Bayesian Networks – (Structure) Learning

Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

Review

Learning Bayes nets

Learning the CPTs

Find the formation theoretic interpretation
of maximum likelihood
$$\begin{bmatrix} \log i H_3 \\ 2 & \log i H_3 \end{bmatrix}$$

Given structure, log likelihood of data:
 $\log P(D \mid \theta_G, G)$
 $i = \log \prod P(f^{(5)} \mid \Theta_F, G)$. $P(a^{(5)} \mid G^{(5)} \mid G^{($

Information-theoretic interpretation
of maximum likelihood
Given structure, log likelihood of data:

$$\log P(\mathcal{D} \mid \theta_{G}, \mathcal{G}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \Theta_{X_{i}} |\mathsf{Pa}_{X_{i}}, \mathcal{G})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \Theta_{X_{i}} |\mathsf{Pa}_{X_{i}}, \mathcal{G})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \Theta_{X_{i}} |\mathsf{Pa}_{X_{i}}, \mathcal{G})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \Theta_{X_{i}} |\mathsf{Pa}_{X_{i}}, \mathcal{G})$$

$$= m \sum_{i=1}^{n} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \Theta_{X_{i}} |\mathsf{Pa}_{X_{i}}, \mathcal{G})$$

$$= m \sum_{i=1}^{n} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \Theta_{X_{i}} |\mathsf{Pa}_{X_{i}}, \mathcal{G})$$

$$= m \sum_{i=1}^{n} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \Theta_{X_{i}} |\mathsf{Pa}_{X_{i}}, \mathcal{G})$$

$$= m \sum_{i=1}^{n} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \Theta_{X_{i}} |\mathsf{Pa}_{X_{i}}, \mathcal{G})$$

$$= m \sum_{i=1}^{n} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \otimes \left[\mathsf{Pa}_{X_{i}} \mid \mathsf{Pa}_{X_{i}}, \mathcal{G}\right)$$

$$= m \sum_{i=1}^{n} \sum_{i=1}^{n} \log P\left(X_{i} = x_{i}^{(j)} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}}\right]\right) \otimes \left[\mathsf{Pa}_{X_{i}} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \left[\mathsf{Pa}_{X_{i}} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \right] \otimes \left[\mathsf{Pa}_{X_{i}} \mid \mathsf{Pa}_{X_{i}} \mid \mathsf{Pa}_{X_{i}} = x^{(j)} \right] \otimes \left[\mathsf{Pa}_{X_{i}} \mid \mathsf{Pa}_{X_{i}} = x^{(j)}$$

Decomposable score

Constant

Log data likelihood

Decomposable score: for a graph 6

Decomposes over families in BN (node and its parents)
 Will lead to significant computational efficiency!!!
 Score(G:D) = \$\sum_{i_1}^{n_1}\$ FamScore(X_i | Pa_{X_i} : D)\$
 Score(G:D) = \$\sum_{i_2}^{n_1}\$ FamScore(X_i | Pa_{X_i} : D)\$

How many trees are there?

Nonetheless – Efficient optimal algorithm finds best tree

- Rudry Var. has one parent root choose O(2 Veally big Can Find Sest tree in O(n²logn ± n²) time !! う ©2005-2007 Carlos Guestrin

trees only have one root =) no v. structures MI Symmetriz Scoring a tree 1: equivalent trees =I(B,A) $\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = \mathcal{M} \sum \hat{I}(x_i, \operatorname{Pa}_{x_i, \mathcal{G}}) - \mathcal{M} \sum$ Score go Score: I(A)D I(B,A)+T(c,B)+ $\mathcal{I}(B,D) + \mathcal{I}(\mathcal{E},D) +$ I(D,B)+I(E,D) $\mathcal{I}(A,B) + \mathcal{I}(C,B)$ levery tree edges will Same Score have same same edges, different root VIB in Soft treas. same indep. assumptions. because same edges, no v-structures = independence

Scoring a tree 2: similar trees $\log \widehat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \widehat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \widehat{H}(X_i)$ Score Scork J(A,B) + I(s,c) + I(c,D) + I(c,C) + I(c,D) + II(AB) + I(B, c) +B T(B,D) + T(D,E)Unly diff is J (B,D) V. Unly diff (L,D), beconse J L (D), cAD BAD VERSES

Chow-Liu tree learning algorithm 1

• For each pair of variables
$$X_{i}, X_{j}$$

• Compute empirical distribution:
 $\frac{\hat{P}(x_{i}, x_{j})}{\hat{P}(x_{i}, x_{j})} = \frac{Count(x_{i}, x_{j})}{m}$
• Compute mutual information:
 $i = I(x_{i}, x_{j})$
 $\hat{I}(X_{i}, X_{j}) = \sum_{x_{i}, x_{j}} \hat{P}(x_{i}, x_{j}) \log \frac{\hat{P}(x_{i}, x_{j})}{\hat{P}(x_{i})\hat{P}(x_{j})}$
• Define a graph
• Nodes X_{1}, \dots, X_{n}
• Edge (i,j) gets weight $\hat{I}(X_{i}, X_{j})$
 $find bist true = true with max. Sum true shelf algorithm$

Chow-Liu tree learning algorithm 2

 $\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_i, \mathbf{Pa}_{x_i, \mathcal{G}}) - M \sum_{i} \hat{H}(X_i)$

- Optimal tree BN
 - Compute maximum weight spanning tree
 - Directions in BN: pick any node as root, breadth-firstsearch defines directions

Can we extend Chow-Liu 1

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
 - Naïve Bayes model overcounts, because correlation between features not considered
 - □ Same as Chow-Liu, but score edges with:

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(c, x_i, x_j) \log \frac{\widehat{P}(x_i, x_j \mid c)}{\widehat{P}(x_i \mid c) \widehat{P}(x_j \mid c)}$$

$$\widehat{I}(X_i, X_j \mid C) = \sum_{c, x_i, x_j} \widehat{P}(x_i, x_j \mid c) + \sum_{c, x_i,$$

Can we extend Chow-Liu 2

 (Approximately learning) models with tree-width up to k

- [Narasimhan & Bilmes '04]
- \Box But, O(n_{r}^{k+1})...

and more subtleties

Scoring general graphical models – Model selection problem

Maximum likelihood overfits!

$$\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G}) = M \sum_{i} \hat{I}(x_{i}, \operatorname{Pa}_{x_{i}, \mathcal{G}}) - M \sum_{i} \hat{H}(X_{i})$$

$$= \text{Information never hurts:} \quad H(A \mid B) \leq H(A)$$

$$\int (X_{i}, \operatorname{Pa}_{x_{i}, \mathcal{G}}) = H(X_{i}) - H(X_{i} \mid \operatorname{Pa}_{x_{i}, \mathcal{G}})$$

$$= \operatorname{Hadim}_{only \ snames}$$

Bayesian score avoids overfitting

How many graphs are there?

 $\sum_{k=1}^{n} \binom{n}{k} = 2^{n} - 1$ really really large $O(2^{0(n^{2})})$

Structure learning for general graphs

In a tree, a node only has one parent

Theorem:

The problem of learning a <u>BN structure</u> with at most <u>d</u> parents is <u>NP-hard for any (fixed)</u> <u>d 2</u>

Most structure learning approaches use heuristics

Exploit score decomposition

 Quickly) Describe two heuristics that exploit decomposition in different ways

Learn BN structure using local search **Score using BIC** Local search, **Starting from** possible moves: 12 **Chow-Liu tree** Add edge Delete edge 15 Invert edge e add edge -)3 Saccess !! (1 am tived...)

What you need to know about learning BNs

Learning BNs

Maximum likelihood or MAP learns parameters

Decomposable score

Best tree (Chow-Liu)

Best TAN

Other BNs, usually local search with BIC score

Unsupervised learning or Clustering – K-means Gaussian mixture models Machine Learning – 10701/15781 **Carlos Guestrin Carnegie Mellon University**

Some Data

 Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

©2005-2007 Carlos Guestrin

хÛ

Unsupervised Learning

You walk into a bar.

A stranger approaches and tells you:

"I've got data from k classes. Each class produces observations with a normal distribution and variance $\sigma^2 \cdot I$. Standard simple multivariate gaussian assumptions. I can tell you all the P(w_i)'s ."

So far, looks straightforward.

"I need a maximum likelihood estimate of the μ_i 's ."

• No problem:

"There's just one thing. None of the data are labeled. I have datapoints, but I don't know what class they're from (any of them!)

Uh oh!!

Gaussian Bayes Classifier Reminder

$$P(y = i | \mathbf{x}) = \frac{p(\mathbf{x} | y = i)P(y = i)}{p(\mathbf{x})}$$

$$P(y = i | \mathbf{x}) = \frac{\frac{1}{(2\pi)^{m/2} || \mathbf{\Sigma}_i ||^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_k - \mathbf{\mu}_i)^T \mathbf{\Sigma}_i(\mathbf{x}_k - \mathbf{\mu}_i)\right]p_i}{p(\mathbf{x})}$$
How do we deal with that?

Predicting wealth from age

Predicting wealth from age

Learning modelyear, mpg ---> maker

General: O(m²) parameters

Aligned: *O(m)* parameters

Next... back to Density Estimation

What if we want to do density estimation with multimodal or clumpy data?

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$
- Assume that each datapoint is generated according to the following recipe:

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random. Choose component i with probability $P(y_i)$.

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random. Choose component i with probability $P(y_i)$.
- 2. Datapoint ~ N($\mu_{\mu} \sigma^2 I$)

The General GMM assumption

- There are k components. The i'th component is called ω_i
- Component ω_i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i
- Assume that each datapoint is generated according to the following recipe:
- 1. Pick a component at random. Choose component i with probability $P(y_i)$.
- 2. Datapoint ~ N(μ_{j} , Σ_{j})

Unsupervised Learning: not as hard as it looks

Sometimes easy

Sometimes impossible

IN CASE YOU'RE WONDERING WHAT THESE DIAGRAMS ARE, THEY SHOW 2-d UNLABELED DATA (X VECTORS) DISTRIBUTED IN 2-d SPACE. THE TOP ONE HAS THREE VERY CLEAR GAUSSIAN CENTERS

and sometimes in between

Computing likelihoods in supervised learning case

We have $y_1, \boldsymbol{x}_1, y_2, \boldsymbol{x}_{2,...}, y_N, \boldsymbol{x}_N$ Learn P(y_1) P(y_2) ... P(y_k) Learn $\sigma, \mu_1, ..., \mu_k$

By MLE: $P(y_1, x_1, y_2, x_2, ..., y_N, x_N | \mu_i, ..., \mu_k, \sigma)$

Computing likelihoods in unsupervised case

We have \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_N We know P(y₁) P(y₂) ... P(y_k) We know σ

 $P(\mathbf{x}|\mathbf{y}_{i}, \mathbf{\mu}_{i}, \dots, \mathbf{\mu}_{k}) = Prob \text{ that an observation from class } \mathbf{y}_{i}$ would have value **x** given class means $\mathbf{\mu}_{1} \dots \mathbf{\mu}_{x}$

Can we write an expression for that?

likelihoods in unsupervised case

We have $\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n$ We have $P(y_1) \ \dots \ P(y_k)$. We have σ . We can define, for any \mathbf{x} , $P(\mathbf{x}|y_i, \mathbf{\mu}_1, \mathbf{\mu}_2 \ \dots \ \mathbf{\mu}_k)$

Can we define $P(\mathbf{x} | \mathbf{\mu}_1, \mathbf{\mu}_2 ... \mathbf{\mu}_k)$?

Can we define $P(x_1, x_1, ..., x_n | \mu_1, \mu_2 ..., \mu_k)$?

[YES, IF WE ASSUME THE X_{1} 'S WERE DRAWN INDEPENDENTLY]

Unsupervised Learning: Mediumly Good News

We now have a procedure s.t. if you give me a guess at μ_{1} , μ_{2} ... μ_{k} . I can tell you the prob of the unlabeled data given those μ 's.

Suppose *x*'s are 1-dimensional.

There are two classes; w_1 and w_2

 $P(y_1) = 1/3$ $P(y_2) = 2/3$ $\sigma = 1$.

There are 25 unlabeled datapoints

 $x_{1} = 0.608$ $x_{2} = -1.590$ $x_{3} = 0.235$ $x_{4} = 3.949$: $x_{25} = -0.712$

(From Duda and Hart)

Duda & Hart's Example

- The 2nd solution tries to put the "2/3" hump where the "1/3" hump should go, and vice versa.
- In this example unsupervised is almost as good as supervised. If the $x_1 \dots x_{25}$ are given the class which was used to learn them, then the results are $(\mu_1 = -2.176, \mu_2 = 1.684)$. Unsupervised got $(\mu_1 = -2.13, \mu_2 = 1.668)$.

Max likelihood = ($\mu_1 = -2.13$, $\mu_2 = 1.668$)

Local minimum, but very close to global at $(\mu_1 = 2.085, \mu_2 = -1.257)^*$

* corresponds to switching y_1 with y_2 .

Finding the max likelihood $\mu_1, \mu_2...\mu_k$

We can compute P(data | μ_1, μ_2, μ_k) How do we find the μ_i 's which give max. likelihood?

```
The normal max likelihood trick:
Set \frac{\partial}{\partial \mu_i} log Prob (....) = 0
```

```
and solve for \mu_i's.
```

Here you get non-linear non-analytically- solvable equations

- Use gradient descent
 - Slow but doable
- Use a much faster, cuter, and recently very popular method...

The E.M. Algorithm

- We'll get back to unsupervised learning soon.
- But now we'll look at an even simpler case with hidden information.
- The EM algorithm
 - Can do trivial things, such as the contents of the next few slides.
 - An excellent way of doing our unsupervised learning problem, as we'll see.
 - Many, many other uses, including inference of Hidden Markov Models (future lecture).

Silly Example

Let events be "grades in a class"

 $w_1 = Gets an A$ $P(A) = \frac{1}{2}$ $w_2 = Gets a$ B $P(B) = \mu$ $w_3 = Gets a$ C $P(C) = 2\mu$ $w_4 = Gets a$ D $P(D) = \frac{1}{2} - 3\mu$ (Note $0 \le \mu \le 1/6$)

Assume we want to estimate μ from data. In a given class there were

What's the maximum likelihood estimate of µ given a,b,c,d?

Silly Example

Let events be "grades in a class"

w ₁ = Gets an	A	$P(A) = \frac{1}{2}$
w ₂ = Gets a	В	Ρ(Β) = μ
w ₃ = Gets a	С	P(C) = 2µ
w ₄ = Gets a	D	P(D) = ½-3µ
		(Note 0 ≤ µ ≤1/6)
Assume we want	to estimate μ from dat	a. In a given class there were a A's b B's c C's d D's

What's the maximum likelihood estimate of µ given a,b,c,d ?

Trivial Statistics

 $P(A) = \frac{1}{2}$ $P(B) = \mu$ $P(C) = 2\mu$ $P(D) = \frac{1}{2}-3\mu$ $P(a,b,c,d \mid \mu) = K(\frac{1}{2})^{a}(\mu)^{b}(2\mu)^{c}(\frac{1}{2}-3\mu)^{d}$ $\log P(a,b,c,d \mid \mu) = \log K + a \log \frac{1}{2} + b \log \mu + c \log 2\mu + d \log (\frac{1}{2}-3\mu)$ FOR MAX LIKE μ , SET $\frac{\partial \text{LogP}}{\partial \mu} = 0$ $\frac{\partial \text{LogP}}{\partial \mu} = \frac{b}{\mu} + \frac{2c}{2\mu} - \frac{3d}{1/2 - 3\mu} = 0$ Gives max like $\mu = \frac{b+c}{6(b+c+d)}$ So if class got С А В D 14 6 9 10 Boring, but true! Max like $\mu = \frac{1}{10}$

Same Problem with Hidden Information

Someone tells us that Number of High grades (A's + B's) = hNumber of C's = cNumber of D's = d REMEMBER $P(A) = \frac{1}{2}$ $P(B) = \mu$ $P(C) = 2\mu$ $P(D) = \frac{1}{2} - 3\mu$

What is the max. like estimate of μ now?

Same Problem with Hidden Information

Someone tells us that	
Number of High grades (A's + B's) =	h
Number of C's	= <i>C</i>
Number of D's	= d

REMEMBER

$$P(A) = \frac{1}{2}$$

 $P(B) = \mu$
 $P(C) = 2\mu$
 $P(D) = \frac{1}{2} - 3\mu$

What is the max. like estimate of μ now?

We can answer this question circularly:

EXPECTATION

If we know the value of *a* and *b* should be the same as the ratio $\frac{1}{2} \cdot \mu$ $a = \frac{\frac{1}{2}}{\frac{1}{2} + \mu}h$ $b = \frac{\mu}{\frac{1}{2} + \mu}h$ If we know the value of μ we could compute the

Since the ratio a:b should be the same as the ratio ${\rlap 12 2} : \mu$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of µ

$$\mu = \frac{b+c}{6(b+c+d)}$$

E.M. for our Trivial Problem

We begin with a guess for μ

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and *a* and *b*.

Define $\mu(t)$ the estimate of μ on the t'th iteration b(t) the estimate of *b* on t'th iteration

Continue iterating until converged. Good news: Converging to local optimum is assured. Bad news: I said "local" optimum. REMEMBER $P(A) = \frac{1}{2}$ $P(B) = \mu$ $P(C) = 2\mu$ $P(D) = \frac{1}{2}-3\mu$

E.M. Convergence

Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration [NOT OBVIOUS]

But it can never exceed 1 [OBVIOUS]

So it must therefore converge [OBVIOUS]

In our example,	κ.	t	μ(t)	b(t)
suppose we had h = 20		0	0	0
c = 10		1	0.0833	2.857
d = 10		2	0.0937	3.158
$\mu(0) = 0$		3	0.0947	3.185
Convergence is ge	onvergence is generally <u>linear</u> : error creases by a constant factor each time		0.0948	3.187
decreases by a col step.	nstant factor each time	5	0.0948	3.187
		6	0.0948	3.187

Back to Unsupervised Learning of GMMs

Remember:

We have unlabeled data $\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_R$ We know there are k classes We know P(y₁) P(y₂) P(y₃) ... P(y_k) We <u>don't</u> know $\mathbf{\mu}_1 \ \mathbf{\mu}_2 \ \dots \ \mathbf{\mu}_k$

We can write P(data | μ_1 μ_k)

$$= p(x_{1}...x_{R}|\mu_{1}...\mu_{k})$$

$$= \prod_{i=1}^{R} p(x_{i}|\mu_{1}...\mu_{k})$$

$$= \prod_{i=1}^{R} \sum_{j=1}^{k} p(x_{i}|w_{j},\mu_{1}...\mu_{k}) P(y_{j})$$

$$= \prod_{i=1}^{R} \sum_{j=1}^{k} K \exp\left(-\frac{1}{2\sigma^{2}}(x_{i}-\mu_{j})^{2}\right) P(y_{j})$$

E.M. for GMMs

For Max likelihood we know $\frac{\partial}{\partial \mu_i} \log \Pr \operatorname{ob}(\operatorname{data} | \mu_1 \dots \mu_k) = 0$

Some wild'n' crazy algebra turns this into : "For Max likelihood, for each j,

This is n nonlinear equations in μ_i 's."

 $\mu_{j} = \frac{\sum_{i=1}^{R} P(y_{j} | x_{i}, \mu_{1}...\mu_{k}) x_{i}}{\sum_{i=1}^{R} P(y_{j} | x_{i}, \mu_{1}...\mu_{k})}$

If, for each \mathbf{x}_i we knew that for each w_j the prob that $\mathbf{\mu}_j$ was in class y_j is $P(y_j|x_i,\mu_1...\mu_k)$ Then... we would easily compute μ_j .

If we knew each μ_j then we could easily compute $P(y_j|x_i,\mu_1...\mu_k)$ for each y_j and x_i .

...I feel an EM experience coming on!!

See

http://www.cs.cmu.edu/~awm/doc/gmm-algebra.pdf

E.M. for GMMs

Iterate. On the *t* th iteration let our estimates be $\lambda_t = \{ \mu_1(t), \mu_2(t) \dots \mu_c(t) \}$

E-step

Just evaluate Compute "expected" classes of all datapoints for each class a Gaussian at X_k $P(y_i|x_k,\lambda_t) = \frac{p(x_k|y_i,\lambda_t)P(y_i|\lambda_t)}{p(x_k|\lambda_t)} = \frac{p(x_k|y_i,\mu_i(t),\sigma^2\mathbf{I})p_i(t)}{\sum_{j=1}^c p(x_k|y_j,\mu_j(t),\sigma^2\mathbf{I})p_j(t)}$ M-step.

M-step.

Compute Max. like **µ** given our data's class membership distributions

$$\mu_i(t+1) = \frac{\sum_k P(y_i | x_k, \lambda_t) x_k}{\sum_k P(y_i | x_k, \lambda_t)}$$

E.M. Convergence

- Your lecturer will (unless out of time) give you a nice intuitive explanation of why this rule works.
- As with all EM procedures, convergence to a local optimum guaranteed.

 This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G.
 Vector Quantization for Speech Data

E.M. for General GMMs

Iterate. On the t th iteration let our estimates be

 $\lambda_t = \{ \mu_1(t), \mu_2(t) \dots \mu_c(t), \Sigma_1(t), \Sigma_2(t) \dots \Sigma_c(t), p_1(t), p_2(t) \dots p_c(t) \}$

E-step

Compute "expected" classes of all datapoints for each class

Just evaluate a Gaussian at

 $p_i(t)$ is shorthand

on t'th iteration

for estimate of $P(y_i)$

$$P(y_i|x_k,\lambda_t) = \frac{p(x_k|y_i,\lambda_t)P(y_i|\lambda_t)}{p(x_k|\lambda_t)} = \frac{p(x_k|y_i,\mu_i(t),\Sigma_i(t))p_i(t)}{\sum_{j=1}^c p(x_k|y_j,\mu_j(t),\Sigma_j(t))p_j(t)}$$
M-step.

Compute Max. like **µ** given our data's class membership distributions

$$\mu_{i}(t+1) = \frac{\sum_{k} P(y_{i}|x_{k},\lambda_{t})x_{k}}{\sum_{k} P(y_{i}|x_{k},\lambda_{t})} \qquad \Sigma_{i}(t+1) = \frac{\sum_{k} P(y_{i}|x_{k},\lambda_{t})[x_{k}-\mu_{i}(t+1)][x_{k}-\mu_{i}(t+1)]^{T}}{\sum_{k} P(y_{i}|x_{k},\lambda_{t})}$$
$$p_{i}(t+1) = \frac{\sum_{k} P(y_{i}|x_{k},\lambda_{t})}{R} \qquad R = \#\text{records}$$

Gaussian Mixture Example: Start

p=0.333 . 333 p=0.333

Advance apologies: in Black and White this example will be incomprehensible

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

GMM clustering of the assay data

Resulting Density Estimator

Compound =

Three classes of

assay (each learned with

it's own mixture model)

Resulting Bayes Classifier

Resulting Bayes Classifier, using posterior probabilities to alert about ambiguity and anomalousness

> Yellow means anomalous

Final Comments

- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>.
- Our unsupervised learning example assumed P(y_i)'s known, and variances fixed and known. Easy to relax this.
- It's possible to do Bayesian unsupervised learning instead of max. likelihood.

What you should know

- How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data.
- Be happy with this kind of probabilistic analysis.
- Understand the two examples of E.M. given in these notes.

Acknowledgements

K-means & Gaussian mixture models presentation derived from excellent tutorial by Andrew Moore:

□ <u>http://www.autonlab.org/tutorials/</u>

- K-means Applet:
 - http://www.elet.polimi.it/upload/matteucc/Clustering/tu torial_html/AppletKM.html
- Gaussian mixture models Applet:
 - http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM. html