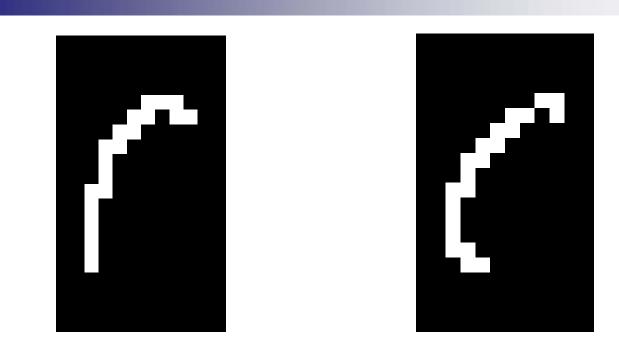
Bayesian Networks – Representation (cont.) Inference

Machine Learning – 10701/15781

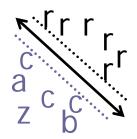
Carlos Guestrin

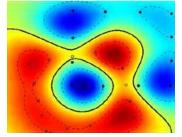
Carnegie Mellon University

Handwriting recognition

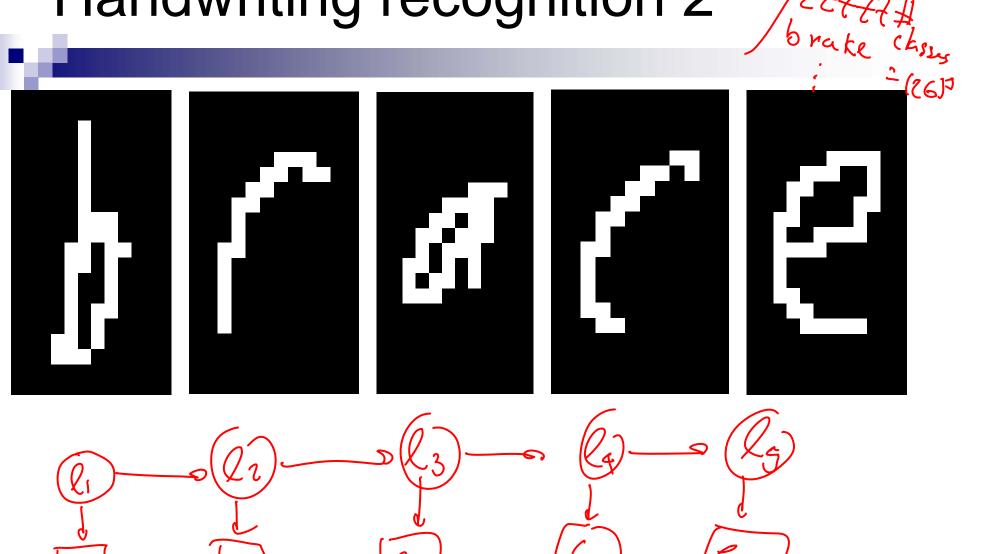


Character recognition, e.g., kernel SVMs

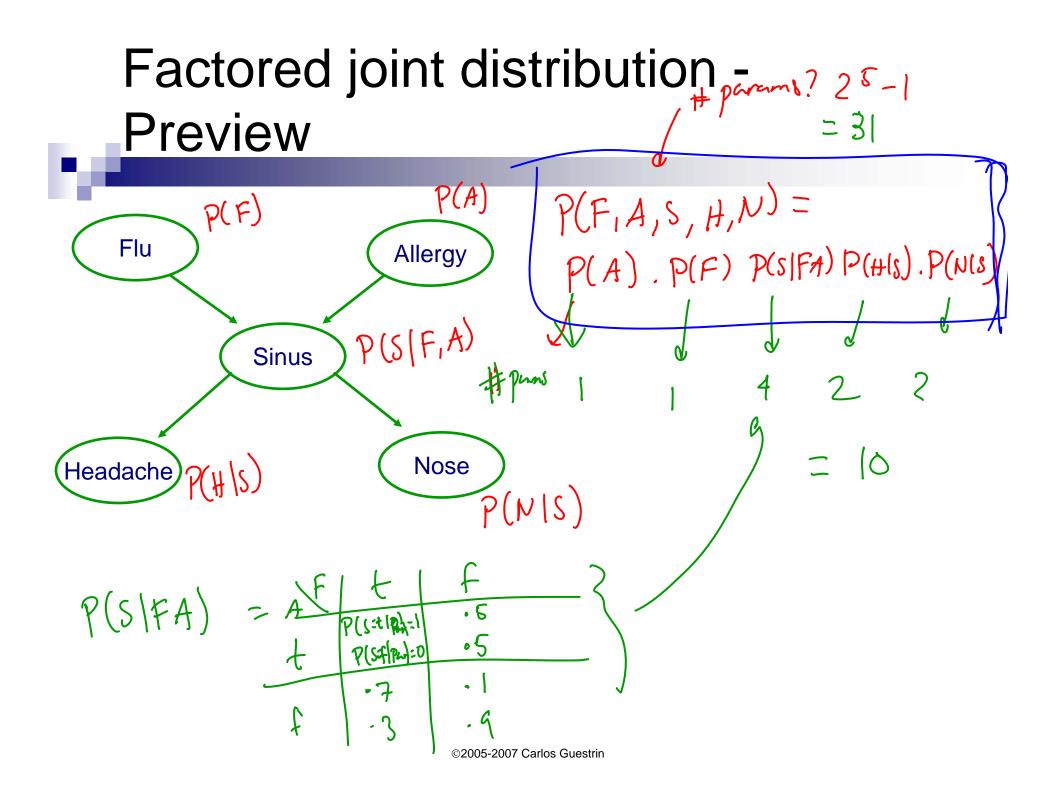


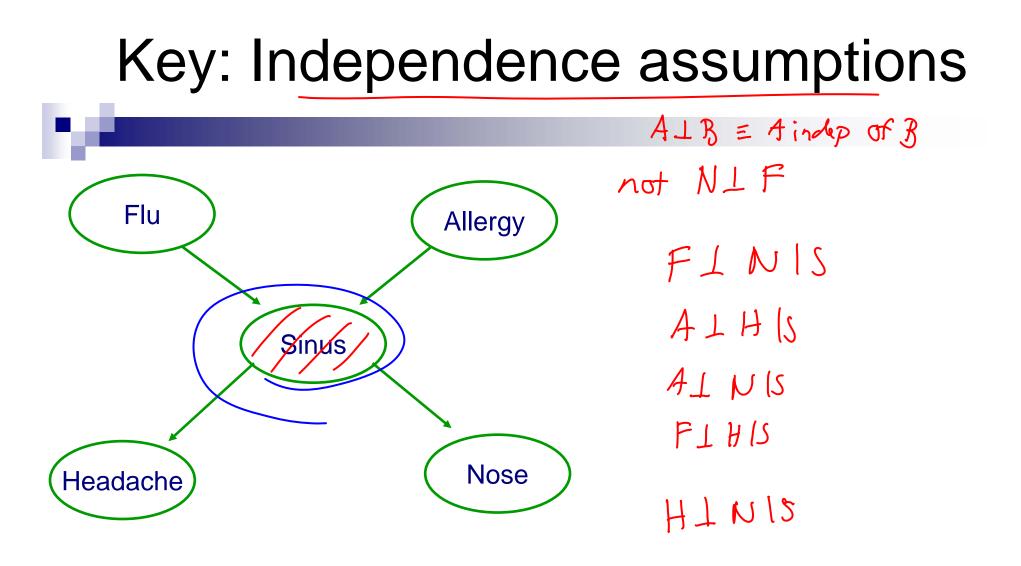


Handwriting recognition 2



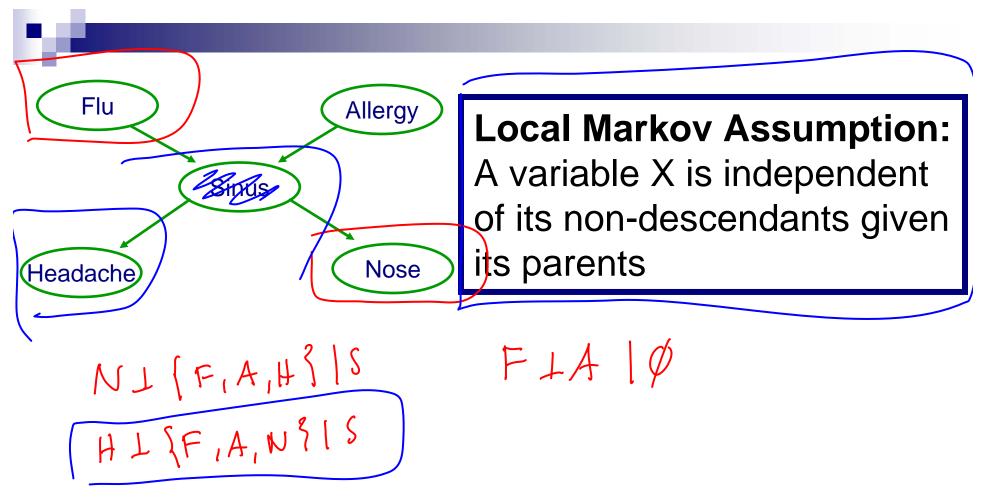
brack

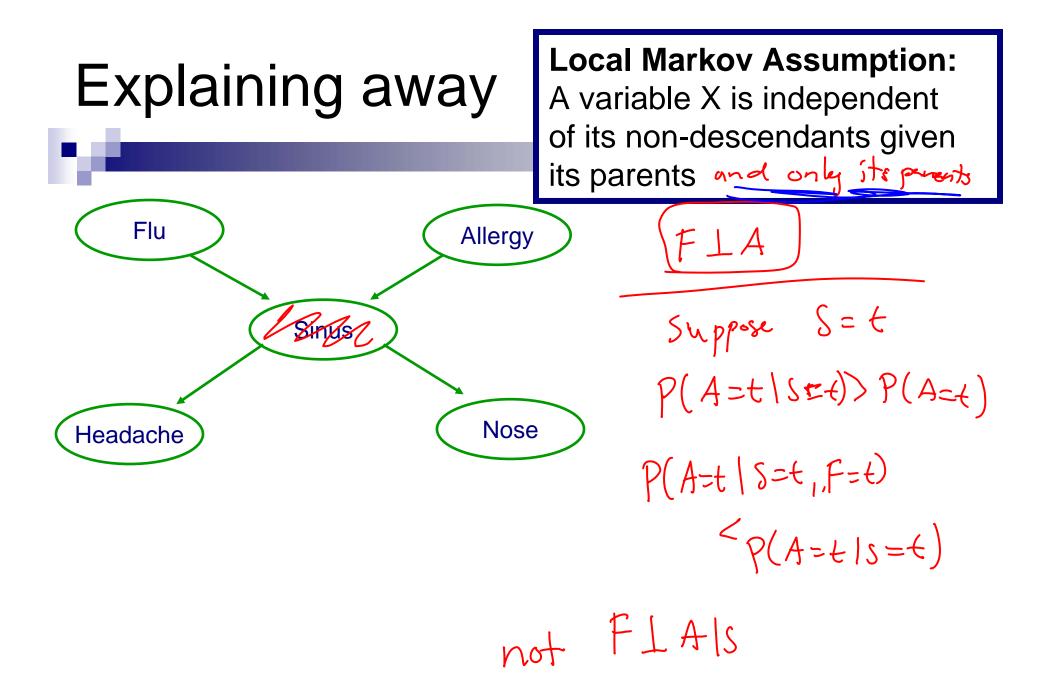


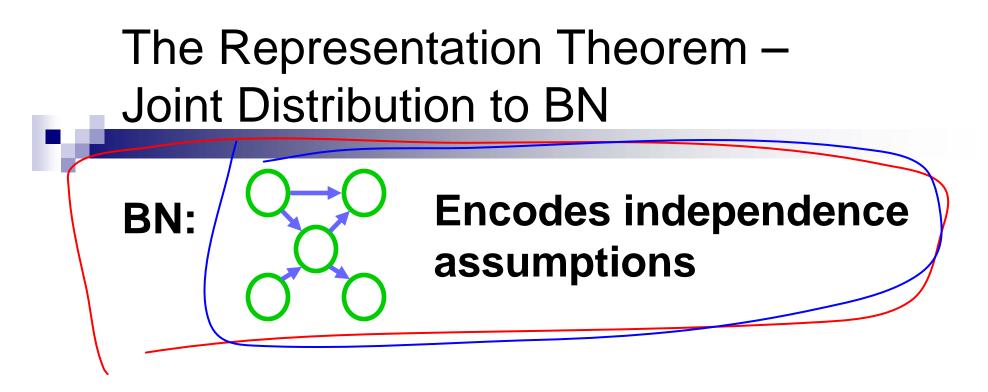


Knowing sinus separates the variables from each other

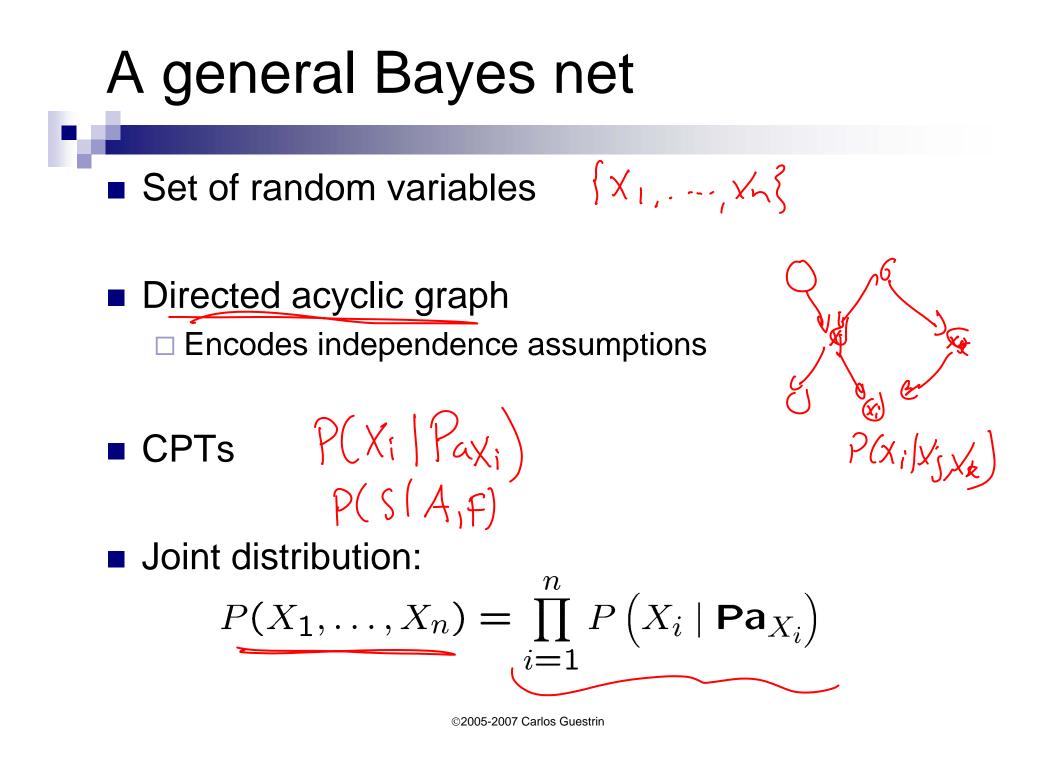
The independence assumption







If conditional independencies in BN are subset of conditional independencies in P_{Vul} word Vulword Vulword VulV



How many parameters in a BN?

Discrete variables
$$\{X_1, \ldots, X_n\}$$
Graph
Defines parents of X_i , Pa_{X_i}
CPTs - $P(X_i | Pa_{X_i})$
each var can take k values
H purs in $P(X_i | Pa_{X_i})$
for assignment of parents, prob. dist.
H purs in $P(X_i | Pa_{X_i})$
For assignment of parents, prob. dist.
H pursts, over X_i
House over X_i
H

Another example

- Variables:
 - □ B Burglar
 - □ E Earthquake
 - A Burglar alarm
 - N Neighbor calls
 - □ R Radio report
- Both burglars and earthquakes can set off the alarm
- If the alarm sounds, a neighbor may call
- An earthquake may be announced on the radio

IJ

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - \Box (X_i \perp NonDescendants_{Xi} | **Pa**_{Xi})
- But then we talked about other (in)dependencies \Box e.g., explaining away β ε $\beta \perp \varepsilon$

n RIELA

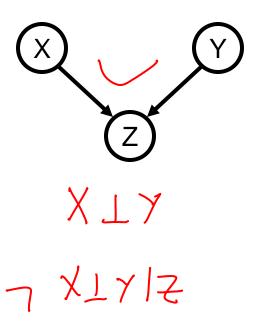
- What are the independencies encoded by a BN?
 - Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!

Understanding independencies in BNs BNs with 3 nodes Local Markov Assumption:

Local Markov Assumption: A variable X is independent of its non-descendants given its parents and only its pareds

V-structure

Common effect:



©2005-2007 Carlos Guestrin

Indirect causal effect:

Indirect evidential effect:

Common cause:

JXLY $X \downarrow Y \mid 7$

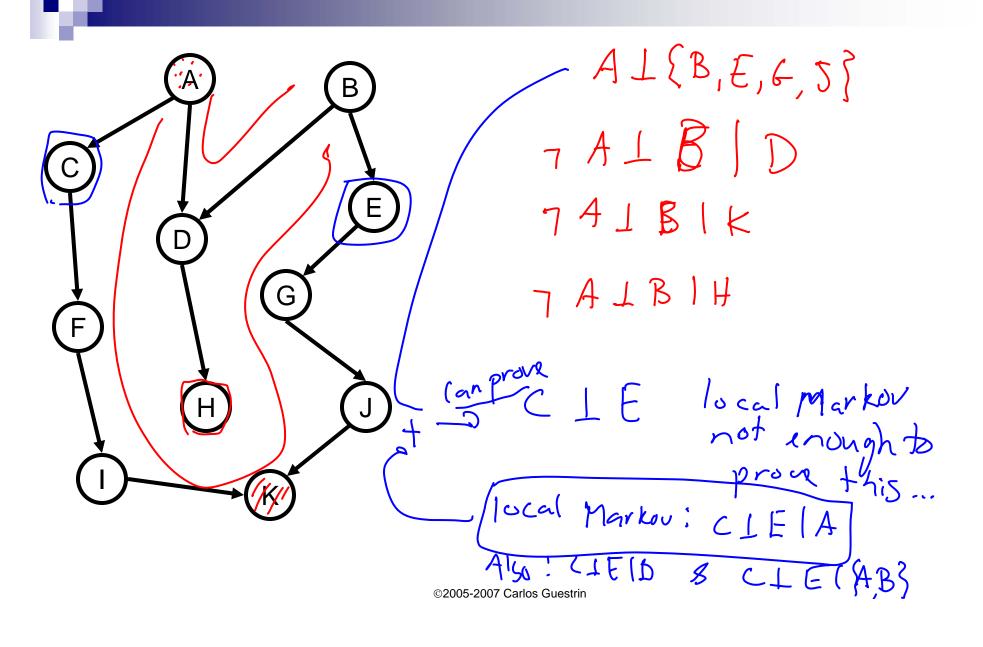
XTXIS

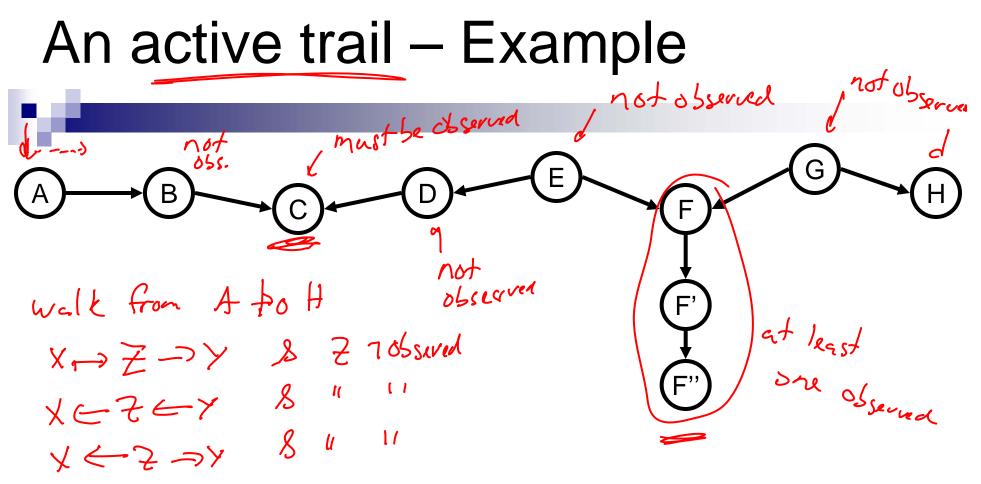
7 X L Y

SILTX

- XLY

Understanding independencies in BNs – Some examples





When are A and H independent?

> d' 7 is observed or of least descendant of 7 observed

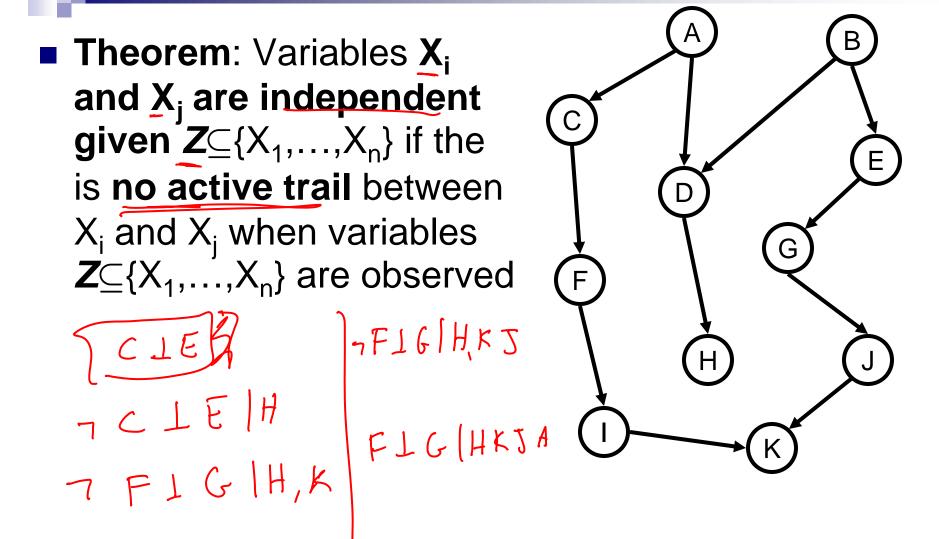
Active trails formalized

• A path $X_1 - X_2 - \cdots - X_k$ is an **active trail** when variables $O \subseteq \{X_1, \dots, X_n\}$ are observed if for each consecutive triplet in the trail:

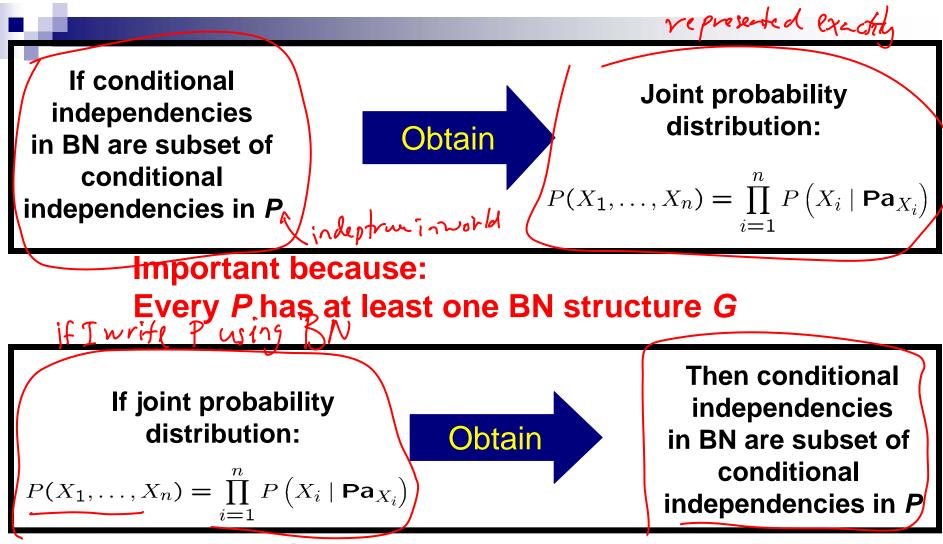
 $\Box X_{i-1} \rightarrow X_i \rightarrow X_{i+1}, \text{ and } X_i \text{ is not observed } (X_i \notin \boldsymbol{O})$

 $X_{i-1} \leftarrow X_i \leftarrow X_{i+1}, \text{ and } X_i \text{ is not observed } (X_i \notin O)$ $X_{i-1} \leftarrow X_i \rightarrow X_{i+1}, \text{ and } X_i \text{ is not observed } (X_i \notin O)$ $X_{i-1} \rightarrow X_i \leftarrow X_{i+1}, \text{ and } X_i \text{ is observed } (X_i \in O), \text{ or one of its descendents}$

Active trails and independence?

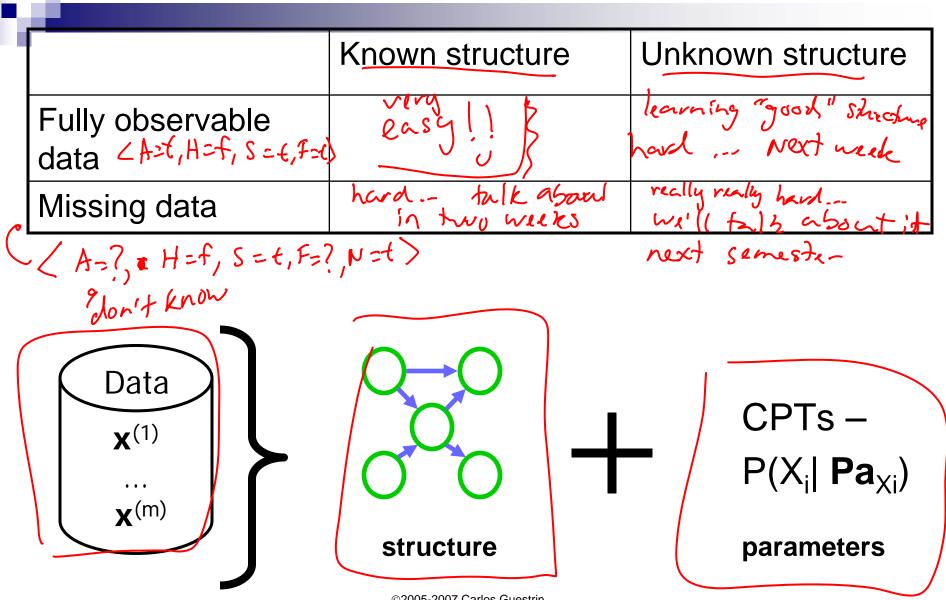


The BN Representation Theorem

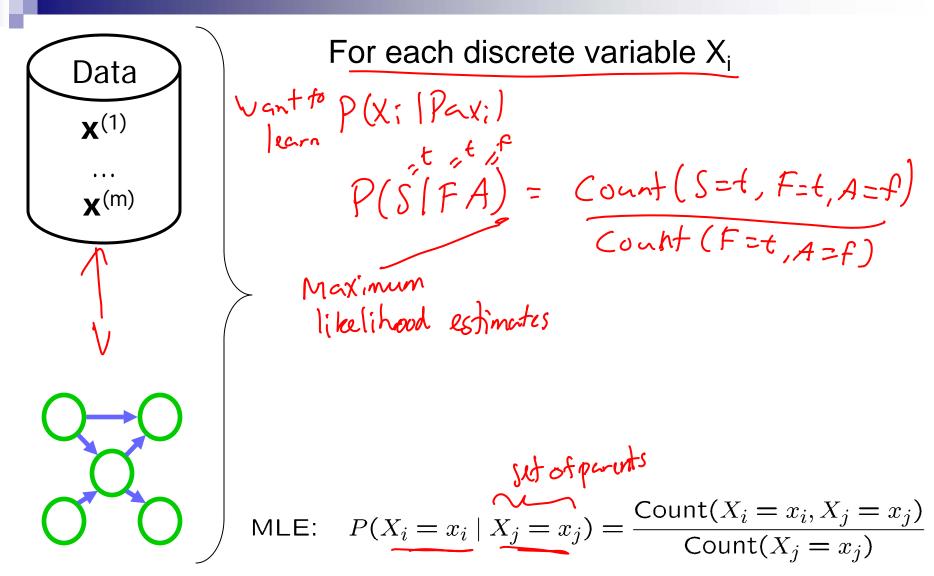


Important because: Read independencies of *P* from BN structure *G*

Learning Bayes nets



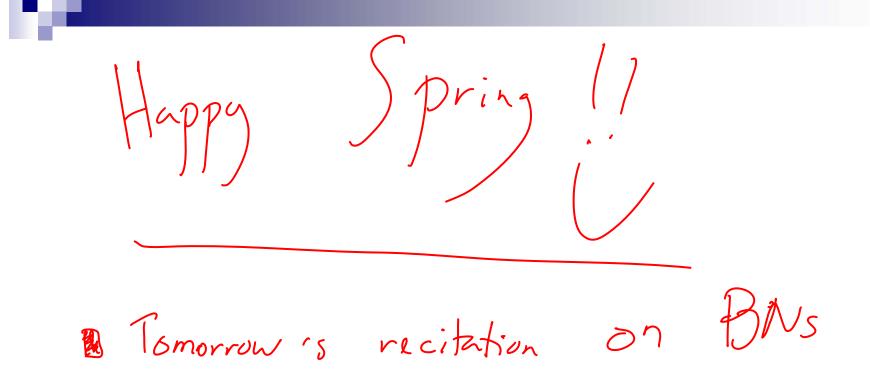
Learning the CPTs



What you need to know

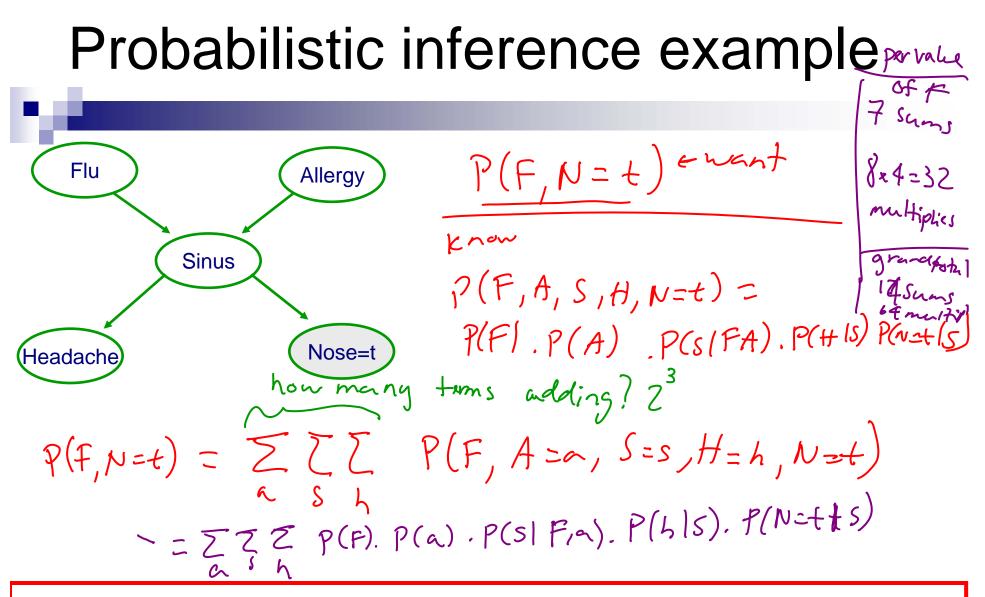
- **Bayesian networks**
 - A compact **representation** for large probability distributions
 - Not an algorithm
- Semantics of a BN
 - Conditional independence assumptions
- Representation
 - Variables
 - Graph
 - CPTs
- Why BNs are useful
- Learning CPTs from fully observable data 8 Known
- Play with applet!!! ©

Announcements



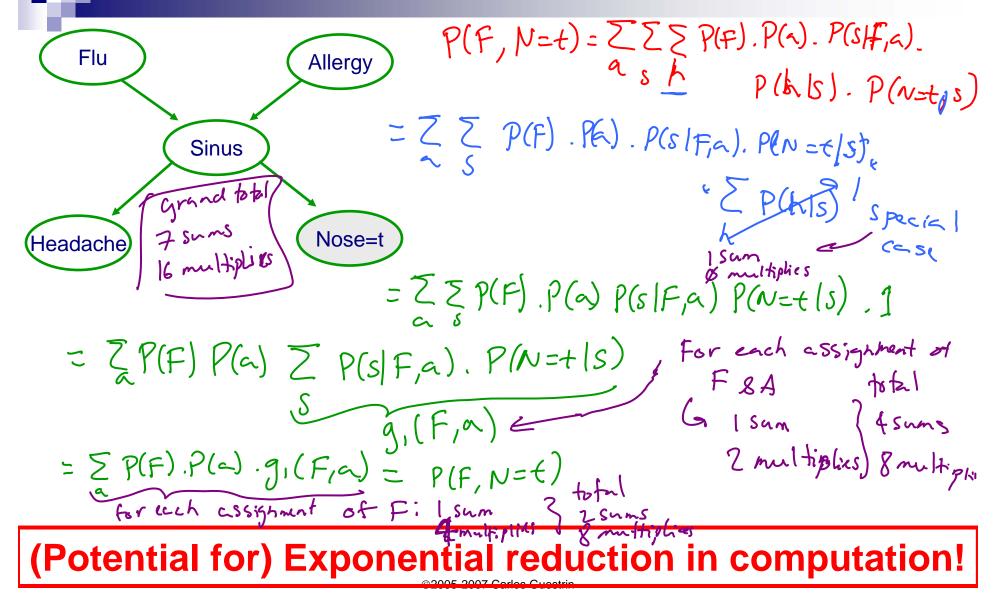
General probabilistic inference Flu Allergy P(XP(F=t)H=t,N=f) Query: e) Sinus Nose Headache Detr. Cord. probs. Using Bayes rule: UR, H=t, $P(X \mid e) = \frac{P(X, e)}{P(e)}$ $P(X | e) = \frac{P(e)}{P(e)}$ P(e) P(e) P(e) P(e)• 3 Normalik - 2 $P(X \mid e) \propto$ (X, e)H=+, N=F normalize to give answer ©2005-2007 Carlos Guestrin

Marginalization $P(F, S, N) = P(F) \cdot P(S|F) \cdot P(N)$ Nose=t Sinus Flu P(F=t, N=t) = P(F=t, S=t, N=t) +P(F=t, S=f, N=t) $= P(F=t) \cdot P(S=t/F=t) \cdot P(N=t|S=t) +$ P(F=t) . P(s=f(F=t)) P(N=t | s=f/marginalize out S



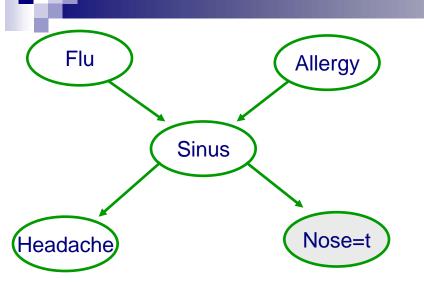
Inference seems exponential in number of variables! Actually, inference in graphical models is NP-hard \otimes

Fast probabilistic inference *kining (massive as the live)* was one at a time one at the example – Variable elimination

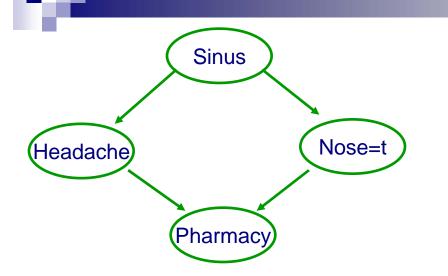


Understanding variable elimination – Exploiting distributivity

Understanding variable elimination – Order can make a HUGE difference



Understanding variable elimination – Another example



Variable elimination algorithm

- Given a BN and a query $P(X|e) \propto P(X,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{X,e\}$
 - \Box Collect factors f_1, \dots, f_k that include X_i
 - □ Generate a new factor by eliminating X_i from these factors

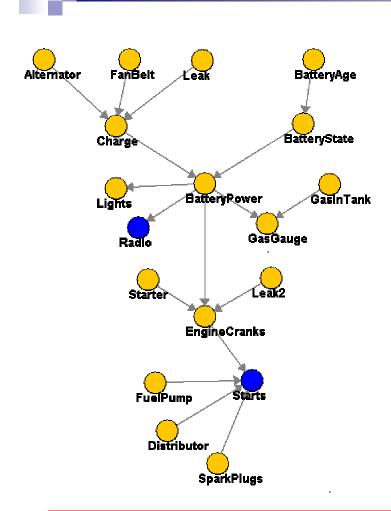
IMPORTANT!!!

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

□ Variable X_i has been eliminated!

Normalize P(X,e) to obtain P(X|e)

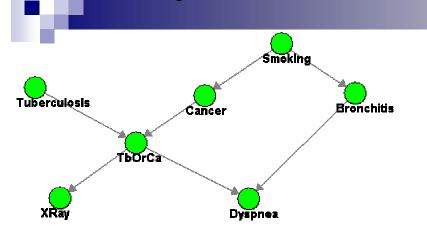
Complexity of variable elimination – (Poly)-tree graphs



Variable elimination order: Start from "leaves" up – find topological order, eliminate variables in reverse order

Linear in number of variables!!! (versus exponential)

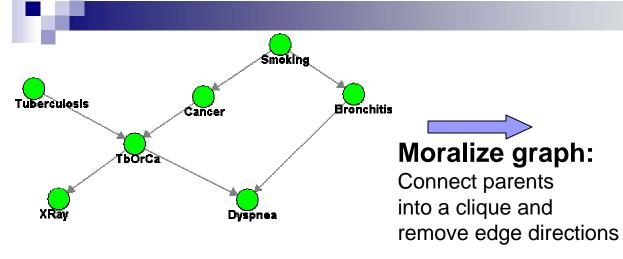
Complexity of variable elimination – Graphs with loops



Exponential in number of variables in largest factor generated

SZ003-Z007 Gallos Guestili

Complexity of variable elimination – Tree-width



Complexity of VE elimination: ("Only") exponential in tree-width Tree-width is maximum node cut +1

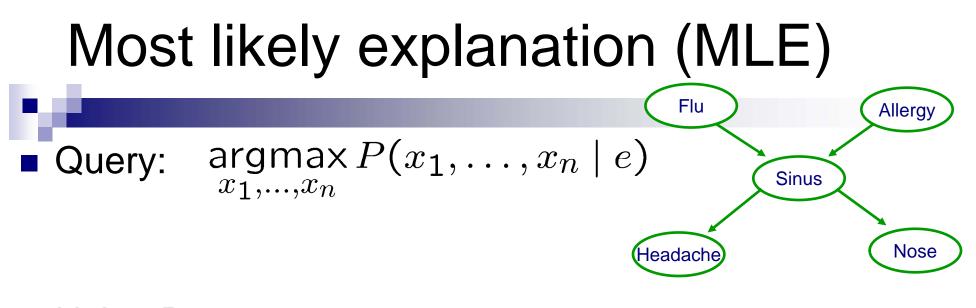
Example: Large tree-width with small number of parents

Compact representation \Rightarrow **Easy inference** \otimes

SZ002-Z007 Canos Guestinn

Choosing an elimination order

- Choosing best order is NP-complete
 Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
 - Even optimal order can lead to exponential variable elimination computation
- In practice
 - □ Variable elimination often very effective
 - Many (many many) approximate inference approaches available when variable elimination too expensive

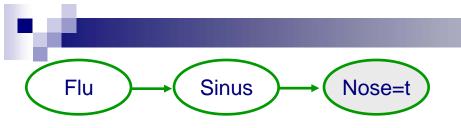


• Using Bayes rule: $\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} \frac{P(x_1,\ldots,x_n,e)}{P(e)}$

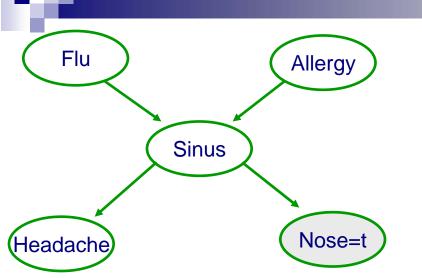
Normalization irrelevant:

 $\operatorname{argmax}_{x_1,\ldots,x_n} P(x_1,\ldots,x_n \mid e) = \operatorname{argmax}_{x_1,\ldots,x_n} P(x_1,\ldots,x_n,e)$

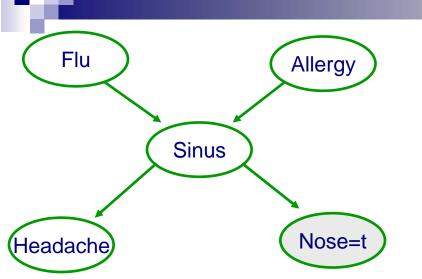
Max-marginalization



Example of variable elimination for MLE – Forward pass



Example of variable elimination for MLE – Backward pass



MLE Variable elimination algorithm – Forward pass

- Given a BN and a MLE query $\max_{x_1,...,x_n} P(x_1,...,x_n,e)$
- Instantiate evidence e
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin \{e\}$
 - \Box Collect factors f_1, \dots, f_k that include X_i
 - \Box Generate a new factor by eliminating X_i from these factors

$$g = \max_{x_i} \prod_{j=1}^k f_j$$

 \Box Variable X_i has been eliminated!

MLE Variable elimination algorithm – Backward pass

• $\{x_1^*, \ldots, x_n^*\}$ will store maximizing assignment

For i = n to 1, If $X_i \notin \{e\}$

 \Box Take factors f_1, \dots, f_k used when X_i was eliminated

□ Instantiate f_1, \dots, f_k , with $\{x_{i+1}^*, \dots, x_n^*\}$

Now each f_j depends only on X_i

 \Box Generate maximizing assignment for X_i:

$$x_i^* \in \operatorname*{argmax}_{x_i} \prod_{j=1}^k f_j$$

What you need to know

- Bayesian networks
 - □ A useful compact **representation** for large probability distributions

Inference to compute

- □ Probability of X given evidence e
- □ Most likely explanation (MLE) given evidence e
- □ Inference is NP-hard
- Variable elimination algorithm
 - Efficient algorithm ("only" exponential in tree-width, not number of variables)
 - □ Elimination order is important!
 - □ Approximate inference necessary when tree-width to large
 - not covered this semester
 - Only difference between probabilistic inference and MLE is "sum" versus "max"