square Compute $\mathrm{P}(\mathrm{X} \mid \mathrm{e})$
\square Time exponential in tree-width, not number of variables
- Today
\square Learn BN structure

Learning Bayes nets

Learning the OPTs

For each discrete variable X_{i}
$\underset{\text { learn }}{\text { want to }} P\left(X_{i} \mid P a X_{i}\right)$
learn t, t if

$$
P\left(S^{t} \mid F A\right)=\frac{\operatorname{count}(S=t, F=t, A=f)}{\operatorname{count}(F=t, A=f)}
$$

Maximum
likelihood estimates

MLE:
set of parents
$P\left(\underline{X_{i}=x_{i}} \mid \widetilde{X_{j}=x_{j}}\right)=\frac{\operatorname{Count}\left(X_{i}=x_{i}, X_{j}=x_{j}\right)}{\operatorname{Count}\left(X_{j}=x_{j}\right)}$

थै-ednformation-theoretic interpretation of maximum likelihood

Given structure, log likelihood of data:

$\log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)$
$101=m$

$$
\begin{array}{r}
=\log \prod_{j=1}^{m} P\left(f^{(j)}, a^{(j)}, s^{(j)}, h^{(j)}, n^{(j)} \mid \theta_{G}, G\right) \\
=\log \prod_{j=1}^{m} P\left(f^{(j)} \mid \theta_{F}, G\right) \cdot P\left(a^{(j)} \mid \theta_{A}, G\right) \cdot P\left(s^{(j)} \mid f^{(j)},,^{(i)}, \theta_{g \mid F A}, G\right) \\
\quad \cdot P\left(h^{(j)} \mid s^{(i)}, \theta_{\text {HIs }}, G\right) P\left(h^{(i)} \mid s^{(i)}, \theta_{N \mid F}, G\right)
\end{array}
$$

Information-theoretic interpretation

 of maximum likelihood- Given structure, log likelihood of data:

$$
\log P\left(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_{i}=x_{i}^{(j)} \mid \mathbf{P} \mathbf{a}_{X_{i}}=\mathbf{x}^{(j)}\left[\mathbf{P} \mathbf{a}_{X_{i}}\right]\right)
$$

Information-theoretic interpretation

 of maximum likelihood 2- Given structure, log likelihood of data:

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}} \hat{P}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right) \log \hat{P}\left(x_{i} \mid \mathbf{P a}_{x_{i}, \mathcal{G}}\right)
$$

Decomposable score

- Log data likelihood $\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)$
- Decomposable score:
\square Decomposes over families in BN (node and its parents)
\square Will lead to significant computational efficiency!!!
$\square \operatorname{Score}(G: D)=\sum_{\mathrm{i}} \operatorname{FamScore}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{xi}_{\mathrm{i}}}: D\right)$

How many trees are there?

. Nonetheless - Efficient optimal algorithm finds best tree

Scoring a tree 1: equivalent trees

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)
$$

Scoring a tree 2: similar trees

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)
$$

Chow-Liu tree learning algorithm 1

- For each pair of variables X_{i}, X_{j}
\square Compute empirical distribution:

$$
\widehat{P}\left(x_{i}, x_{j}\right)=\frac{\operatorname{Count}\left(x_{i}, x_{j}\right)}{m}
$$

\square Compute mutual information:
$\widehat{I}\left(X_{i}, X_{j}\right)=\sum_{x_{i}, x_{j}} \hat{P}\left(x_{i}, x_{j}\right) \log \frac{\hat{P}\left(x_{i}, x_{j}\right)}{\hat{P}\left(x_{i}\right) \widehat{P}\left(x_{j}\right)}$

- Define a graph
\square Nodes $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
\square Edge (i, j) gets weight $\hat{I}\left(X_{i}, X_{j}\right)$

Chow-Liu tree learning algorithm 2

$-\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \tilde{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)$

- Optimal tree BN
\square Compute maximum weight spanning tree
\square Directions in BN: pick any node as root, breadth-firstsearch defines directions

Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
\square Naïve Bayes model overcounts, because correlation between features not considered
\square Same as Chow-Liu, but score edges with:

$$
\hat{I}\left(X_{i}, X_{j} \mid C\right)=\sum_{c, x_{i}, x_{j}} \hat{P}\left(c, x_{i}, x_{j}\right) \log \frac{\hat{P}\left(x_{i}, x_{j} \mid c\right)}{\hat{P}\left(x_{i} \mid c\right) \hat{P}\left(x_{j} \mid c\right)}
$$

Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
\square [Narasimhan \& Bilmes '04]
\square But, $\mathrm{O}\left(\mathrm{n}^{k+1}\right) \ldots$
- and more subtleties

What you need to know about learning BN structures so far

- Decomposable scores
\square Maximum likelihood
\square Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in $\mathrm{O}\left(\mathrm{N}^{k+1}\right)$)

Scoring general graphical models Model selection problem

What's the best structure?

Data
$<x _1^{\wedge}\{(1)\}, \ldots, x _n^{\wedge}\{(1)\}>$
$<x _1^{\wedge}\{(m)\}, \ldots, x _n^{\wedge}\{(m)\}>$

The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...

Maximum likelihood overfits!

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{P a}_{x_{i}, \mathcal{G}}\right)-M \sum_{i} \hat{H}\left(X_{i}\right)
$$

- Information never hurts:

■ Adding a parent always increases score!!!

Bayesian score avoids overfitting

- Given a structure, distribution over parameters
$\log P(D \mid \mathcal{G})=\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$
■ Difficult integral: use Bayes information criterion (BIC) approximation (equivalent as M ! 1)
$\log P(D \mid \mathcal{G}) \approx \log P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right)-\frac{\text { NumberParams }(\mathcal{G})}{2} \log M+\mathcal{O}(1)$
- Note: regularize with MDL score
- Best BN under BIC stilloosperchard

How many graphs are there?
 $$
\sum_{k=1}^{n}\binom{n}{k}=2^{n}-1
$$

Structure learning for general graphs

- In a tree, a node only has one parent
- Theorem:
\square The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) $d_{3} 2$
- Most structure learning approaches use heuristics
\square Exploit score decomposition
\square (Quickly) Describe two heuristics that exploit decomposition in different ways

Learn BN structure using local search

Starting from Chow-Liu tree

Local search, possible moves:

- Add edge
- Delete edge
- Invert edge

Score using BIC

What you need to know about learning BNs

- Learning BNs
\square Maximum likelihood or MAP learns parameters
\square Decomposable score
\square Best tree (Chow-Liu)
\square Best TAN
\square Other BNs, usually local search with BIC score

Unsupervised learning or Clustering -K-means Gaussian mixture models

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
April $2_{\text {e2005-2007 Calos }}^{\text {nd }}, 2007$

Some Data

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

K-means

1. Ask user how many clusters they'd like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns

K-means

1. Ask user how many clusters they'd like. (e.g. $k=5$)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it's closest to.
4. Each Center finds the centroid of the points it owns...
5. ...and jumps there
6. ...Repeat until terminated!

©2005-2007 Carlos Guestrin

Unsupervised Learning

- You walk into a bar.

A stranger approaches and tells you:
"l've got data from k classes. Each class produces observations with a normal distribution and variance $\sigma^{2} \phi l$. Standard simple multivariate gaussian assumptions. I can tell you all the $\mathrm{P}\left(\mathrm{w}_{i}\right)$'s ."

- So far, looks straightforward.
"I need a maximum likelihood estimate of the μ_{i} 's."
- No problem:
"There's just one thing. None of the data are labeled. I
have datapoints, but I don't know what class they're from (any of them!)
- Uh oh!!

Gaussian Bayes Classifier Reminder

$$
P(y=i \mid \mathbf{x})=\frac{p(\mathbf{x} \mid y=i) P(y=i)}{p(\mathbf{x})}
$$

$$
\begin{gathered}
P(y=i \mid \mathbf{x})=\frac{\frac{1}{(2 \pi)^{m / 2}\left\|\dot{\mathbf{O}}_{i}\right\|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{k}-\mathbf{i}_{i}\right)^{T} \mathbf{O}_{i}\left(\mathbf{x}_{k}-\mathbf{i}_{i}\right)\right] p_{i}}{p(\mathbf{x})} \\
\text { How do we deal with that? }
\end{gathered}
$$

Predicting wealth from age

Predicting wealth from age

Learning modelyear, mpg ---> maker
 $$
\mathbf{O}=\left(\begin{array}{cccc} \sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m} \\ \sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}^{2} \end{array}\right)
$$

General: $O\left(m^{2}\right)$ parameters

$$
\dot{\mathbf{O}}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 m} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 m} & \sigma_{2 m} & \cdots & \sigma_{m}^{2}
\end{array}\right)
$$

Aligned: O(m)
 parameters

$$
\text { Ó }=\left(\begin{array}{cccccc}
\sigma^{2}{ }_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & \sigma^{2}{ }_{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \sigma^{2}{ }_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \sigma^{2}{ }_{m-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & \sigma^{2}{ }_{m}
\end{array}\right)
$$

maker $=$ america
(prior $=0.625$)

maker = asia
(prior $=0.201531$)

maker = europe
(prior $=0.173469$)

Aligned: O(m) parameters

$\dot{\mathbf{O}}=\left(\begin{array}{cccccc}\sigma^{2}{ }_{1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma^{2}{ }_{2} & 0 & \cdots & 0 & 0 \\ 0 & 0 & \sigma^{2}{ }_{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma^{2}{ }_{m-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \sigma^{2}{ }_{m}\end{array}\right)$

Spherical: $O(1)$ cov parameters

Spherical: O(1) cov parameters

$$
\text { Ó }=\left(\begin{array}{cccccc}
\sigma^{2} & 0 & 0 & \cdots & 0 & 0 \\
0 & \sigma^{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \sigma^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \sigma^{2} & 0 \\
0 & 0 & 0 & \cdots & 0 & \sigma^{2}
\end{array}\right)
$$

Next... back to Density Estimation

What if we want to do density estimation with multimodal or clumpy data?

The GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}

The GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} \boldsymbol{I}$

Assume that each datapoint is generated according to the following recipe:

The GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} \boldsymbol{I}$

Assume that each datapoint is generated according to the following recipe:

1. Pick a component at random.

Choose component i with probability $P\left(y_{i}\right)$.

The GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix $\sigma^{2} \boldsymbol{I}$

Assume that each datapoint is generated according to the following recipe:

1. Pick a component at random.

Choose component i with probability $P\left(y_{i}\right)$.
2. Datapoint $\sim \mathrm{N}\left(\mu_{i}, \sigma^{2} \boldsymbol{I}\right)$

The General GMM assumption

- There are k components. The i'th component is called ω_{i}
- Component ω_{i} has an associated mean vector μ_{i}
- Each component generates data from a Gaussian with mean μ_{i} and covariance matrix Σ_{i}

Assume that each datapoint is generated according to the following recipe:

1. Pick a component at random.

Choose component i with probability $P\left(y_{i}\right)$.
2. Datapoint $\sim \mathrm{N}\left(\mu_{i}, \Sigma_{i}\right)$

Unsupervised Learning: not as hard as it looks

Sometimes easy

Sometimes impossible

IN CASE YOU'RE
WONDERING WHAT
THESE DIAGRAMS ARE,
THEY SHOW 2-d
UNLABELED DATA (X
VECTORS)
DISTRIBUTED IN 2-d
SPACE. THE TOP ONE
HAS THREE VERY
CLEAR GAUSSIAN
CENTERS

and sometimes in between

Computing likelihoods in supervised learning case

We have $y_{1}, x_{1}, y_{2}, x_{2}, \ldots y_{N}, x_{N}$
Learn $P\left(y_{1}\right) P\left(y_{2}\right)$.. $P\left(y_{k}\right)$
Learn $\sigma, \mu_{1}, \ldots, \mu_{k}$

By MLE: $\quad \mathrm{P}\left(\mathrm{y}_{1}, \boldsymbol{x}_{1}, \mathrm{y}_{2}, \boldsymbol{x}_{2}, \ldots \mathrm{y}_{\mathrm{N}}, \boldsymbol{x}_{N} \mid \boldsymbol{\mu}_{i}, \ldots \boldsymbol{\mu}_{k}, \sigma\right)$

Computing likelihoods in unsupervised case

We have $\boldsymbol{x}_{1}, \boldsymbol{x}_{2, \ldots} \boldsymbol{x}_{N}$
We know $P\left(y_{1}\right) P\left(y_{2}\right)$.. $P\left(y_{k}\right)$
We know σ
$\mathrm{P}\left(\boldsymbol{x} \mid \mathrm{y}_{i}, \boldsymbol{\mu}_{i}, \ldots \boldsymbol{\mu}_{k}\right)=$ Prob that an observation from class y_{i} would have value \boldsymbol{x} given class means $\boldsymbol{\mu}_{1} \ldots \boldsymbol{\mu}_{x}$

Can we write an expression for that?

likelihoods in unsupervised case

We have $\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{n}$
We have $\mathrm{P}\left(\mathrm{y}_{1}\right)$.. $\mathrm{P}\left(\mathrm{y}_{k}\right)$. We have σ.
We can define, for any $\boldsymbol{x}, \mathrm{P}\left(\boldsymbol{x} \mid \mathrm{y}_{i}, \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}\right)$
Can we define $\mathrm{P}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}\right)$?

Can we define $\mathrm{P}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, . . \boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}\right)$?
[YES, IF WE ASSUME THE X_{1} 'S WERE DRAWN INDEPENDENTLY]

Unsupervised Learning: Mediumly Good News

We now have a procedure s.t. if you give me a guess at $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k,}$
I can tell you the prob of the unlabeled data given those $\boldsymbol{\mu}$'s.

Suppose x 's are 1-dimensional.
(From Duda and Hart)
There are two classes; w_{1} and w_{2}
$\mathrm{P}\left(\mathrm{y}_{1}\right)=1 / 3 \quad \mathrm{P}\left(\mathrm{y}_{2}\right)=2 / 3 \quad \sigma=1$.
There are 25 unlabeled datapoints

DATA SCATTERGRAM
$x_{1}=0.608$
$x_{2}=-1.590$
$x_{3}=0.235$
$x_{4}=3.949$
$x_{25}=-0.712$

Duda \& Hart's Example

We can graph the
I prob. dist. function of data given our μ_{1} and μ_{2} estimates.

We can also graph the true function from which the data was randomly generated.

- They are close. Good.
- The $2^{\text {nd }}$ solution tries to put the " $2 / 3$ " hump where the " $1 / 3$ " hump should go, and vice versa.
- In this example unsupervised is almost as good as supervised. If the x_{1}.. x_{25} are given the class which was used to learn them, then the results are ($\mu_{1}=-2.176, \mu_{2}=1.684$). Unsupervised got ($\mu_{1}=-2.13, \mu_{2}=1.668$).

Duda \& Hart's Example ${ }^{\mu_{2}}$

Graph of $\log \mathrm{P}\left(x_{1}, x_{2} . . x_{25} \mid \mu_{1}, \mu_{2}\right)$ against $\mu_{1}(\rightarrow)$ and $\mu_{2}(\uparrow)$

Max likelihood $=\left(\mu_{1}=-2.13, \mu_{2}=1.668\right)$
Local minimum, but very close to global at ($\mu_{1}=2.085, \mu_{2}=-1.257$)*

* corresponds to switching y_{1} with y_{2}.

Finding the max likelihood $\mu_{1}, \mu_{2} . . \mu_{k}$

We can compute P(data | $\left.\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2} . . \boldsymbol{\mu}_{k}\right)$
How do we find the $\boldsymbol{\mu}_{i}$'s which give max. likelihood?

- The normal max likelihood trick:

Set $\frac{\partial}{\partial \mu_{i}} \log \operatorname{Prob}(\ldots)=0$
and solve for μ_{i} s.
\# Here you get non-linear non-analytically- solvable equations

- Use gradient descent

Slow but doable
■ Use a much faster, cuter, and recently very popular method...

©2005-2007 Carlos Guestrin

Tha E.M. Algorithm

- We'll get back to unsupervised learning soon.
- But now we'll look at an even simpler case with hidden information.
- The EM algorithm
$\square \quad$ Can do trivial things, such as the contents of the next few slides.
\square An excellent way of doing our unsupervised learning problem, as we'll see.
\square Many, many other uses, including inference of Hidden Markov Models (future lecture).

Silly Example

Let events be "grades in a class"

$$
\begin{array}{ll}
w_{1}=\text { Gets an } A & P(A)=1 / 2 \\
w_{2}=\text { Gets a } B & P(B)=\mu \\
w_{3}=\text { Gets a C } & P(C)=2 \mu \\
w_{4}=\text { Gets a } \quad D & P(D)=1 / 2-3 \mu
\end{array}
$$

(Note $0 \leq \mu \leq 1 / 6$)
Assume we want to estimate μ from data. In a given class there were

$$
\begin{array}{ll}
\text { a A's } \\
\text { b } & \text { B's } \\
\text { c } & \text { C's } \\
\text { d } & \text { D's }
\end{array}
$$

What's the maximum likelihood estimate of μ given a, b, c, d ?

Silly Example

events be "grades in a class"

$$
\begin{array}{ll}
w_{1}=\text { Gets an A } & P(A)=1 / 2 \\
w_{2}=\text { Gets a B } & P(B)=\mu \\
w_{3}=\text { Gets a C } & P(C)=2 \mu \\
w_{4}=\text { Gets a D } & P(D)=1 / 2-3 \mu \\
& (\text { Note } 0 \leq \mu \leq 1 / 6)
\end{array}
$$

Assume we want to estimate μ from data. In a given class there were
a A's
b B's
c C's
d D's
What's the maximum likelihood estimate of μ given a, b, c, d ?

Trivial Statistics

$P(A)=1 / 2 \quad P(B)=\mu \quad P(C)=2 \mu \quad P(D)=1 / 2-3 \mu$
$P(a, b, c, d \mid \mu)=K(1 / 2)^{a}(\mu)^{b}(2 \mu)^{c}(1 / 2-3 \mu)^{d}$
$\log P(a, b, c, d \mid \mu)=\log K+a \log 1 / 2+b \log \mu+c \log 2 \mu+d \log (1 / 2-3 \mu)$
FOR MAX LIKE ì, SET $\frac{\partial \log P}{\partial i ̀}=0$
$\frac{\partial \log \mathrm{P}}{\partial \mathrm{i}}=\frac{b}{\mathrm{i}}+\frac{2 c}{2 \mathrm{i}}-\frac{3 d}{1 / 2-3 \mathrm{i}}=0$
Gives max like ì $=\frac{b+c}{6(b+c+d)}$
So if class got

Same Problem with Hidden Information

Someone tells us that
Number of High grades (A's + B's) $=h$
Number of C's
$=c$

> REMEMBER
> $P(A)=1 / 2$
> $P(B)=\mu$
> $P(C)=2 \mu$
> $P(D)=1 / 2-3 \mu$

Number of D's
$=d$
What is the max. like estimate of μ now?

Same Problem with Hidden Information

Someone tells us that
Number of High grades ($\mathrm{A}^{\prime} \mathrm{s}+\mathrm{B}^{\prime} \mathrm{s}$) $=h$
Number of C's

$$
=C
$$

Number of D's
$=d$

$$
\begin{aligned}
& \text { REMEMBER } \\
& P(A)=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu
\end{aligned}
$$

What is the max. like estimate of μ now?
We can answer this question circularly:
EXPECTATION
If we know the value of μ we could compute the expected value of a and b
Since the ratio a :b should be the same as the ratio $1 / 2: \mu \quad a=\frac{1 / 2}{1 / 2+\mathrm{i}} h \quad b=\frac{\mathrm{i}}{1 / 2+\mathrm{i}} h$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ

$$
\grave{̀}=\frac{b+c}{6(b+c+d)}
$$

E.M. for our Trivial Problem

We begin with a guess for μ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates

REMEMBER

$$
\begin{aligned}
& P(A)=1 / 2 \\
& P(B)=\mu \\
& P(C)=2 \mu \\
& P(D)=1 / 2-3 \mu
\end{aligned}
$$ of μ and a and b.

Define $\mu(\mathrm{t})$ the estimate of μ on the t'th iteration
$\mathrm{b}(\mathrm{t})$ the estimate of b on t^{\prime} th iteration

Continue iterating until converged.
Good news: Converging to local optimum is assured.
Bad news: I said "local" optimumpor carlos Guestin

E.M. Convergence

- Convergence proof based on fact that $\operatorname{Prob}($ data $\mid \mu)$ must increase or remain same between each iteration [Not obvious]
- But it can never exceed 1 [obvious]

So it must therefore converge [obvious]

In our example, suppose we had

$$
\begin{array}{r}
h=20 \\
c=10 \\
d=10 \\
\mu(0)=0
\end{array}
$$

Convergence is generally linear: error decreases by a constant factor each time step.

t	$\mu(\mathrm{t})$	$\mathrm{b}(\mathrm{t})$
0	0	0
1	0.0833	2.857
2	0.0937	3.158
3	0.0947	3.185
4	0.0948	3.187
5	0.0948	3.187
6	0.0948	3.187

Back to Unsupervised Learning of GMMs

Remember:

We have unlabeled data $\boldsymbol{x}_{1} \boldsymbol{x}_{2} \ldots \boldsymbol{x}_{R}$
We know there are k classes
We know $P\left(y_{1}\right) P\left(y_{2}\right) P\left(y_{3}\right) \ldots P\left(y_{k}\right)$
We don't know $\mu_{1} \mu_{2} . . \mu_{k}$
We can write $\mathrm{P}\left(\right.$ data $\left.\mid \mu_{1} \ldots . \mu_{\mathrm{k}}\right)$

$$
\begin{aligned}
& =\mathrm{p}\left(\left.x_{1} \ldots x_{R}\right|_{1} \ldots \grave{\mathrm{i}}_{k}\right) \\
& =\prod_{i=1}^{R} \mathrm{p}\left(\left.x_{i}\right|_{\mathrm{i}_{1}} \ldots \mathrm{i}_{k}\right) \\
& =\prod_{i=1}^{R} \sum_{j=1}^{k} \mathrm{p}\left(x_{i} \mid w_{j}, \grave{\mathrm{I}}_{1} \ldots \mathrm{i}_{k}\right) \mathrm{p}\left(y_{j}\right) \\
& =\prod_{i=1}^{R} \sum_{j=1}^{k} \mathrm{~K} \exp \left(-\frac{1}{2 \mathrm{o}^{2}}\left(x_{i}-\mathrm{i}_{j}\right)^{p}\right) \mathrm{P}\left(y_{j}\right)
\end{aligned}
$$

E.M. for GMMs

For Max likelihood we know $\frac{\partial}{\partial \grave{\mathrm{i}}_{i}} \log \operatorname{Prob}\left(\right.$ data $\left.\hat{i}_{1}{ }_{1} \ldots \grave{\mathrm{i}}_{k}\right)=0$
Some wild' n' crazy algebra turns this into :" For Max likelihood, for each j,

$$
\mathrm{\imath}_{j}=\frac{\sum_{i=1}^{R} P\left(y_{j} \mid x_{i}, \grave{\mathrm{I}}_{1} \ldots \mathrm{i}_{k}\right) x_{i}}{\sum_{i=1}^{R} P\left(y_{j} \mid x_{i}, \mathrm{i}_{1} \ldots \mathrm{i}_{k}\right)}
$$

This is n nonlinear equations in $\boldsymbol{\mu}_{\mathrm{j}}{ }^{\prime} \mathrm{s}^{\prime \prime}{ }^{\prime \prime}$
If, for each \mathbf{x}_{i} we knew that for each w_{j} the prob that $\boldsymbol{\mu}_{j}$ was in class y_{j} is $P\left(y_{j} \mid x_{i}, \mu_{1} \ldots \mu_{k}\right)$ Then... we would easily compute μ_{j}.

If we knew each μ_{j} then we could easily compute $P\left(y_{j} \mid x_{i} \mu_{1} \ldots \mu_{k}\right)$ for each y_{j} and x_{i}.
...I feel an EM experience coming on!!

E.M. for GMMs

Iterate. On the t^{\prime} th iteration let our estimates be $\lambda_{t}=\left\{\mu_{1}(t), \mu_{2}(t) \ldots \mu_{c}(t)\right\}$

E-step

Compute "expected" classes of all datapoints for each class

Just evaluate a Gaussian at

M-step.

$$
\overline{\sum_{j=1}^{c} \mathrm{p}\left(x_{k} \mid y_{j}, \mu_{j}(t), \sigma^{2} \mathbf{I}\right) p_{j}(t)}
$$

Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\mathrm{i}_{i}(t+1)=\frac{\sum_{i} \mathrm{P}\left(y_{i} \mid x_{k}, \lambda_{t}\right) x_{k}}{\sum_{k} \mathrm{P}\left(y_{i} x_{k}, \lambda_{t}\right)}
$$

E.M. Convergence

- Your lecturer will (unless out of time) give you a nice intuitive explanation of why this rule works.
- As with all EM procedures, convergence to a local optimum guaranteed.

- This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data

E.M. for General GMMs

Iterate. On the t th iteration let our estimates be

$$
\lambda_{t}=\left\{\mu_{1}(t), \mu_{2}(t) \ldots \mu_{c}(t), \Sigma_{1}(t), \Sigma_{2}(t) \ldots \Sigma_{c}(t), p_{1}(t), p_{2}(t) \ldots p_{c}(t)\right\}
$$

E-step

Compute "expected" classes of all datapoints for each class
$p_{i}(t)$ is shorthand for estimate of $P\left(y_{i}\right)$ on t'th iteration

$$
\begin{aligned}
& \mathrm{P}\left(y_{i} \mid x_{k}, \lambda_{t}\right)=\frac{\mathrm{p}\left(x_{k} \mid y_{i}, \lambda_{t}\right) \mathrm{P}\left(y_{i} \mid \lambda_{t}\right)}{\mathrm{p}\left(x_{k} \mid \lambda_{t}\right)}=\frac{\mathrm{p}\left(x_{k} \mid y_{i}, \mu_{i}(t), \Sigma_{i}(t)\right) p_{i}(t)}{\sum_{j=1}^{c} \mathrm{p}\left(x_{k} \mid y_{j}, \mu_{j}(t), \Sigma_{j}(t)\right) p_{j}(t)} \\
& \text { M-step. }
\end{aligned}
$$

Compute Max. like $\boldsymbol{\mu}$ given our data's class membership distributions

$$
\begin{gathered}
\text { ı̀ }_{i}(t+1)=\frac{\sum_{k} \mathrm{P}\left(y_{i} \mid x_{k}, \lambda_{t}\right) x_{k}}{\sum_{k} \mathrm{P}\left(y_{i} \mid x_{k}, \lambda_{t}\right)} \quad \Sigma_{i}(t+1)=\frac{\left.\sum_{k} \mathrm{P}\left(y_{i} \mid x_{k}, \lambda_{t}\right)\left[x_{k}-\mu_{i}(t+1)\right] x_{k}-\mu_{i}(t+1)\right]}{\sum_{k} \mathrm{P}\left(y_{i} \mid x_{k}, \lambda_{t}\right)} \\
p_{i}(t+1)=\frac{\sum_{k} \mathrm{P}\left(y_{i} \mid x_{k}, \lambda_{t}\right)}{R} R=\text { \#records }
\end{gathered}
$$

Gaussian Mixture Example: Start

Advance apologies: in Black and White this example will be incomprehensible

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

©2005-2007 Carlos Guestrin

GMM clustering of the assay data

©2005-2007 Carlos Guestrin Density
Estimator

Compound $=$

Three classes of

 assay(each learned with it's own mixture model)

©2005-2007 Carlos Guestrin

Resulting Bayes Classifier

©2005-2007 Carlos Guestrin

Resulting Bayes Classifier, using posterior probabilities to alert about ambiguity and anomalousness

Cyan means ambiguous

Final Comments

- Remember, E.M. can get stuck in local minima, and empirically it DOES.
- Our unsupervised learning example assumed $P\left(y_{i}\right)$'s known, and variances fixed and known. Easy to relax this.
- It's possible to do Bayesian unsupervised learning instead of max. likelihood.

What you should know

■ How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data.

- Be happy with this kind of probabilistic analysis.

■ Understand the two examples of E.M. given in these notes.

Acknowledgements

- K-means \& Gaussian mixture models presentation derived from excellent tutorial by Andrew Moore:
$\square \underline{\text { http://www.autonlab.org/tutorials/ }}$
- K-means Applet:
$\square \underline{\text { http://www.elet.polimi.it/upload/matteucc/Clustering/tu }}$ torial_html/AppletKM.html
- Gaussian mixture models Applet:
\square http://www.neurosci.aist.go.jp/\~akaho/MixtureEM. html

