Bayesian Networks – Inference (cont.)

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 26th, 2007

©2005-2007 Carlos Guestrin

General probabilistic inference

Using Bayes rule:

$$P(X \mid e) = \frac{P(X, e)}{P(e)}$$
• Normalization in the doesn't

$$P(X \mid e) \propto P(X, e)$$

normalize to give answer

©2005-2007 Carlos Guestrin

Marginalization

Fin Sinus Nose=t
$$P(F, S, N) = P(F) \cdot P(SIF) \cdot P(NIF)$$

 $P(F=t, N=t) = P(F=t, S=t, N=t) + P(F=t, S=f, N=t)$
 $P(F=t, S=f, N=t)$
 $P(F=t) \cdot P(S=t|F=t) \cdot P(N=t|S=t) + P(F=t) \cdot P(S=f|F=t) \cdot P(N=t|S=f)$
 $P(F=t) \cdot P(S=f|F=t) \cdot P(N=t|S=f) + P(S=f|F=t) \cdot P(S=f|F=t) \cdot P(S=f|F=t) \cdot P(S=f|F=t) + P(S=f|F=t) \cdot P($

Probabilistic inference example probabilistic

Inference seems exponential in number of variables! Actually, inference in graphical models is NP-hard ®

Fast probabilistic inference siminate (me esm) vans one at time example – Variable elimination

(Potential for) Exponential reduction in computation!

Understanding variable elimination – Exploiting distributivity

Understanding variable elimination – Order can make a HUGE difference

Understanding variable elimination – Another example

Variable elimination algorithm

- 300

 - Instantiate evidence e

IMPORTANT!!!

- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{X,e\}$
 - □ Collect factors f₁,...,f_k that include X_i
 - □ Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

- □ Variable X_i has been eliminated!
- Normalize P(X,e) to obtain P(X|e)

Complexity of variable elimination – (Poly)-tree graphs

Variable elimination order:

Start from "leaves" up – find topological order, eliminate variables in reverse order

Linear in number of variables!!! (versus exponential)

Complexity of variable elimination – Graphs with loops

Complexity of variable elimination —Tree-width

Complexity of VE elimination:

("Only") exponential in tree-width Tree-width is maximum node cut +1

©2005-2007 Carlos Guestrir

Example: Large tree-width with small number of parents

Choosing an elimination order

- Ŋ4
 - Choosing best order is NP-complete
 - □ Reduction from MAX-Clique
 - Many good heuristics (some with guarantees)
 - Ultimately, can't beat NP-hardness of inference
 - Even optimal order can lead to exponential variable elimination computation
 - In practice
 - □ Variable elimination often very effective
 - Many (many many) approximate inference approaches available when variable elimination too expensive

Most likely explanation (MLE)

Query: $\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n\mid e)$ Nose

Using Bayes rule:

$$\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,...,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} \frac{P(x_1,...,x_n,e)}{P(e)}$$

Normalization irrelevant:

$$\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,...,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,...,x_n,e)$$

Max-marginalization

Example of variable elimination for MLE – Forward pass

Example of variable elimination for MLE – Backward pass

MLE Variable elimination algorithm – Forward pass

- Given a BN and a MLE query $\max_{x_1,...,x_n} P(x_1,...,x_n,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{e\}$
 - □ Collect factors f₁,...,f_k that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

$$g = \max_{x_i} \prod_{j=1}^k f_j$$

□ Variable X_i has been eliminated!

MLE Variable elimination algorithmBackward pass

- $= \{x_1^*, ..., x_n^*\}$ will store maximizing assignment
- For i = n to 1, If $X_i \notin \{e\}$
 - \square Take factors $f_1, ..., f_k$ used when X_i was eliminated
 - □ Instantiate $f_1,...,f_k$, with $\{x_{i+1}^*,...,x_n^*\}$
 - Now each f_i depends only on X_i
 - □ Generate maximizing assignment for X_i:

$$x_i^* \in \underset{x_i}{\operatorname{argmax}} \prod_{j=1}^k f_j$$

What you need to know

- Bayesian networks
 - ☐ A useful compact **representation** for large probability distributions
- Inference to compute
 - Probability of X given evidence e
 - ☐ Most likely explanation (MLE) given evidence e
 - □ Inference is NP-hard
- Variable elimination algorithm
 - Efficient algorithm ("only" exponential in tree-width, not number of variables)
 - □ Elimination order is important!
 - □ Approximate inference necessary when tree-width to large
 - not covered this semester
 - Only difference between probabilistic inference and MLE is "sum" versus "max"

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 26th, 2007

©2005-2007 Carlos Guestrin

Adventures of our BN hero

- .
- Compact representation for 1. Naïve Bayes probability distributions
- Fast inference
- Fast learning
- But... Who are the most popular kids?

2 and 3. Hidden Markov models (HMMs) Kalman Filters

Handwriting recognition

Character recognition, e.g., kernel SVMs

©2005-2007 Carlos Guestrin

Example of a hidden Markov model (HMM)

Understanding the HMM Semantics

HMMs semantics: Details

Just 3 distributions:

$$P(X_1)$$

$$P(X_i | X_{i-1})$$

$$P(O_i \mid X_i)$$

HMMs semantics: Joint distribution

$$(x_1 = \{a, \dots z\}) \rightarrow (x_2 = \{a, \dots z\}) \rightarrow (x_3 = \{a, \dots z\}) \rightarrow (x_5 = \{a, \dots z\})$$

$$(x_1 = \{a, \dots z\}) \rightarrow (x_2 = \{a, \dots z\}) \rightarrow (x_3 = \{a, \dots z\}) \rightarrow (x_5 = \{a, \dots z\})$$

$$P(X_1)$$

$$P(X_i \mid X_{i-1})$$

$$P(O_i \mid X_i)$$

$$P(X_1, ..., X_n \mid o_1, ..., o_n) = P(X_{1:n} \mid o_{1:n})$$

$$\propto P(X_1)P(o_1 \mid X_1) \prod_{i=2}^n P(X_i \mid X_{i-1})P(o_i \mid X_i)$$

Learning HMMs from fully observable data is easy

$$X_1 = \{a, ...z\}$$
 $X_2 = \{a, ...z\}$ $X_3 = \{a, ...z\}$ $X_4 = \{a, ...z\}$ $X_5 = \{a, ...z\}$

Learn 3 distributions:

$$P(X_1)$$

$$P(O_i \mid X_i)$$

$$P(X_i | X_{i-1})$$

Possible inference tasks in an HMM

Marginal probability of a hidden variable:

Viterbi decoding – most likely trajectory for hidden vars:

Using variable elimination to compute P(X_i|o_{1:n})

Variable elimination order?

Example:

What if I want to compute $P(X_i|o_{1:n})$ for each i?

Variable elimination for each i?

Variable elimination for each i, what's the complexity?

Reusing computation

The forwards-backwards algorithm

- Initialization: $\alpha_1(X_1) = P(X_1)P(o_1 \mid X_1)$
- For i = 2 to n
 - □ Generate a forwards factor by eliminating X_{i-1}

$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

- Initialization: $\beta_n(X_n) = 1$
- For i = n-1 to 1
 - □ Generate a backwards factor by eliminating X_{i+1}

$$\beta_i(X_i) = \sum_{x_{i+1}} P(o_{i+1} \mid x_{i+1}) P(x_{i+1} \mid X_i) \beta_{i+1}(x_{i+1})$$

 \blacksquare \forall i, probability is: $P(X_i \mid o_{1..n}) = \alpha_i(X_i)\beta_i(X_i)$

Most likely explanation

Variable elimination order?

Example:

The Viterbi algorithm

- Initialization: $\alpha_1(X_1) = P(X_1)P(o_1 \mid X_1)$
- For i = 2 to n
 - □ Generate a forwards factor by eliminating X_{i-1}

$$\alpha_i(X_i) = \max_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

- Computing best explanation: $x_n^* = \underset{x_n}{\operatorname{argmax}} \alpha_n(x_n)$
- For i = n-1 to 1
 - □ Use argmax to get explanation:

$$x_i^* = \operatorname*{argmax} P(x_{i+1}^* \mid x_i) \alpha_i(x_i)$$

What you'll implement 1: multiplication

$$\alpha_i(X_i) = \max_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

What you'll implement 2: max & argmax

$$\alpha_i(X_i) = \max_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

Higher-order HMMs

Add dependencies further back in time \rightarrow better representation, harder to learn

What you need to know

- Hidden Markov models (HMMs)
 - □ Very useful, very powerful!
 - ☐ Speech, OCR,...
 - □ Parameter sharing, only learn 3 distributions
 - \square Trick reduces inference from O(n²) to O(n)
 - Special case of BN