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Review

Bayesian Networks 
Compact representation for 
probability distributions
Exponential reduction in number 
of parameters

Fast probabilistic inference 
using variable elimination

Compute P(X|e)
Time exponential in tree-width, 
not number of variables

Today
Learn BN structure

Flu Allergy

Sinus

Headache Nose
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Learning Bayes nets

Missing data

Fully observable 
data

Unknown structureKnown structure

x(1)

…
x(m)

Data

structure parameters

CPTs –
P(Xi| PaXi)
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Learning the CPTs

x(1)

…
x(m)

Data
For each discrete variable Xi
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Information-theoretic interpretation 
of maximum likelihood

Given structure, log likelihood of data:

Flu Allergy

Sinus

Headache Nose
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Information-theoretic interpretation 
of maximum likelihood 2

Given structure, log likelihood of data:

Flu Allergy

Sinus

Headache Nose
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Decomposable score

Log data likelihood

Decomposable score:
Decomposes over families in BN (node and its parents)
Will lead to significant computational efficiency!!!
Score(G : D) = ∑i FamScore(Xi|PaXi : D)
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How many trees are there?
Nonetheless – Efficient optimal algorithm finds best tree
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Scoring a tree 1: equivalent trees
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Scoring a tree 2: similar trees
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Chow-Liu tree learning algorithm 1 

For each pair of variables Xi,Xj
Compute empirical distribution:

Compute mutual information:

Define a graph
Nodes X1,…,Xn

Edge (i,j) gets weight
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Chow-Liu tree learning algorithm 2

Optimal tree BN
Compute maximum weight 
spanning tree
Directions in BN: pick any 
node as root, breadth-first-
search defines directions
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Can we extend Chow-Liu 1

Tree augmented naïve Bayes (TAN) 
[Friedman et al. ’97] 

Naïve Bayes model overcounts, because 
correlation between features not 
considered
Same as Chow-Liu, but score edges with:
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Can we extend Chow-Liu 2

(Approximately learning) models 
with tree-width up to k

[Narasimhan & Bilmes ’04]
But, O(nk+1)…

and more subtleties   
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What you need to know about 
learning BN structures so far
Decomposable scores

Maximum likelihood
Information theoretic interpretation

Best tree (Chow-Liu)
Best TAN
Nearly best k-treewidth (in O(Nk+1))
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Scoring general graphical models –
Model selection problem

Data

<x_1^{(1)},…,x_n^{(1)}>
…

<x_1^{(m)},…,x_n^{(m)}>

Flu Allergy

Sinus

Headache Nose

What’s the best structure?

The more edges, the fewer independence assumptions,
the higher the likelihood of the data, but will overfit…
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Maximum likelihood overfits!

Information never hurts:

Adding a parent always increases score!!!



©2005-2007 Carlos Guestrin

Bayesian score avoids overfitting

Given a structure, distribution over parameters

Difficult integral: use Bayes information criterion 
(BIC) approximation (equivalent as M→∞)

Note: regularize with MDL score
Best BN under BIC still NP-hard
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How many graphs are there?
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Structure learning for general graphs

In a tree, a node only has one parent

Theorem:
The problem of learning a BN structure with at most d
parents is NP-hard for any (fixed) d≥2

Most structure learning approaches use heuristics
Exploit score decomposition
(Quickly) Describe two heuristics that exploit decomposition 
in different ways
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Learn BN structure using local 
search

Starting from 
Chow-Liu tree

Local search,
possible moves:
• Add edge
• Delete edge
• Invert edge

Score using BIC
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What you need to know about 
learning BNs
Learning BNs

Maximum likelihood or MAP learns parameters
Decomposable score
Best tree (Chow-Liu)
Best TAN
Other BNs, usually local search with BIC score
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Unsupervised learning or 
Clustering –
K-means
Gaussian mixture models
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 2nd, 2007
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Some Data
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns”
a set of datapoints)
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated!
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Unsupervised Learning

You walk into a bar.
A stranger approaches and tells you:

“I’ve got data from k classes.  Each class produces 
observations with a normal distribution and variance 
σ2·I . Standard simple multivariate gaussian 
assumptions. I can tell you all the P(wi)’s .”

So far, looks straightforward.
“I need a maximum likelihood estimate of the µi’s .“

No problem:
“There’s just one thing. None of the data are labeled. I 
have datapoints, but I don’t know what class they’re 
from (any of them!)

Uh oh!!
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Gaussian Bayes Classifier 
Reminder

)(
)()|()|(

x
xx

p
iyPiypiyP ==

==

( ) ( )

)(
2
1exp

||||)2(
1

)|(
2/12/

x

µxΣµx
Σx

p

p
iyP

iiki
T

ik
i

m ⎥⎦
⎤

⎢⎣
⎡ −−−

==
π

How do we deal with that?
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Predicting wealth from age
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Predicting wealth from age
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Learning modelyear , 
mpg  ---> maker
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General: O(m2)
parameters
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Aligned: O(m)
parameters
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Aligned: O(m)
parameters
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Spherical: O(1)
cov parameters
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Spherical: O(1)
cov parameters
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Next… back to Density Estimation

What if we want to do density estimation with 
multimodal or clumpy data?
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The GMM assumption

• There are k components. The 
i’th component is called ωi

• Component ωi has an 
associated mean vector µi

µ1

µ2

µ3
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The GMM assumption

• There are k components. The 
i’th component is called ωi

• Component ωi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix σ2I

Assume that each datapoint is 
generated according to the 
following recipe: 

µ1

µ2

µ3
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The GMM assumption
• There are k components. The 

i’th component is called ωi

• Component ωi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix σ2I

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(yi).

µ2
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The GMM assumption
• There are k components. The 

i’th component is called ωi

• Component ωi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix σ2I

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(yi).

2. Datapoint ~ N(µi, σ2I )

µ2

x
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The General GMM assumption

µ1

µ2

µ3

• There are k components. The 
i’th component is called ωi

• Component ωi has an 
associated mean vector µi

• Each component generates data 
from a Gaussian with mean µi 
and covariance matrix Σi 

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(yi).

2. Datapoint ~ N(µi, Σi )
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Unsupervised Learning:
not as hard as it looks

and sometimes in between

Sometimes impossible

Sometimes easy
IN CASE YOU’RE 
WONDERING WHAT 
THESE DIAGRAMS ARE, 
THEY SHOW 2-d 
UNLABELED DATA (X
VECTORS) 
DISTRIBUTED IN 2-d 
SPACE. THE TOP ONE 
HAS THREE VERY 
CLEAR GAUSSIAN 
CENTERS



©2005-2007 Carlos Guestrin

Computing likelihoods in 
supervised learning case
We have y1,x1 , y2,x2 , … yN,xN

Learn P(y1) P(y2) .. P(yk)
Learn σ, µ1,…, µk

By MLE:     P(y1,x1 , y2,x2 , … yN,xN |µi, … µk , σ)



©2005-2007 Carlos Guestrin

Computing likelihoods in 
unsupervised case
We have x1 , x2 , … xN

We know P(y1) P(y2) .. P(yk)
We know σ

P(x|yi, µi, … µk) = Prob that an observation from class yi
would have value x given class 
means µ1… µx

Can we write an expression for that?
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likelihoods in unsupervised case

We have x1  x2 … xn
We have P(y1) .. P(yk).  We have σ.
We can define, for any x , P(x|yi , µ1, µ2 .. µk)

Can we define P(x | µ1, µ2 .. µk) ?

Can we define P(x1, x1, .. xn | µ1, µ2 .. µk) ?

[YES, IF WE ASSUME THE X1’S WERE DRAWN INDEPENDENTLY]
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Unsupervised Learning:
Mediumly Good News
We now have a procedure s.t. if you give me a guess at µ1, µ2 .. µk,

I can tell you the prob of the unlabeled data given those µ‘s.

Suppose x‘s are 1-dimensional.

There are two classes; w1 and w2

P(y1) = 1/3     P(y2) = 2/3     σ = 1 .

There are 25 unlabeled datapoints

x1 =  0.608
x2 = -1.590
x3 = 0.235
x4 = 3.949

:
x25 = -0.712

(From Duda and Hart)
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Duda & Hart’s Example
We can graph the 

prob. dist. function 
of data given our 
µ1 and µ2
estimates.

We can also graph the 
true function from 
which the data was 
randomly generated.

• They are close.  Good.

• The 2nd solution tries to put the “2/3” hump where the “1/3” hump should 
go, and vice versa.

• In this example unsupervised is almost as good as supervised.  If the x1 .. 
x25 are given the class which was used to learn them, then the results are 
(µ1=-2.176, µ2=1.684).  Unsupervised got (µ1=-2.13, µ2=1.668). 
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Graph of 
log P(x1, x2 .. x25 | µ1, µ2 )

against µ1 (→) and µ2 (↑)

Max likelihood = (µ1 =-2.13, µ2 =1.668)

Local minimum, but very close to global at (µ1 =2.085, µ2 =-1.257)*

* corresponds to switching y1 with y2.

Duda & Hart’s Example

µ1

µ2
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Finding the max likelihood µ1,µ2..µk

We can compute  P( data | µ1,µ2..µk)
How do we find the µi‘s which give max. likelihood?

The normal max likelihood trick:
Set  ∂ log Prob (….) = 0

∂ µi

and solve for µi‘s.
# Here you get non-linear non-analytically- solvable 

equations
Use gradient descent

Slow but doable
Use a much faster, cuter, and recently very popular method…
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Expectation 
Maximalization
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The E.M. Algorithm

We’ll get back to unsupervised learning soon.
But now we’ll look at an even simpler case with hidden 
information.
The EM algorithm

Can do trivial things, such as the contents of the next few slides.
An excellent way of doing our unsupervised learning problem, as 
we’ll see.
Many, many other uses, including inference of Hidden Markov 
Models (future lecture).

DETOUR
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Silly Example
Let events be “grades in a class”

w1 = Gets an A P(A) = ½
w2 = Gets a   B P(B) = µ
w3 = Gets a   C P(C) = 2µ
w4 = Gets a   D P(D) = ½-3µ

(Note  0 ≤ µ ≤1/6)
Assume we want to estimate µ from data.  In a given class there were

a   A’s
b   B’s
c   C’s
d   D’s

What’s the maximum likelihood estimate of µ given a,b,c,d ?
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Silly Example

Let events be “grades in a class”
w1 = Gets an A P(A) = ½
w2 = Gets a   B P(B) = µ
w3 = Gets a   C P(C) = 2µ
w4 = Gets a   D P(D) = ½-3µ

(Note  0 ≤ µ ≤1/6)
Assume we want to estimate µ from data.  In a given class there were

a   A’s
b   B’s
c   C’s
d   D’s

What’s the maximum likelihood estimate of µ given a,b,c,d ?
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Trivial Statistics
P(A) = ½ P(B) = µ P(C) = 2µ P(D) = ½-3µ
P( a,b,c,d | µ) = K(½)a(µ)b(2µ)c(½-3µ)d

log P( a,b,c,d | µ) = log K + alog ½ + blog µ + clog 2µ + dlog (½-3µ)
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Boring, but tru
e!
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Same Problem with Hidden Information

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                                 = c
Number of D’s                                 = d

What is the max. like estimate of µ now?

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ
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Same Problem with Hidden Information

hbha
µ2

1
µ        

µ2
1

2
1

+
=

+
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6
 µ  

Someone tells us that
Number of High grades (A’s + B’s) = h
Number of C’s                                 = c
Number of D’s                                 = d

What is the max. like estimate of µ now?

We can answer this question circularly:

EXPECTATION

MAXIMIZATION

If we know the value of µ we could compute the 
expected value of a and b

If we know the expected values of a and b
we could compute the maximum likelihood 
value of µ

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

Since the ratio a:b should be the same as the ratio ½ : µ
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E.M. for our Trivial Problem

We begin with a guess for µ
We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates 
of  µ and a and b.

Define    µ(t)  the estimate of µ on the t’th iteration
b(t)  the estimate of b on t’th iteration

REMEMBER

P(A) = ½

P(B) = µ

P(C) = 2µ

P(D) = ½-3µ

[ ]

( )
( )( )

( )tb
dctb

ctbt

tb
t

htb

given µ  ofest  likemax  
6

)1(µ

)(µ|
)(µ2

1
µ(t)  )(

guess initial )0(µ

=
++

+
=+

Ε=
+

=

=

E-step

M-step

Continue iterating until converged.
Good news:  Converging to local optimum is assured.
Bad news:  I said “local” optimum.
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E.M. Convergence
Convergence proof based on fact that Prob(data | µ) must increase or remain 
same between each iteration [NOT OBVIOUS]

But it can never exceed 1    [OBVIOUS]

So it must therefore converge   [OBVIOUS]

3.1870.09486

3.1870.09485

3.1870.09484

3.1850.09473

3.1580.09372

2.8570.08331

000

b(t)µ(t)tIn our example, 
suppose we had

h = 20
c = 10
d = 10

µ(0) = 0

Convergence is generally linear: error 
decreases by a constant factor each time 
step.
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Back to Unsupervised Learning of 
GMMs

Remember:
We have unlabeled data x1 x2 … xR
We know there are k classes
We know P(y1) P(y2) P(y3) … P(yk)
We don’t know µ1 µ2 .. µk

We can write P( data | µ1…. µk) 
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E.M. for GMMs

( )

( )

( )∑
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kij
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  µ
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0µ...µdataobPrlog
µ

know     welikelihoodFor Max 

This is  n  nonlinear equations in µj’s.”

…I feel an EM experience coming on!!

If, for each xi we knew that for each wj the prob that µj was in class yj is
P(yj|xi,µ1…µk)   Then… we would easily compute µj.

If we knew each µj then we could easily compute P(yj|xi,µ1…µk) for each yj
and xi.

See

http://www.cs.cmu.edu/~awm/doc/gmm-algebra.pdf
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E.M. for GMMs
Iterate.  On the t’th iteration let our estimates be λt = { µ1(t), µ2(t) … µc(t) }

E-step
Compute “expected” classes of all datapoints for each class

( ) ( ) ( )
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M-step.  
Compute Max. like µ given our data’s class membership distributions
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Just evaluate 
a Gaussian at 
xk
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E.M. Convergence

This algorithm is REALLY USED.  And in 
high dimensional state spaces, too.  E.G. 
Vector Quantization for Speech Data

• Your lecturer will 
(unless out of 
time) give you a 
nice intuitive 
explanation of 
why this rule 
works.

• As with all EM 
procedures, 
convergence to a 
local optimum 
guaranteed.
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be

λt = { µ1(t), µ2(t) … µc(t), Σ1(t), Σ2(t) … Σc(t), p1(t), p2(t) … pc(t) }

E-step
Compute “expected” classes of all datapoints for each class
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λλ
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M-step.  
Compute Max. like µ given our data’s class membership distributions

pi(t) is shorthand 
for estimate of P(yi)
on t’th iteration
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Just evaluate 
a Gaussian at 
xk
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Advance apologies: in Black 
and White this example will be 

incomprehensible

Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Some Bio Assay data
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GMM clustering of the assay data
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Resulting 
Density 
Estimator
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Three 
classes of 
assay
(each learned with 
it’s own mixture 
model)
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Resulting 
Bayes 
Classifier
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Resulting Bayes 
Classifier, using 
posterior 
probabilities to 
alert about 
ambiguity and 
anomalousness

Yellow means 
anomalous

Cyan means 
ambiguous
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Final Comments

Remember, E.M. can get stuck in local minima, and 
empirically it DOES.
Our unsupervised learning example assumed P(yi)’s known, 
and variances fixed and known.  Easy to relax this.
It’s possible to do Bayesian unsupervised learning instead of 
max. likelihood.
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What you should know

How to “learn” maximum likelihood parameters (locally max. 
like.) in the case of unlabeled data.
Be happy with this kind of probabilistic analysis.
Understand the two examples of E.M. given in these notes.



©2005-2007 Carlos Guestrin

Acknowledgements

K-means & Gaussian mixture models 
presentation derived from excellent tutorial by 
Andrew Moore:
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Gaussian mixture models Applet:
http://www.neurosci.aist.go.jp/%7Eakaho/MixtureEM.
html


