Bayesian Networks –(Structure) Learning

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 2nd, 2007

©2005-2007 Carlos Guestrin

Review

- Bayesian Networks
 - Compact representation for probability distributions
 - Exponential reduction in number of parameters
 - Fast probabilistic inference using variable elimination
 - □ Compute P(X|e)
 - Time exponential in tree-width, not number of variables
 - Today
 - □ Learn BN structure

Learning Bayes nets

Learning the CPTs

For each discrete variable X_i

For each discrete variable
$$X_i$$

Vanto $P(X; | PaX_i)$

learn

 $P(S|FA) = Count(S=t, F=t, A=f)$

Count $(F=t, A=f)$

Maximum

likelihood estimates

MLE:
$$P(X_i = x_i \mid X_j = x_j) = \frac{\operatorname{Count}(X_i = x_i, X_j = x_j)}{\operatorname{Count}(X_j = x_j)}$$

Information-theoretic interpretation

of maximum likelihood

Information-theoretic interpretation of maximum likelihood

$$\log P(\mathcal{D} \mid \theta_{\mathcal{G}}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_i = x_i^{(j)} \mid \mathbf{Pa}_{X_i} = \mathbf{x}^{(j)} \left[\mathbf{Pa}_{X_i} \right] \right)$$

Information-theoretic interpretation of maximum likelihood 2

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \sum_{x_i, \mathbf{Pa}_{x_i, \mathcal{G}}} \hat{P}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) \log \hat{P}(x_i \mid \mathbf{Pa}_{x_i, \mathcal{G}})$$

Decomposable score

Log data likelihood

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = m \sum_{i} \widehat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i})$$

- Decomposable score:
 - Decomposes over families in BN (node and its parents)
 - □ Will lead to significant computational efficiency!!!
 - \square Score(G:D) = \sum_{i} FamScore($X_{i}|Pa_{X_{i}}:D$)

How many trees are there?

Nonetheless – Efficient optimal algorithm finds best tree

Scoring a tree 1: equivalent trees

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$$

Scoring a tree 2: similar trees

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$$

Chow-Liu tree learning algorithm 1

- For each pair of variables X_i,X_i
 - □ Compute empirical distribution:

$$\widehat{P}(x_i, x_j) = \frac{\mathsf{Count}(x_i, x_j)}{m}$$

Compute mutual information:

$$\widehat{I}(X_i, X_j) = \sum_{x_i, x_j} \widehat{P}(x_i, x_j) \log \frac{\widehat{P}(x_i, x_j)}{\widehat{P}(x_i) \widehat{P}(x_j)}$$

- Define a graph
 - \square Nodes $X_1, ..., X_n$
 - \square Edge (i,j) gets weight $\widehat{I}(X_i, X_j)$

Chow-Liu tree learning algorithm 2

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_i)$$

- Optimal tree BN
 - Compute maximum weight spanning tree
 - □ Directions in BN: pick any node as root, breadth-firstsearch defines directions

Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
 - Naïve Bayes model overcounts, because correlation between features not considered
 - □ Same as Chow-Liu, but score edges with:

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c)\widehat{P}(x_j \mid c)}$$

Can we extend Chow-Liu 2

- (Approximately learning) models with tree-width up to k
 - □ [Narasimhan & Bilmes '04]
 - □ But, O(n^{k+1})...
 - and more subtleties

What you need to know about learning BN structures so far

- Decomposable scores
 - Maximum likelihood
 - □ Information theoretic interpretation
- Best tree (Chow-Liu)
- Best TAN
- Nearly best k-treewidth (in O(N^{k+1}))

Scoring general graphical models – Model selection problem

What's the best structure?

$$x_1^{(1)},...,x_n^{(1)}$$

The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...

Maximum likelihood overfits!

$$\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_{i}, \mathbf{Pa}_{x_{i}, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_{i})$$

Information never hurts:

Adding a parent always increases score!!!

Bayesian score avoids overfitting

Given a structure, distribution over parameters

$$\log P(D \mid \mathcal{G}) = \log \int_{\theta_{\mathcal{G}}} P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) P(\theta_{\mathcal{G}} \mid \mathcal{G}) d\theta_{\mathcal{G}}$$

 Difficult integral: use Bayes information criterion (BIC) approximation (equivalent as M! 1)

$$\log P(D \mid \mathcal{G}) \approx \log P(D \mid \mathcal{G}, \theta_{\mathcal{G}}) - \frac{\text{NumberParams}(\mathcal{G})}{2} \log M + \mathcal{O}(1)$$

- Note: regularize with MDL score
- Best BN under BIC still NP chardin

How many graphs are there?

$$\sum_{k=1}^{n} \binom{n}{k} = 2^n - 1$$

Structure learning for general graphs

In a tree, a node only has one parent

Theorem:

- □ The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) d,2
- Most structure learning approaches use heuristics
 - □ Exploit score decomposition
 - (Quickly) Describe two heuristics that exploit decomposition in different ways

Learn BN structure using local search

Starting from Chow-Liu tree

Local search, possible moves:

- Add edge
- Delete edge
- Invert edge

Score using BIC

What you need to know about learning BNs

- Learning BNs
 - Maximum likelihood or MAP learns parameters
 - □ Decomposable score
 - □ Best tree (Chow-Liu)
 - □ Best TAN
 - □ Other BNs, usually local search with BIC score

Unsupervised learning or Clustering – K-means Gaussian mixture models

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 2nd, 2007

©2005-2007 Carlos Guestrin

Some Data

1. Ask user how many clusters they'd like. (e.g. k=5)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns

- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

Unsupervised Learning

You walk into a bar.

A stranger approaches and tells you:

"I've got data from k classes. Each class produces observations with a normal distribution and variance $\sigma^2 \phi I$. Standard simple multivariate gaussian assumptions. I can tell you all the P(w_i)'s ."

So far, looks straightforward.

"I need a maximum likelihood estimate of the μ_i 's ."

No problem:

"There's just one thing. None of the data are labeled. I have datapoints, but I don't know what class they're from (any of them!)

Uh oh!!

Gaussian Bayes Classifier Reminder

$$P(y = i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid y = i)P(y = i)}{p(\mathbf{x})}$$

$$P(y = i \mid \mathbf{x}) = \frac{\frac{1}{(2\pi)^{m/2} \|\mathbf{\acute{O}}_i\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_k - \mathbf{\grave{i}}_i)^T \mathbf{\acute{O}}_i(\mathbf{x}_k - \mathbf{\grave{i}}_i)\right] p_i}{p(\mathbf{x})}$$

How do we deal with that?

Predicting wealth from age

Predicting wealth from age

Learning modelyear, mpg ---> maker

$$\mathbf{\acute{O}} = \begin{pmatrix} \sigma^{2}_{1} & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{12} & \sigma^{2}_{2} & \cdots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1m} & \sigma_{2m} & \cdots & \sigma^{2}_{m} \end{pmatrix}$$

General: O(m²) parameters

$$\mathbf{\acute{O}} = \begin{pmatrix}
\sigma_{11}^{2} & \sigma_{12} & \cdots & \sigma_{1m} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1m} & \sigma_{2m} & \cdots & \sigma_{m}^{2}
\end{pmatrix}$$

Aligned: *O(m)*parameters

Aligned: O(m) parameters

Spherical: *O(1)* cov parameters

Spherical: *O(1)* cov parameters

Next... back to Density Estimation

What if we want to do density estimation with multimodal or clumpy data?

©2005-2007 Carlos Guestrin

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:

1. Pick a component at random. Choose component i with probability $P(y_i)$.

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 \mathbf{I}$

Assume that each datapoint is generated according to the following recipe:

- 1. Pick a component at random. Choose component i with probability $P(y_i)$.
- 2. Datapoint $\sim N(\mu_{ii} \sigma^2 \mathbf{I})$

The General GMM assumption

- M
 - There are k components. The i'th component is called ω_i
 - Component ω_i has an associated mean vector μ_i
 - Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Assume that each datapoint is generated according to the following recipe:

- 1. Pick a component at random. Choose component i with probability $P(y_i)$.
- 2. Datapoint $\sim N(\mu_i, \Sigma_i)$

Unsupervised Learning: not as hard as it looks

Sometimes easy

Sometimes impossible

IN CASE YOU'RE
WONDERING WHAT
THESE DIAGRAMS ARE,
THEY SHOW 2-d
UNLABELED DATA (X
VECTORS)
DISTRIBUTED IN 2-d
SPACE. THE TOP ONE
HAS THREE VERY
CLEAR GAUSSIAN
CFNTFRS

and sometimes in between

Computing likelihoods in supervised learning case

We have y_1, \boldsymbol{x}_1 , $y_2, \boldsymbol{x}_{2_1, ...}, y_N, \boldsymbol{x}_N$ Learn $P(y_1) P(y_2) ... P(y_k)$ Learn $\sigma, \mu_1, ..., \mu_k$

By MLE: $P(y_1, \boldsymbol{x}_1, y_2, \boldsymbol{x}_2, ..., y_N, \boldsymbol{x}_N | \boldsymbol{\mu}_i, ..., \boldsymbol{\mu}_k, \sigma)$

Computing likelihoods in unsupervised case

We have \mathbf{x}_1 , $\mathbf{x}_{2,...}\mathbf{x}_N$ We know $P(y_1) P(y_2) ... P(y_k)$ We know σ

 $P(\mathbf{x}|\mathbf{y}_i, \mathbf{\mu}_i, \dots \mathbf{\mu}_k)$ = Prob that an observation from class \mathbf{y}_i would have value \mathbf{x} given class means $\mathbf{\mu}_1 \dots \mathbf{\mu}_x$

Can we write an expression for that?

likelihoods in unsupervised case

We have $\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n$

We have $P(y_1)$.. $P(y_k)$. We have σ .

We can define, for any \boldsymbol{x} , $P(\boldsymbol{x}|y_i, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2 ... \boldsymbol{\mu}_k)$

Can we define $P(x \mid \mu_1, \mu_2 ... \mu_k)$?

Can we define $P(\mathbf{x}_1, \mathbf{x}_1, ... \mathbf{x}_n \mid \mathbf{\mu}_1, \mathbf{\mu}_2 ... \mathbf{\mu}_k)$?

[YES, IF WE ASSUME THE X_1 'S WERE DRAWN INDEPENDENTLY]

Unsupervised Learning: Mediumly Good News

We now have a procedure s.t. if you give me a guess at μ_1 , μ_2 ... μ_k , I can tell you the prob of the unlabeled data given those μ 's.

Suppose x's are 1-dimensional.

(From Duda and Hart)

There are two classes; w₁ and w₂

$$P(y_1) = 1/3$$
 $P(y_2) = 2/3$ $\sigma = 1$.

There are 25 unlabeled datapoints

$$x_1 = 0.608$$

 $x_2 = -1.590$
 $x_3 = 0.235$
 $x_4 = 3.949$
:
 $x_{25} = -0.712$

Duda & Hart's Example

We can graph the prob. dist. function of data given our μ_1 and μ_2 estimates.

We can also graph the true function from which the data was randomly generated.

- They are close. Good.
- The 2nd solution tries to put the "2/3" hump where the "1/3" hump should go, and vice versa.
- In this example unsupervised is almost as good as supervised. If the x_1 .. x_{25} are given the class which was used to learn them, then the results are $(\mu_1$ =-2.176, μ_2 =1.684). Unsupervised got $(\mu_1$ =-2.13, μ_2 =1.668).

Duda & Hart's Example + 1/2

Graph of log P(x_1 , x_2 .. $x_{25} \mid \mu_1$, μ_2) against μ_1 (\rightarrow) and μ_2 (\uparrow)

Max likelihood = $(\mu_1 = -2.13, \mu_2 = 1.668)$

Local minimum, but very close to global at $(\mu_1 = 2.085, \mu_2 = -1.257)^*$

* corresponds to switching y_1 with y_2 .

Finding the max likelihood $\mu_1, \mu_2...\mu_k$

We can compute P(data | $\mu_1, \mu_2...\mu_k$) How do we find the μ_i 's which give max. likelihood?

The normal max likelihood trick:

Set
$$\underline{\partial}$$
 log Prob (....) = 0 $\partial \mu_i$

and solve for μ_i 's.

Here you get non-linear non-analyticallyequations

- Use gradient descent Slow but doable
- Use a much faster, cuter, and recently very popular method...

solvable

E.M. Algorithm

- We'll get back to unsupervised learning soon.
- But now we'll look at an even simpler case with hidden information.
- The EM algorithm
 - Can do trivial things, such as the contents of the next few slides.
 - An excellent way of doing our unsupervised learning problem, as we'll see.
 - Many, many other uses, including inference of Hidden Markov Models (future lecture).

Silly Example

Let events be "grades in a class"

 $P(A) = \frac{1}{2}$ w_1 = Gets an A $w_2 = Gets a B$ $P(B) = \mu$ $w_3 = Gets a C$

 $P(C) = 2\mu$

 w_4 = Gets a D $P(D) = \frac{1}{2} - 3\mu$

(Note $0 \le \mu \le 1/6$)

Assume we want to estimate µ from data. In a given class there were

a A's

b B's

c C's

d D's

What's the maximum likelihood estimate of µ given a,b,c,d?

Silly Example

Let events be "grades in a class"

w ₁ = Gets an A	$P(A) = \frac{1}{2}$
w_2 = Gets a B	$P(B) = \mu$
w_3 = Gets a C	$P(C) = 2\mu$
w_4 = Gets a D	$P(D) = \frac{1}{2} - 3\mu$
	(Note 0 ≤ µ ≤1/6)

Assume we want to estimate μ from data. In a given class there were a A's b B's c C's

What's the maximum likelihood estimate of μ given a,b,c,d?

Trivial Statistics

$$P(A) = \frac{1}{2}$$
 $P(B) = \mu$ $P(C) = 2\mu$ $P(D) = \frac{1}{2} - 3\mu$

P(
$$a,b,c,d \mid \mu$$
) = K(½) $^{a}(\mu)^{b}(2\mu)^{c}(\frac{1}{2}-3\mu)^{d}$

$$\log P(a,b,c,d \mid \mu) = \log K + a \log \frac{1}{2} + b \log \mu + c \log 2\mu + d \log (\frac{1}{2}-3\mu)$$

FOR MAX LIKE i, SET
$$\frac{\partial \text{LogP}}{\partial i} = 0$$

$$\frac{\partial \text{LogP}}{\partial \mathbf{i}} = \frac{b}{\mathbf{i}} + \frac{2c}{2\mathbf{i}} - \frac{3d}{1/2 - 3\mathbf{i}} = 0$$

Gives max like
$$i = \frac{b+c}{6(b+c+d)}$$

So if class got

А	В	С	D
14	6	9	10

Max like
$$i = \frac{1}{10}$$

Boring, but true!

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d

What is the max. like estimate of μ now?

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

Same Problem with Hidden Information

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = d REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

What is the max. like estimate of μ now?

We can answer this question circularly:

EXPECTATION

If we know the value of μ we could compute the Since the ratio a:b should be the same as the ratio $\frac{1}{2}$: μ $a = \frac{1}{2} h$ $b = \frac{1}{2} h$

$$=\frac{\frac{1}{2}}{\frac{1}{2}+i}h$$

$$b = \frac{i}{1/2 + i} h$$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood $i = \frac{b+c}{6(b+c+d)}$ value of µ

$$i = \frac{b+c}{6(b+c+d)}$$

E.M. for our Trivial Problem

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

We begin with a guess for μ

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and a and b.

Define $\mu(t)$ the estimate of μ on the t'th iteration

b(t) the estimate of b on t'th iteration

$$i (0) = \text{initial guess}$$

$$b(t) = \frac{i(t) h}{\frac{1}{2} + i(t)} = \text{E}[b \mid i(t)]$$

$$i (t+1) = \frac{b(t) + c}{6(b(t) + c + d)}$$

$$= \text{max like est of } i \text{ given } b(t)$$

Continue iterating until converged.

Good news: Converging to local optimum is assured.

Bad news: I said "local" optimum. Carlos Guestrin

E.M. Convergence

- Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration [NOT OBVIOUS]
- But it can never exceed 1 [OBVIOUS]

So it must therefore converge [OBVIOUS]

In our example, suppose we had

$$h = 20$$

$$c = 10$$

$$d = 10$$

$$\mu(0)=0$$

Convergence is generally <u>linear</u>: error decreases by a constant factor each time step.

t	μ(t)	b(t)
0	0	0
1	0.0833	2.857
2	0.0937	3.158
3	0.0947	3.185
4	0.0948	3.187
5	0.0948	3.187
6	0.0948	3.187
	•	I

©2005-2007 Carlos Guestrin

Back to Unsupervised Learning of GMMs

Remember:

We have unlabeled data $\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_R$

We know there are k classes

We know $P(y_1) P(y_2) P(y_3) \dots P(y_k)$

We don't know $\mu_1 \mu_2 ... \mu_k$

We can write P(data | μ_1 μ_k)

$$= p(x_1...x_R|\hat{i}_1...\hat{i}_k)$$

$$= \prod_{i=1}^R p(x_i|\hat{i}_1...\hat{i}_k)$$

$$= \prod_{i=1}^R \sum_{j=1}^k p(x_i|w_j,\hat{i}_1...\hat{i}_k) P(y_j)$$

$$= \prod_{i=1}^R \sum_{j=1}^k K \exp\left(-\frac{1}{2\acute{o}^2}(x_i-\hat{i}_j)\right) P(y_j)$$

E.M. for GMMs

For Max likelihood we know $\frac{\partial}{\partial i_i} \log \Pr ob(\text{data}|i_1...i_k) = 0$

Some wild'n'crazy algebra turns this into: "For Max likelihood, for each j,

$$\hat{1}_{j} = \frac{\sum_{i=1}^{R} P(y_{j}|x_{i}, \hat{1}_{1}...\hat{1}_{k})x_{i}}{\sum_{i=1}^{R} P(y_{j}|x_{i}, \hat{1}_{1}...\hat{1}_{k})}$$

See

http://www.cs.cmu.edu/~awm/doc/gmm-algebra.pdf

This is n nonlinear equations in μ_i 's."

If, for each \mathbf{x}_i we knew that for each w_j the prob that $\boldsymbol{\mu}_j$ was in class y_j is $P(y_i|x_i,\mu_1...\mu_k)$ Then... we would easily compute μ_j .

If we knew each μ_j then we could easily compute $P(y_j|x_i,\mu_1...\mu_k)$ for each y_j and x_i .

...I feel an EM experience coming on!!

E.M. for GMMs

Iterate. On the *t*'th iteration let our estimates be $\lambda_t = \{ \mu_1(t), \mu_2(t) \dots \mu_c(t) \}$

E-step

Compute "expected" classes of all datapoints for each class

Just evaluate a Gaussian at X_k

$$P(y_i|x_k,\lambda_t) = \frac{p(x_k|y_i,\lambda_t)P(y_i|\lambda_t)}{p(x_k|\lambda_t)} = \frac{p(x_k|y_i,\mu_i(t),\sigma^2\mathbf{I})p_i(t)}{\sum_{j=1}^{c} p(x_k|y_j,\mu_j(t),\sigma^2\mathbf{I})p_j(t)}$$
M-step.

Compute Max. like μ given our data's class membership distributions

$$i_i(t+1) = \frac{\sum_k P(y_i|x_k, \lambda_t) x_k}{\sum_k P(y_i|x_k, \lambda_t)}$$

E.M. Convergence

- Your lecturer will (unless out of time) give you a nice intuitive explanation of why this rule works.
- As with all EM procedures, convergence to a local optimum guaranteed.

■ This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data

E.M. for General GMMs

 $p_i(t)$ is shorthand for estimate of $P(y_i)$ on t'th iteration

Iterate. On the *t*'th iteration let our estimates be

$$\lambda_t = \{ \mu_1(t), \mu_2(t) \dots \mu_c(t), \Sigma_1(t), \Sigma_2(t) \dots \Sigma_c(t), \rho_1(t), \rho_2(t) \dots \rho_c(t) \}$$

E-step

Compute "expected" classes of all datapoints for each class

Just evaluate a Gaussian at

$$P(y_i|x_k,\lambda_t) = \frac{p(x_k|y_i,\lambda_t)P(y_i|\lambda_t)}{p(x_k|\lambda_t)} = \frac{p(x_k|y_i,\mu_i(t),\Sigma_i(t))p_i(t)}{\sum_{j=1}^{c} p(x_k|y_j,\mu_j(t),\Sigma_j(t))p_j(t)}$$
M-step.

M-step.

Compute Max. like μ given our data's class membership distributions

$$\frac{\sum_{k} P(y_i|x_k, \lambda_t) x_k}{\sum_{k} P(y_i|x_k, \lambda_t)} \qquad \Sigma_i(t+1) = \frac{\sum_{k} P(y_i|x_k, \lambda_t) [x_k - \mu_i(t+1)] x_k - \mu_i(t+1)]}{\sum_{k} P(y_i|x_k, \lambda_t)}$$

$$p_i(t+1) = \frac{\sum_{k} P(y_i|x_k, \lambda_t)}{R}$$

$$R = \text{#records}$$

Gaussian Mixture Example: Start

Advance apologies: in Black and White this example will be incomprehensible

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data

Resulting Density Estimator

Three classes of assay

(each learned with it's own mixture model)

Compound =

Resulting Bayes Classifier

Resulting Bayes
Classifier, using
posterior
probabilities to
alert about
ambiguity and
anomalousness

Yellow means anomalous

Cyan means ambiguous

Final Comments

- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>.
- Our unsupervised learning example assumed P(y_i)'s known, and variances fixed and known. Easy to relax this.
- It's possible to do Bayesian unsupervised learning instead of max. likelihood.

What you should know

- How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data.
- Be happy with this kind of probabilistic analysis.
- Understand the two examples of E.M. given in these notes.

Acknowledgements

- 190
 - K-means & Gaussian mixture models presentation derived from excellent tutorial by Andrew Moore:
 - □ http://www.autonlab.org/tutorials/
 - K-means Applet:
 - http://www.elet.polimi.it/upload/matteucc/Clustering/tu torial_html/AppletKM.html
 - Gaussian mixture models Applet:
 - http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM. html