Bayesian Networks - Inference (cont.)

Machine Learning - 10701/15781 Carlos Guestrin
Carnegie Mellon University
March 26 ${ }^{\text {th }}, 2007$
©2005-2007 Carlos Guestrin

General probabilistic inference

- Query: $P(X \mid e)$

Doth, cord. prods.
■ Using Bayes rule:
$P(X \mid e)=\frac{P(X, e)}{P P(e)}$

- Normalizationiniup do nd os on x

$$
P(X \mid e) \propto P(X, e)
$$

Marginalization

$$
\begin{aligned}
& \text { Flu } \rightarrow \text { Sinus } \rightarrow \text { Noset } P(F, S, N)=P(F) . P(S \mid F) \text {.P(PNT) } \\
& P(F=t, N=t)=P(F=t, S=t, N=t)+ \\
& P(F=t, S=f, N=t) \\
& =P(F=t) . P(S=t \mid F=t) \cdot P(N=t \mid S=t)+ \\
& P(F=t) \quad P(S=f \mid F=t) \quad P(N=t \mid S=f
\end{aligned}
$$

marginatize ou $t S$

Inference seems exponential in number of variables! Actually, inference in graphical models $\mathrm{s}^{n} \mathrm{~s}^{6 x} \mathrm{NP}$-hard :

Fast probabilistic inference eliminate (margie line) vars one at example - Variable elimination

Understanding variable elimination Exploiting distributivity

Flu

Understanding variable elimination Order can make a HUGE difference

Understanding variable elimination Another example

Variable elimination algorithm

- Given a BN and a query $\mathrm{P}(\mathrm{X} \mid \mathrm{e}) \propto \mathrm{P}(\mathrm{X}, \mathrm{e})$
- Instantiate evidence e

IMPORTANT!!!

- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $i=1$ to n, If $X_{i} \notin\{X, e\}$
\square Collect factors f_{1}, \ldots, f_{k} that include X_{i}
\square Generate a new factor by eliminating X_{i} from these factors

$$
g=\sum_{X_{i}} \prod_{j=1}^{k} f_{j}
$$

\square Variable X_{i} has been eliminated!

- Normalize P(X,e) to obtain P(X|e)

Complexity of variable elimination -(Poly)-tree graphs

Variable elimination order:
Start from "leaves" up -
find topological order, eliminate variables in reverse order

Complexity of variable elimination Graphs with loops

Exponential in number of variables in largest factor generated

Complexity of variable elimination -Tree-width

Moralize graph:
Connect parents
into a clique and
remove edge directions

> Complexity of VE elimination: ("Only") exponential in tree-width Tree-width is maximum node cut +1

Example: Large tree-width with small number of parents

Choosing an elimination order

- Choosing best order is NP-complete
\square Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
\square Even optimal order can lead to exponential variable elimination computation
- In practice
\square Variable elimination often very effective
\square Many (many many) approximate inference approaches available when variable elimination too expensive

Most likely explanation (MLE)

■ Query: $\quad \operatorname{argmax} P\left(x_{1}, \ldots, x_{n} \mid e\right)$

$$
x_{1}, \ldots, x_{n}
$$

- Using Bayes rule:

$$
\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} \frac{P\left(x_{1}, \ldots, x_{n}, e\right)}{P(e)}
$$

- Normalization irrelevant:

$$
\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n}, e\right)
$$

Max-marginalization

Example of variable elimination for MLE - Forward pass

Example of variable elimination for MLE - Backward pass

MLE Variable elimination algorithm - Forward pass

- Given a BN and a MLE query $\max _{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}} \mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}, \mathrm{e}\right)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $\mathrm{i}=1$ to n , If $\mathrm{X}_{\mathrm{i}} \notin\{\mathrm{e}\}$
\square Collect factors f_{1}, \ldots, f_{k} that include X_{i}
\square Generate a new factor by eliminating X_{i} from these factors

$$
g=\max _{x_{i}} \prod_{j=1}^{k} f_{j}
$$

\square Variable X_{i} has been eliminated!

MLE Variable elimination algorithm - Backward pass

- $\left\{\mathrm{x}_{1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$ will store maximizing assignment
- For $\mathrm{i}=\mathrm{n}$ to 1 , If $\mathrm{X}_{\mathrm{i}} \notin\{\mathrm{e}\}$
\square Take factors f_{1}, \ldots, f_{k} used when X_{i} was eliminated
\square Instantiate $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$, with $\left\{\mathrm{x}_{\mathrm{i}+1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$
- Now each f_{j} depends only on X_{i}
\square Generate maximizing assignment for X_{i} :

$$
x_{i}^{*} \in \underset{x_{i}}{\operatorname{argmax}} \prod_{j=1}^{k} f_{j}
$$

What you need to know

- Bayesian networks
\square A useful compact representation for large probability distributions
- Inference to compute
\square Probability of X given evidence e
\square Most likely explanation (MLE) given evidence e
\square Inference is NP-hard
- Variable elimination algorithm
\square Efficient algorithm ("only" exponential in tree-width, not number of variables)
\square Elimination order is important!
\square Approximate inference necessary when tree-width to large
- not covered this semester
\square Only difference between probabilistic inference and MLE is "sum" versus "max"

HMMs

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
March 26 ${ }^{\text {th }}, 2007$
©2005-2007 Carlos Guestrin

Adventures of our BN hero

- Compact representation for

1. Naïve Bayes probability distributions

- Fast inference
- Fast learning

2 and 3.
Hidden Markov models (HMMs)
Kalman Filters

Handwriting recognition

Character recognition, e.g., kernel SVMs

Example of a hidden Markov model (HMM)

Understanding the HMM Semantics

HMMs semantics: Details

Just 3 distributions:
$P\left(X_{1}\right)$
$P\left(X_{i} \mid X_{i-1}\right)$
$P\left(O_{i} \mid X_{i}\right)$

HMMs semantics: Joint distribution

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{n} \mid o_{1}, \ldots, o_{n}\right)=P\left(X_{1: n} \mid o_{1: n}\right) \\
& \quad \propto P\left(X_{1}\right) P\left(o_{1} \mid X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid X_{i-1}\right) P\left(o_{i} \mid X_{i}\right)
\end{aligned}
$$

Learning HMMs from fully observable data is easy

Learn 3 distributions:
$P\left(X_{1}\right)$
$P\left(O_{i} \mid X_{i}\right)$
$P\left(X_{i} \mid X_{i-1}\right)$

Possible inference tasks in an HMM

Marginal probability of a hidden variable:

Viterbi decoding - most likely trajectory for hidden vars:

Using variable elimination to compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{O}_{1 \text { in }}\right)$

Variable elimination order?

Example:

What if I want to compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{o}_{1: n}\right)$

 for each i?

Variable elimination for each i?

Variable elimination for each i, what's the complexity?

Reusing computation

The forwards-backwards algorithm

$P\left(X_{i} \mid o_{1 . . n}\right)$

- Initialization: $\alpha_{1}\left(X_{1}\right)=P\left(X_{1}\right) P\left(o_{1} \mid X_{1}\right)$
- For $\mathrm{i}=2$ to n
\square Generate a forwards factor by eliminating $\mathrm{X}_{\mathrm{i}-1}$

$$
\alpha_{i}\left(X_{i}\right)=\sum_{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)
$$

- Initialization: $\beta_{n}\left(X_{n}\right)=1$
- For $\mathrm{i}=\mathrm{n}$-1 to 1
\square Generate a backwards factor by eliminating $\mathrm{X}_{\mathrm{i}+1}$

$$
\beta_{i}\left(X_{i}\right)=\sum_{x_{i+1}} P\left(o_{i+1} \mid x_{i+1}\right) P\left(x_{i+1} \mid X_{i}\right) \beta_{i+1}\left(x_{i+1}\right)
$$

Variable elimination order?

Example:

The Viterbi algorithm

- Initialization: $\alpha_{1}\left(X_{1}\right)=P\left(X_{1}\right) P\left(o_{1} \mid X_{1}\right)$
- For $\mathrm{i}=2$ to n
\square Generate a forwards factor by eliminating $\mathrm{X}_{\mathrm{i}-1}$

$$
\alpha_{i}\left(X_{i}\right)=\max _{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)
$$

- Computing best explanation: $x_{n}^{*}=\underset{x_{n}}{\operatorname{argmax}} \alpha_{n}\left(x_{n}\right)$
- For $\mathrm{i}=\mathrm{n}-1$ to 1
\square Use argmax to get explanation:

$$
x_{i}^{*}=\underset{x_{i}}{\operatorname{argmax}} P\left(x_{i+1}^{*} \mid x_{i}\right) \alpha_{i}\left(x_{i}\right)
$$

What you'll implement 1 : multiplication

$$
\alpha_{i}\left(X_{i}\right)=\max _{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)
$$

What you'll implement 2: max \& argmax

$$
\alpha_{i}\left(X_{i}\right)=\max _{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{i-1}\left(x_{i-1}\right)
$$

Higher-order HMMs

Add dependencies further back in time \rightarrow better representation, harder to learn

What you need to know

- Hidden Markov models (HMMs)
\square Very useful, very powerful!
\square Speech, OCR,...
\square Parameter sharing, only learn 3 distributions
\square Trick reduces inference from $\mathrm{O}\left(\mathrm{n}^{2}\right)$ to $\mathrm{O}(\mathrm{n})$
\square Special case of BN

