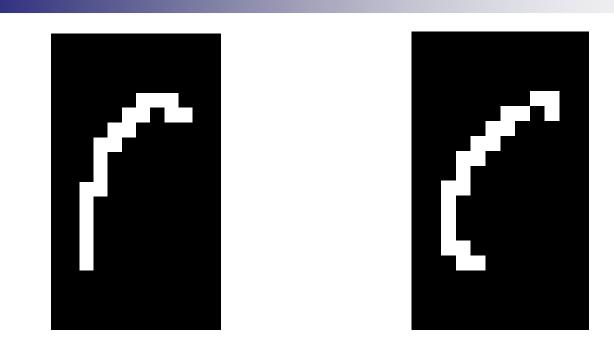
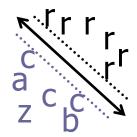
Bayesian Networks – Inference

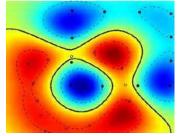
Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

Handwriting recognition

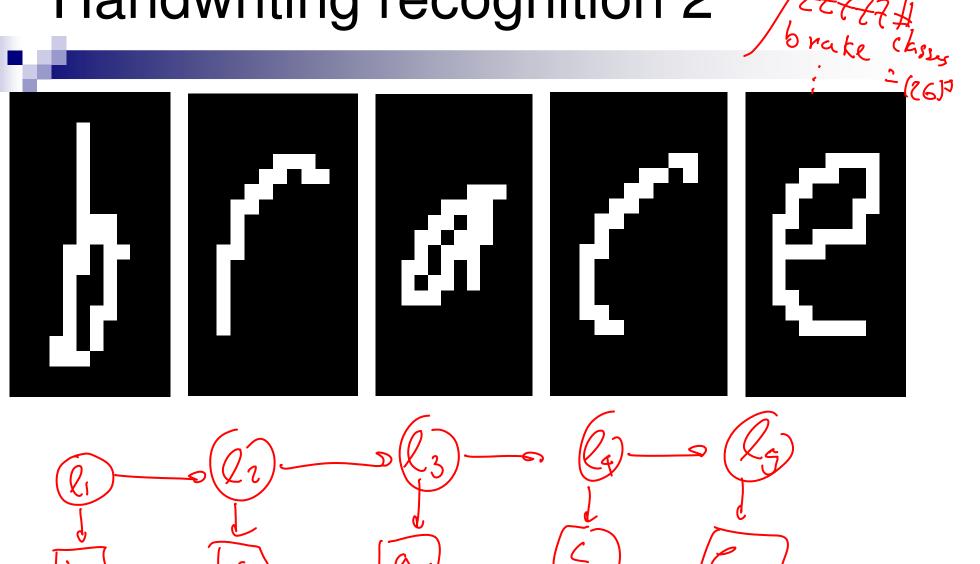


Character recognition, e.g., kernel SVMs

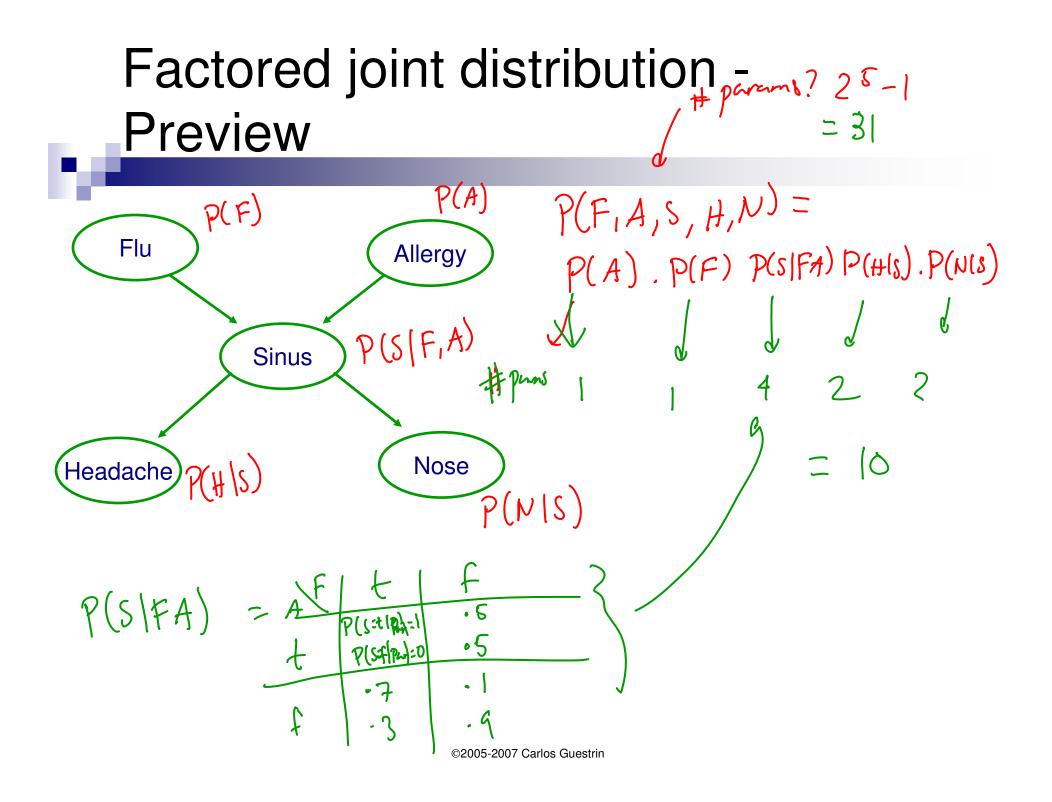


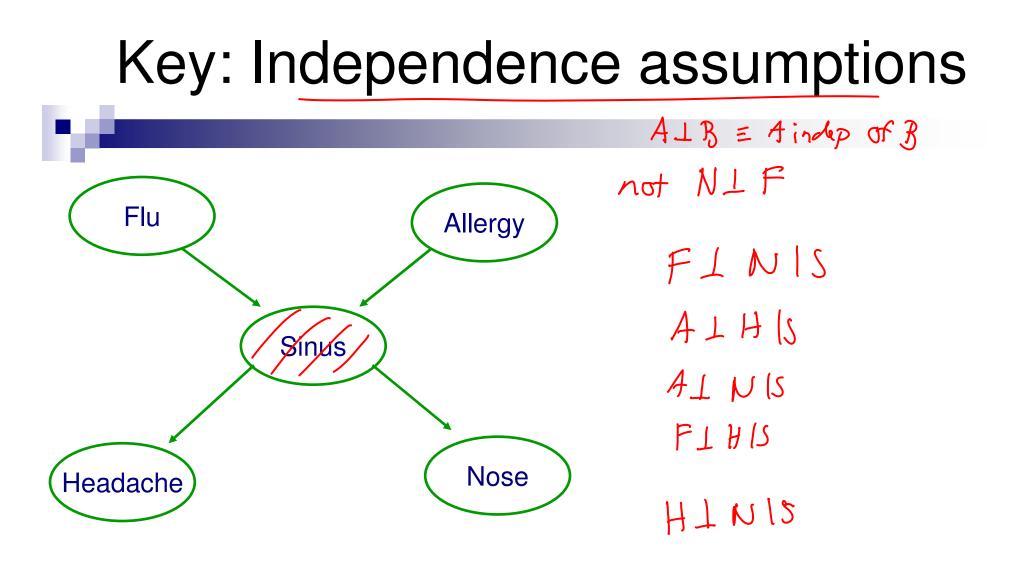


Handwriting recognition 2



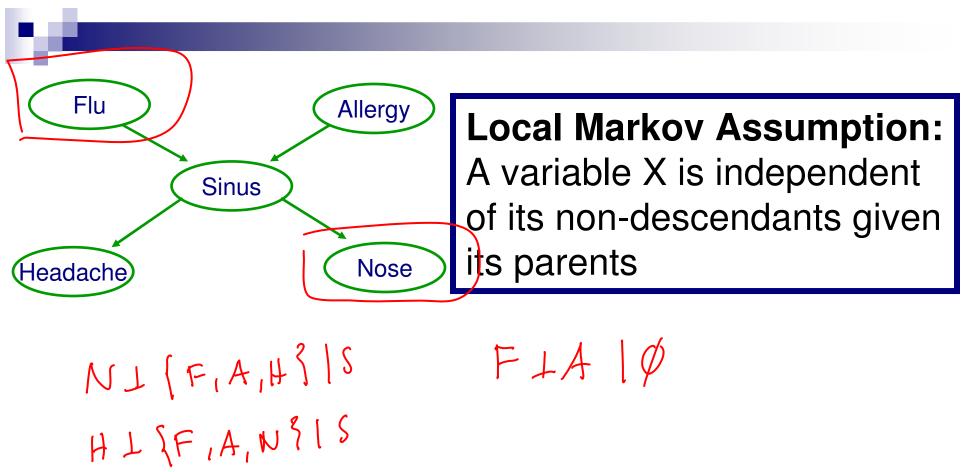
brace

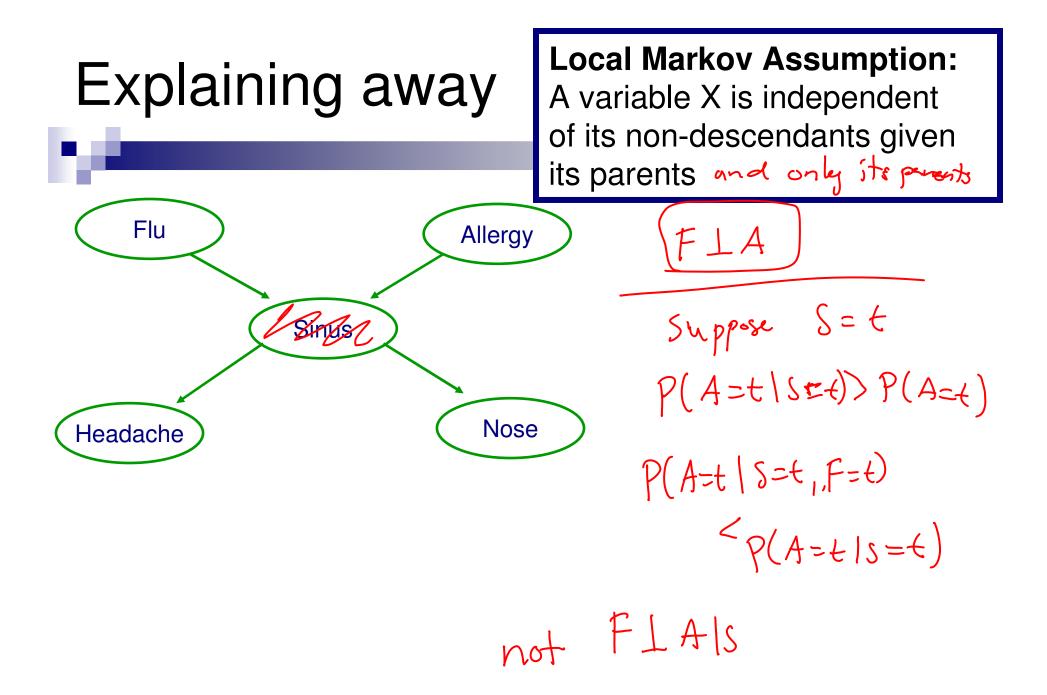




Knowing sinus separates the variables from each other

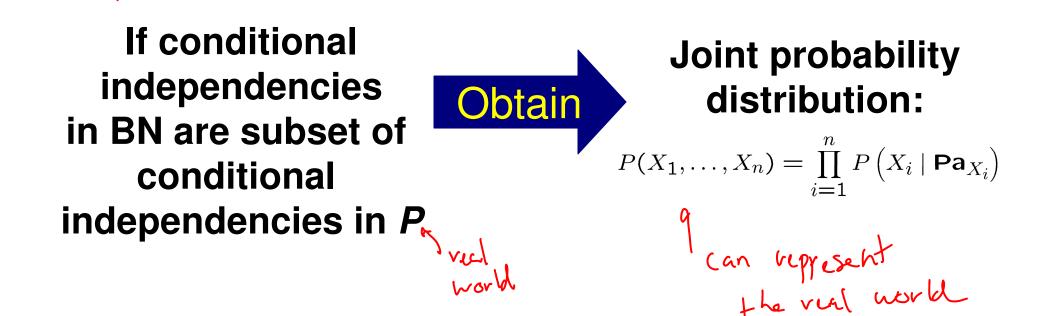
The independence assumption





The Representation Theorem – Joint Distribution to BN

BN:



assumptions

Encodes independence

A general Bayes net

- Set of random variables
- Directed acyclic graph
 - □ Encodes independence assumptions

Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

How many parameters in a BN?

- Discrete variables X₁, ..., X_n
- Graph
 - \Box Defines parents of X_i, **Pa**_{Xi}
- CPTs $P(X_i | Pa_{X_i})$

Another example

- Variables:
 - B Burglar
 - □ E Earthquake
 - A Burglar alarm
 - □ N Neighbor calls
 - R Radio report
- Both burglars and earthquakes can set off the alarm
- If the alarm sounds, a neighbor may call
- An earthquake may be announced on the radio

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - $\Box (X_i \perp NonDescendants_{Xi} \mid \textbf{Pa}_{Xi})$
- But then we talked about other (in)dependencies
 e.g., explaining away

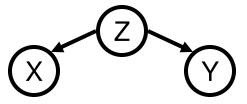
- What are the independencies encoded by a BN?
 - Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!

Understanding independencies in BNs – BNs with 3 nodes Local Markov Assumption:

Indirect causal effect:

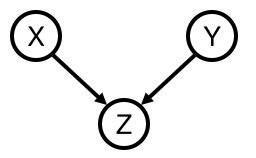
Indirect evidential effect:

Common cause:

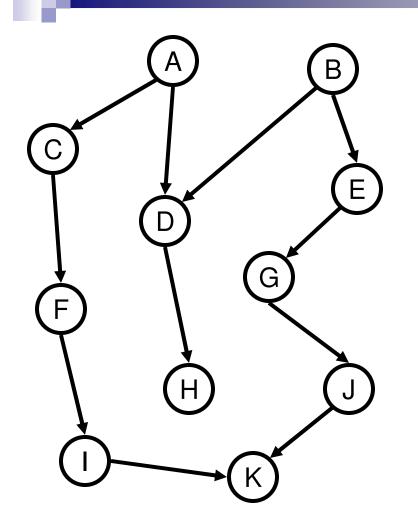


Local Markov Assumption: A variable X is independent of its non-descendants given its parents

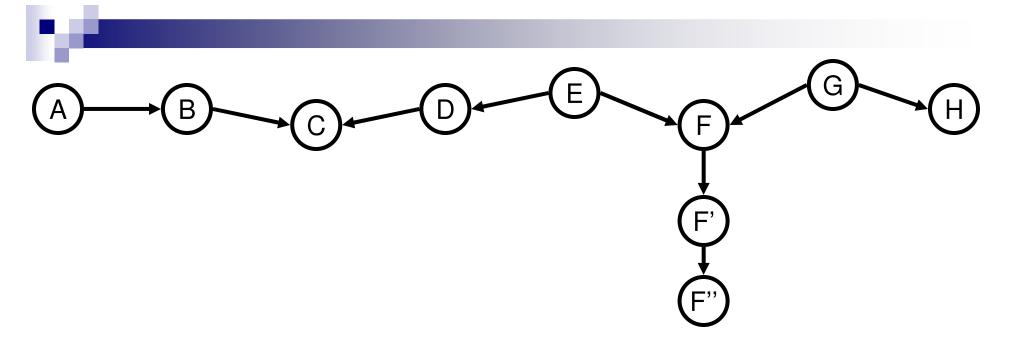
Common effect:



Understanding independencies in BNs – Some examples



An active trail – Example



When are A and H independent?

Active trails formalized

A path X₁ − X₂ − · · · −X_k is an active trail when variables O⊆{X₁,...,X_n} are observed if for each consecutive triplet in the trail:

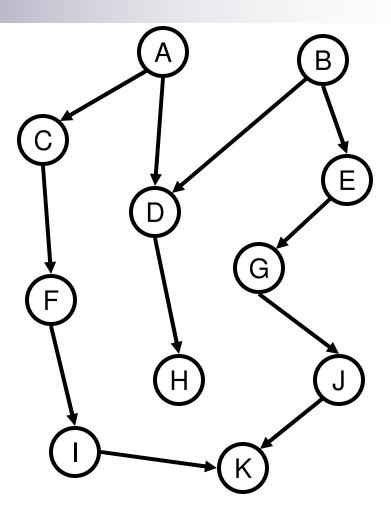
 $\Box X_{i-1} \rightarrow X_i \rightarrow X_{i+1}, \text{ and } X_i \text{ is not observed } (X_i \notin \boldsymbol{O})$

$$\Box X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$$
, and X_i is **not observed** ($X_i \notin O$)

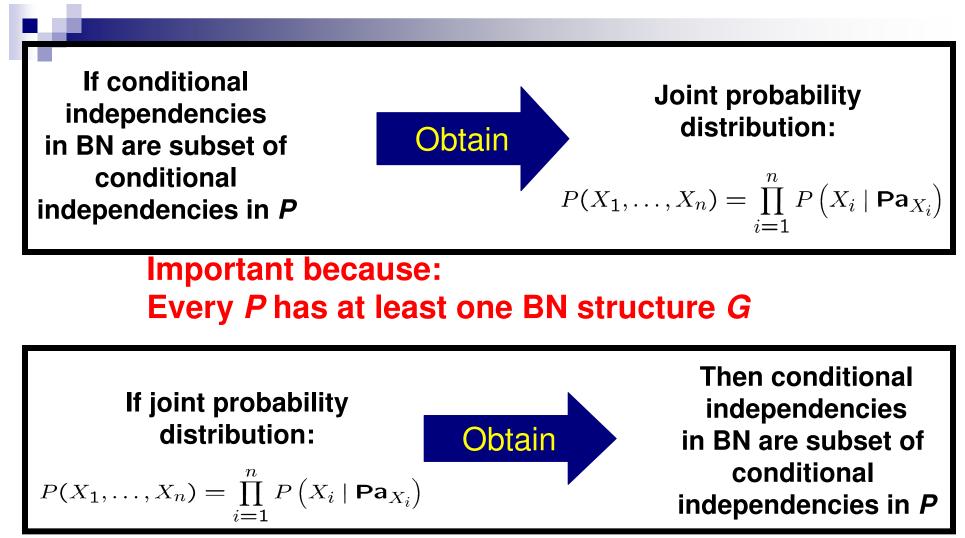
- $\Box X_{i-1} \leftarrow X_i \rightarrow X_{i+1}, \text{ and } X_i \text{ is not observed } (X_i \notin \boldsymbol{O})$
- □ $X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed ($X_i \in O$), or one of its descendents

Active trails and independence?

Theorem: Variables X_i and X_j are independent given Z⊆{X₁,...,X_n} if the is no active trail between X_i and X_j when variables Z⊆{X₁,...,X_n} are observed



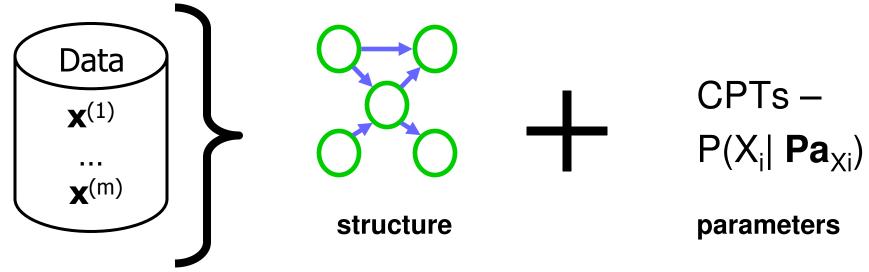
The BN Representation Theorem



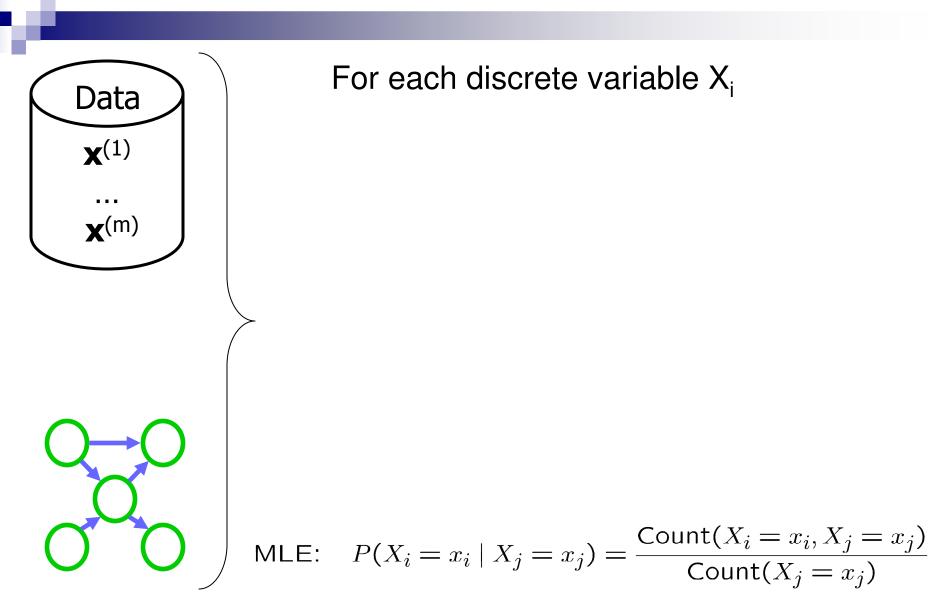
Important because: Read independencies of *P* from BN structure *G*

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data		
Missing data		

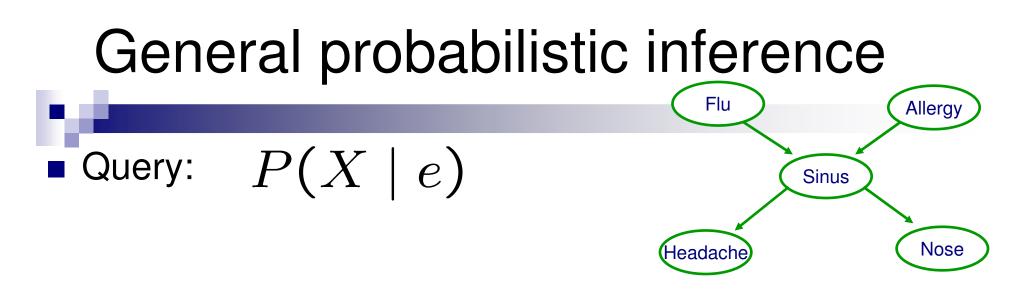


Learning the CPTs



What you need to know

- Bayesian networks
 - □ A compact **representation** for large probability distributions
 - Not an algorithm
- Semantics of a BN
 - Conditional independence assumptions
- Representation
 - Variables
 - Graph
- Why BNs are useful
- Learning CPTs from fully observable data
- Play with applet!!! ③

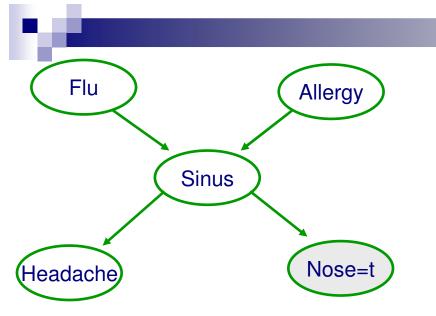


• Using Bayes rule:
$$P(X \mid e) = \frac{P(X, e)}{P(e)}$$

• Normalization: $P(X \mid e) \propto P(X, e)$

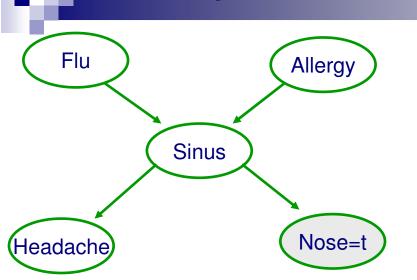
Marginalization

Probabilistic inference example



Inference seems exponential in number of variables! Actually, inference in graphical models is NP-hard \otimes

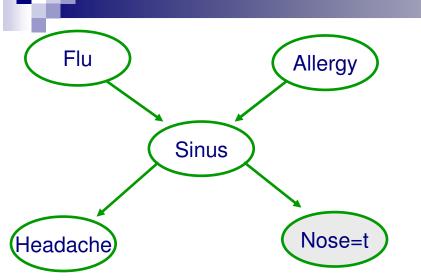
Fast probabilistic inference example – Variable elimination



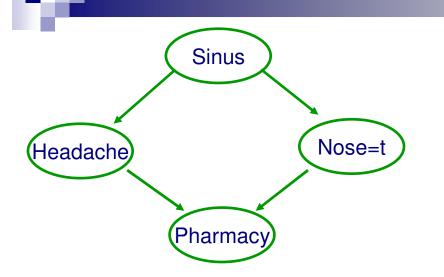
(Potential for) Exponential reduction in computation!

Understanding variable elimination – Exploiting distributivity

Understanding variable elimination – Order can make a HUGE difference



Understanding variable elimination – Another example



Variable elimination algorithm

- Given a BN and a query $P(X|e) \propto P(X,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{X,e\}$
 - \Box Collect factors f_1, \dots, f_k that include X_i
 - □ Generate a new factor by eliminating X_i from these factors

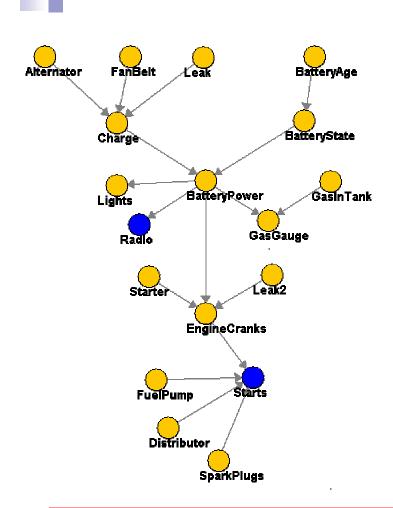
IMPORTANT!!!

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

$$\Box \text{ Variable } X_i \text{ has been eliminated!}$$

Normalize P(X,e) to obtain P(X|e)

Complexity of variable elimination – (Poly)-tree graphs

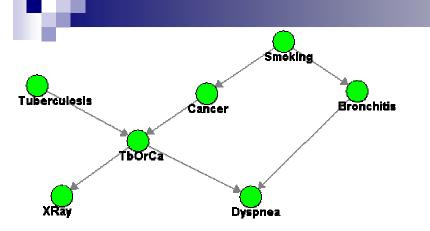


Variable elimination order:

Start from "leaves" up – find topological order, eliminate variables in reverse order

Linear in number of variables!!! (versus exponential)

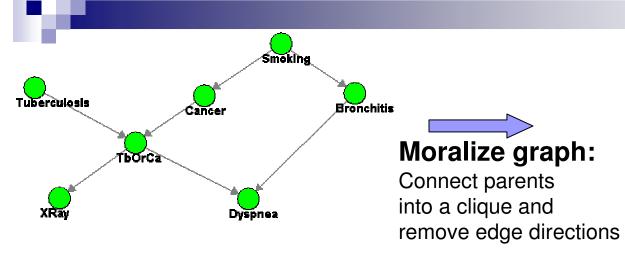
Complexity of variable elimination – Graphs with loops



Exponential in number of variables in largest factor generated

SZ002-Z007 Ganos Guesini

Complexity of variable elimination – Tree-width



Complexity of VE elimination: ("Only") exponential in tree-width Tree-width is maximum node cut +1

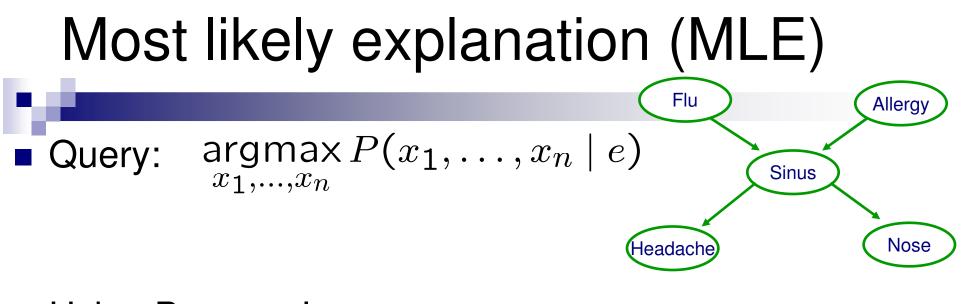
Example: Large tree-width with small number of parents

Compact representation \Rightarrow **Easy inference** \otimes

©2005-2007 Ganos Guestinn

Choosing an elimination order

- Choosing best order is NP-complete
 Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
 - Even optimal order can lead to exponential variable elimination computation
- In practice
 - Variable elimination often very effective
 - Many (many many) approximate inference approaches available when variable elimination too expensive

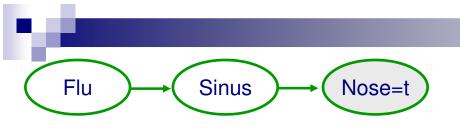


• Using Bayes rule: $\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} \frac{P(x_1,\ldots,x_n,e)}{P(e)}$

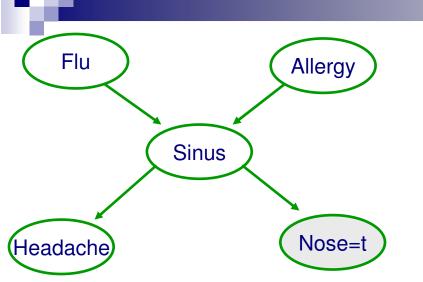
Normalization irrelevant:

 $\operatorname*{argmax}_{x_1,\ldots,x_n} P(x_1,\ldots,x_n \mid e) = \operatorname*{argmax}_{x_1,\ldots,x_n} P(x_1,\ldots,x_n,e)$

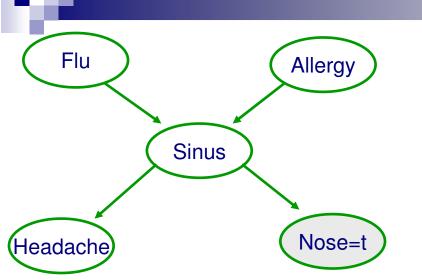
Max-marginalization



Example of variable elimination for MLE – Forward pass



Example of variable elimination for MLE – Backward pass



MLE Variable elimination algorithm – Forward pass

- Given a BN and a MLE query $\max_{x_1,...,x_n} P(x_1,...,x_n,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{e\}$
 - \Box Collect factors f_1, \dots, f_k that include X_i
 - \Box Generate a new factor by eliminating X_i from these factors

$$g = \max_{x_i} \prod_{j=1}^k f_j$$

 \Box Variable X_i has been eliminated!

MLE Variable elimination algorithm <u> — Backward pass</u>

• $\{x_1^*, \ldots, x_n^*\}$ will store maximizing assignment

For i = n to 1, If $X_i \notin \{e\}$

 \Box Take factors f_1, \dots, f_k used when X_i was eliminated

□ Instantiate f_1, \dots, f_k , with $\{x_{i+1}^*, \dots, x_n^*\}$

Now each f_i depends only on X_i

 \Box Generate maximizing assignment for X_i:

$$x_i^* \in \operatorname*{argmax}_{x_i} \prod_{j=1}^k f_j$$

What you need to know

- Bayesian networks
 - □ A useful compact **representation** for large probability distributions

Inference to compute

- Probability of X given evidence e
- Most likely explanation (MLE) given evidence e
- □ Inference is NP-hard
- Variable elimination algorithm
 - Efficient algorithm ("only" exponential in tree-width, not number of variables)
 - □ Elimination order is important!
 - □ Approximate inference necessary when tree-width to large
 - not covered this semester
 - Only difference between probabilistic inference and MLE is "sum" versus "max"