Bayesian Networks Inference

Machine Learning - 10701/15781
Carlos Guestrin
Carnegie Mellon University
March 21st, 2007
©2005-2007 Carlos Guestrin

Handwriting recognition

Character recognition, e.g., kernel SVMs

©2005-2007 Carlos Guestrin

Handwriting recognition 2

Key: Independence assumptions

$$
A \perp B \equiv A \text { indep of } B
$$

$$
\text { not } N \perp F
$$

$$
F \perp N \mid S
$$

$$
A \perp H \mid S
$$

$$
A \perp N I S
$$

$$
F \perp H I S
$$

$$
H \perp N I S
$$

Knowing sinus separates the variables from each other

The independence assumption

The Representation Theorem Joint Distribution to BN

BN:

Encodes independence assumptions

Joint probability distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

independencies in P_{r}
$q_{\text {can represent }}$ the val worker

A general Bayes net

- Set of random variables
- Directed acyclic graph
\square Encodes independence assumptions
- CPTs
- Joint distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P} \mathbf{a}_{X_{i}}\right)
$$

How many parameters in a BN?

- Discrete variables X_{1}, \ldots, X_{n}
- Graph
\square Defines parents of $X_{i}, P a_{x_{i}}$
- CPTs - $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)$

Another example

- Variables:
\square B - Burglar
\square E - Earthquake
\square A - Burglar alarm
$\square \mathrm{N}$ - Neighbor calls
$\square \mathrm{R}$ - Radio report
- Both burglars and earthquakes can set off the alarm
- If the alarm sounds, a neighbor may call
- An earthquake may be announced on the radio

Independencies encoded in BN

- We said: All you need is the local Markov assumption
$\square\left(X_{i} \perp\right.$ NonDescendants $\left._{x_{i}} \mid P_{x_{i}}\right)$
- But then we talked about other (in)dependencies
\square e.g., explaining away
- What are the independencies encoded by a BN?
\square Only assumption is local Markov
\square But many others can be derived using the algebra of conditional independencies!!!

Understanding independencies in BNs

 - BNs with 3 nodes Local Markov Assumption: A variable X is independent of its non-descendants given its parentsIndirect evidential effect:

Common cause:

Understanding independencies in BNs - Some examples

An active trail - Example

When are A and H independent?

Active trails formalized

- A path $X_{1}-X_{2}-\cdots-X_{k}$ is an active trail when variables $\boldsymbol{O} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed if for each consecutive triplet in the trail:
$\square X_{i-1} \rightarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed ($X_{i} \notin \boldsymbol{O}$)
$\square \mathrm{X}_{\mathrm{i}-1} \leftarrow \mathrm{X}_{\mathrm{i}} \leftarrow \mathrm{X}_{\mathrm{i}+1}$, and X_{i} is not observed $\left(\mathrm{X}_{\mathrm{i}} \notin \boldsymbol{O}\right)$
$\square X_{i-1} \leftarrow X_{i} \rightarrow X_{i+1}$, and X_{i} is not observed $\left(X_{i} \notin \mathbf{O}\right)$
$\square X_{i-1} \rightarrow X_{i} \leftarrow X_{i+1}$, and X_{i} is observed ($X_{i} \in \boldsymbol{O}$), or one of its descendents

Active trails and independence?

- Theorem: Variables \mathbf{X}_{i} and X_{j} are independent given $Z \subseteq\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right\}$ if the is no active trail between X_{i} and X_{j} when variables $Z \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ are observed

The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P

Obtain

Joint probability distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)
$$

Important because:

Every P has at least one BN structure G

If joint probability distribution:
$P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \mathbf{P a}_{X_{i}}\right)$

Then conditional independencies in BN are subset of conditional independencies in P

Important because:
Read independencies of P from BN structure G

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data		
Missing data		

CPTs $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}}\right)$
parameters

Learning the CPTs

For each discrete variable X_{i}

MLE: $P\left(X_{i}=x_{i} \mid X_{j}=x_{j}\right)=\frac{\operatorname{Count}\left(X_{i}=x_{i}, X_{j}=x_{j}\right)}{\operatorname{Count}\left(X_{j}=x_{j}\right)}$

What you need to know

- Bayesian networks
\square A compact representation for large probability distributions
\square Not an algorithm
- Semantics of a BN
\square Conditional independence assumptions
- Representation
\square Variables
\square Graph
\square CPTs
- Why BNs are useful
- Learning CPTs from fully observable data
- Play with applet!!! :

General probabilistic inference

- Query: $P(X \mid e)$

- Using Bayes rule:
$P(X \mid e)=\frac{P(X, e)}{P(e)}$
- Normalization:
$P(X \mid e) \propto P(X, e)$

Marginalization

Probabilistic inference example

Inference seems exponential in number of variables! Actually, inference in graphical models is NP-hard $:$:

Fast probabilistic inference example - Variable elimination

Understanding variable elimination Exploiting distributivity

Understanding variable elimination Order can make a HUGE difference

Understanding variable elimination Another example

Variable elimination algorithm

- Given a BN and a query $\mathrm{P}(\mathrm{X} \mid \mathrm{e}) \propto \mathrm{P}(\mathrm{X}, \mathrm{e})$
- Instantiate evidence e

IMPORTANT!!!

- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $\mathrm{i}=1$ to n , If $\mathrm{X}_{\mathrm{i}} \notin\{X, \mathrm{e}\}$
\square Collect factors f_{1}, \ldots, f_{k} that include X_{i}
\square Generate a new factor by eliminating X_{i} from these factors

$$
g=\sum_{X_{i}} \prod_{j=1}^{k} f_{j}
$$

\square Variable X_{i} has been eliminated!

- Normalize $P(X, e)$ to obtain $P(X \mid e)$

Complexity of variable elimination -(Poly)-tree graphs

Variable elimination order:
Start from "leaves" up find topological order, eliminate variables in reverse order

Complexity of variable elimination Graphs with loops

Exponential in number of variables in largest factor generated

Complexity of variable elimination -Tree-width

Moralize graph:
Connect parents
into a clique and
remove edge directions

> Complexity of VE elimination: ("Only") exponential in tree-width Tree-width is maximum node cut +1

Example: Large tree-width with small number of parents

Choosing an elimination order

- Choosing best order is NP-complete
\square Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
\square Even optimal order can lead to exponential variable elimination computation
- In practice
\square Variable elimination often very effective
\square Many (many many) approximate inference approaches available when variable elimination too expensive

Most likely explanation (MLE)

■ Query: $\quad \operatorname{argmax} P\left(x_{1}, \ldots, x_{n} \mid e\right)$

- Using Bayes rule:

$$
\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} \frac{P\left(x_{1}, \ldots, x_{n}, e\right)}{P(e)}
$$

- Normalization irrelevant:

$$
\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid e\right)=\underset{x_{1}, \ldots, x_{n}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n}, e\right)
$$

Max-marginalization

Example of variable elimination for MLE - Forward pass

Example of variable elimination for MLE - Backward pass

MLE Variable elimination algorithm - Forward pass

- Given a BN and a MLE query $\max _{x_{1}, \ldots, x_{n}} P\left(x_{1}, \ldots, x_{n}, e\right)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X_{1}, \ldots, X_{n}
- For $i=1$ to n, If $X_{i} \notin\{e\}$
\square Collect factors f_{1}, \ldots, f_{k} that include X_{i}
\square Generate a new factor by eliminating X_{i} from these factors

$$
g=\max _{x_{i}} \prod_{j=1}^{k} f_{j}
$$

\square Variable X_{i} has been eliminated!

MLE Variable elimination algorithm - Backward pass

- $\left\{\mathrm{x}_{1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$ will store maximizing assignment
- For $i=n$ to 1 , If $X_{i} \notin\{e\}$
\square Take factors f_{1}, \ldots, f_{k} used when X_{i} was eliminated
\square Instantiate $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$, with $\left\{\mathrm{x}_{\mathrm{i}+1}{ }^{*}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$
- Now each f_{j} depends only on X_{i}
\square Generate maximizing assignment for X_{i} :

$$
x_{i}^{*} \in \underset{x_{i}}{\operatorname{argmax}} \prod_{j=1}^{k} f_{j}
$$

What you need to know

- Bayesian networks
\square A useful compact representation for large probability distributions
- Inference to compute
\square Probability of X given evidence e
\square Most likely explanation (MLE) given evidence e
\square Inference is NP-hard
- Variable elimination algorithm
\square Efficient algorithm ("only" exponential in tree-width, not number of variables)
\square Elimination order is important!
\square Approximate inference necessary when tree-width to large
- not covered this semester
\square Only difference between probabilistic inference and MLE is "sum" versus "max"

