
©2005-2007 Carlos Guestrin

Bayesian Networks –
Representation (cont.)
Inference 

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 21st, 2007



©2005-2007 Carlos Guestrin

Handwriting recognition

Character recognition, e.g., kernel SVMs
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Handwriting recognition 2
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Factored joint distribution -
Preview

Flu Allergy

Sinus

Headache Nose
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Key: Independence assumptions

Flu Allergy

Sinus

Headache Nose

Knowing sinus separates the variables from each other
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The independence assumption 

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 
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Explaining away

Flu Allergy

Sinus

Headache Nose

Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 
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The Representation Theorem –
Joint Distribution to BN

Joint probability
distribution:Obtain

BN: Encodes independence
assumptions

If conditional
independencies

in BN are subset of 
conditional 

independencies in P
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A general Bayes net

Set of random variables

Directed acyclic graph 
Encodes independence assumptions

CPTs

Joint distribution:
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How many parameters in a BN?

Discrete variables X1, …, Xn

Graph
Defines parents of Xi, PaXi

CPTs – P(Xi| PaXi)
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Another example

Variables:
B – Burglar
E – Earthquake 
A – Burglar alarm
N – Neighbor calls
R – Radio report

Both burglars and earthquakes can set off the alarm
If the alarm sounds, a neighbor may call
An earthquake may be announced on the radio
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Independencies encoded in BN

We said: All you need is the local Markov 
assumption

(Xi ⊥ NonDescendantsXi | PaXi)
But then we talked about other (in)dependencies

e.g., explaining away

What are the independencies encoded by a BN?
Only assumption is local Markov
But many others can be derived using the algebra of 
conditional independencies!!!
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Understanding independencies in BNs
– BNs with 3 nodes

Z

YX

Local Markov Assumption:
A variable X is independent
of its non-descendants given 
its parents 

Z YX

Z YX

Z
YX

Indirect causal effect:

Indirect evidential effect:

Common cause:

Common effect:
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Understanding independencies in BNs
– Some examples
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An active trail – Example

A HC
E G

DB F

F’’

F’

When are A and H independent?
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Active trails formalized

A path X1 – X2 – · · · –Xk is an active trail when 
variables O⊆{X1,…,Xn} are observed if for each 
consecutive triplet in the trail:

Xi-1→Xi→Xi+1, and Xi is not observed (Xi∉O)

Xi-1←Xi←Xi+1, and Xi is not observed (Xi∉O)

Xi-1←Xi→Xi+1, and Xi is not observed (Xi∉O)

Xi-1→Xi←Xi+1, and Xi is observed (Xi∈O), or one of 
its descendents 
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Active trails and independence?

Theorem: Variables Xi
and Xj are independent 
given Z⊆{X1,…,Xn} if the 
is no active trail between 
Xi and Xj when variables 
Z⊆{X1,…,Xn} are observed
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The BN Representation Theorem

If joint probability
distribution: Obtain

Then conditional
independencies

in BN are subset of 
conditional 

independencies in P

Joint probability
distribution:Obtain

If conditional
independencies

in BN are subset of 
conditional 

independencies in P

Important because: 
Every P has at least one BN structure G

Important because: 
Read independencies of P from BN structure G
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Learning Bayes nets

Missing data

Fully observable 
data

Unknown structureKnown structure

x(1)

…
x(m)

Data

structure parameters

CPTs –
P(Xi| PaXi)
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Learning the CPTs

x(1)

…
x(m)

Data
For each discrete variable Xi
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What you need to know

Bayesian networks
A compact representation for large probability distributions 
Not an algorithm

Semantics of a BN
Conditional independence assumptions

Representation
Variables
Graph
CPTs

Why BNs are useful
Learning CPTs from fully observable data
Play with applet!!! ☺
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Announcements 
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General probabilistic inference

Query:

Using Bayes rule:

Normalization:

Flu Allergy

Sinus

Headache Nose
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Marginalization

Flu Sinus Nose=t
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Probabilistic inference example

Flu Allergy

Sinus

Headache Nose=t

Inference seems exponential in number of variables!
Actually, inference in graphical models is NP-hard 
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Fast probabilistic inference 
example – Variable elimination

Flu Allergy

Sinus

Headache Nose=t

(Potential for) Exponential reduction in computation!



©2005-2007 Carlos Guestrin

Understanding variable elimination –
Exploiting distributivity

Flu Sinus Nose=t
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Understanding variable elimination –
Order can make a HUGE difference

Flu Allergy

Sinus

Headache Nose=t
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Understanding variable elimination –
Another example

Pharmacy

Sinus

Headache Nose=t
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Variable elimination algorithm

Given a BN and a query P(X|e) ∝ P(X,e)
Instantiate evidence e
Choose an ordering on variables, e.g., X1, …, Xn

For i = 1 to n, If Xi ∉{X,e}
Collect factors f1,…,fk that include Xi

Generate a new factor by eliminating Xi from these factors

Variable Xi has been eliminated!
Normalize P(X,e) to obtain P(X|e)

IMPORTANT!!!
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Complexity of variable elimination –
(Poly)-tree graphs

Variable elimination order:
Start from “leaves” up –
find topological order, eliminate 
variables in reverse order

Linear in number of variables!!! (versus exponential)
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Complexity of variable elimination –
Graphs with loops

Exponential in number of variables in largest factor generated
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Complexity of variable elimination –
Tree-width

Moralize graph:
Connect parents 
into a clique and 
remove edge directions

Complexity of VE elimination:
(“Only”) exponential in tree-width
Tree-width is maximum node cut +1
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Example: Large tree-width with 
small number of parents

Compact representation ⇒ Easy inference 
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Choosing an elimination order

Choosing best order is NP-complete
Reduction from MAX-Clique

Many good heuristics (some with guarantees)
Ultimately, can’t beat NP-hardness of inference

Even optimal order can lead to exponential variable 
elimination computation

In practice
Variable elimination often very effective
Many (many many) approximate inference approaches 
available when  variable elimination too expensive
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Most likely explanation (MLE)

Query:

Using Bayes rule:

Normalization irrelevant:

Flu Allergy

Sinus

Headache Nose
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Max-marginalization

Flu Sinus Nose=t
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Example of variable elimination for 
MLE – Forward pass

Flu Allergy

Sinus

Headache Nose=t
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Example of variable elimination for 
MLE – Backward pass

Flu Allergy

Sinus

Headache Nose=t
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MLE Variable elimination algorithm 
– Forward pass

Given a BN and a MLE query maxx1,…,xn
P(x1,…,xn,e)

Instantiate evidence e
Choose an ordering on variables, e.g., X1, …, Xn

For i = 1 to n, If Xi ∉{e}
Collect factors f1,…,fk that include Xi

Generate a new factor by eliminating Xi from these factors

Variable Xi has been eliminated!
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MLE Variable elimination algorithm 
– Backward pass

{x1
*,…, xn

*} will store maximizing assignment
For i = n to 1, If Xi ∉{e}

Take factors f1,…,fk used when Xi was eliminated
Instantiate f1,…,fk, with {xi+1

*,…, xn
*}

Now each fj depends only on Xi

Generate maximizing assignment for Xi:
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What you need to know

Bayesian networks
A useful compact representation for large probability distributions 

Inference to compute
Probability of X given evidence e
Most likely explanation (MLE) given evidence e
Inference is NP-hard

Variable elimination algorithm
Efficient algorithm (“only” exponential in tree-width, not number of 
variables)
Elimination order is important!
Approximate inference necessary when tree-width to large

not covered this semester
Only difference between probabilistic inference and MLE is      
“sum” versus “max”


