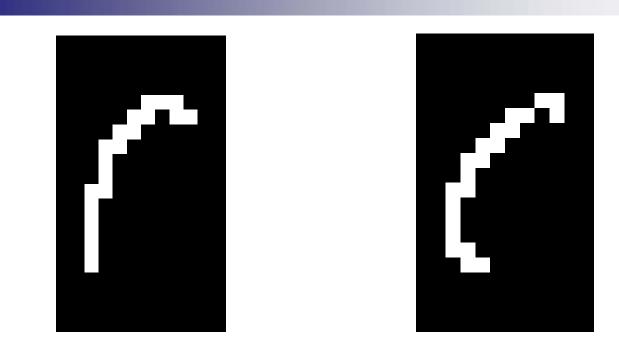
Bayesian Networks – Representation

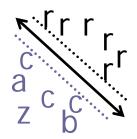
Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

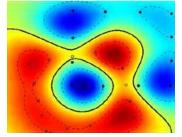
March 19th, 2007

Handwriting recognition

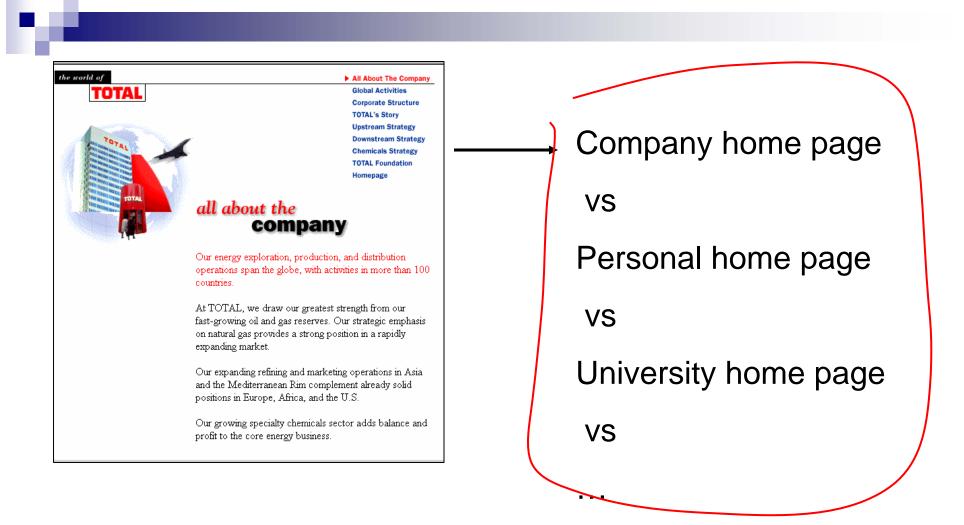


Character recognition, e.g., kernel SVMs

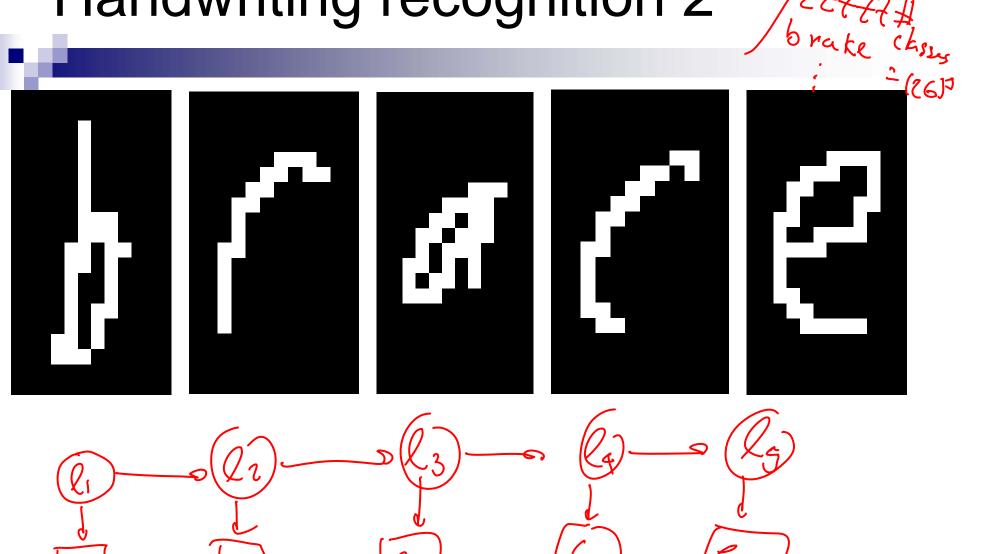




Webpage classification

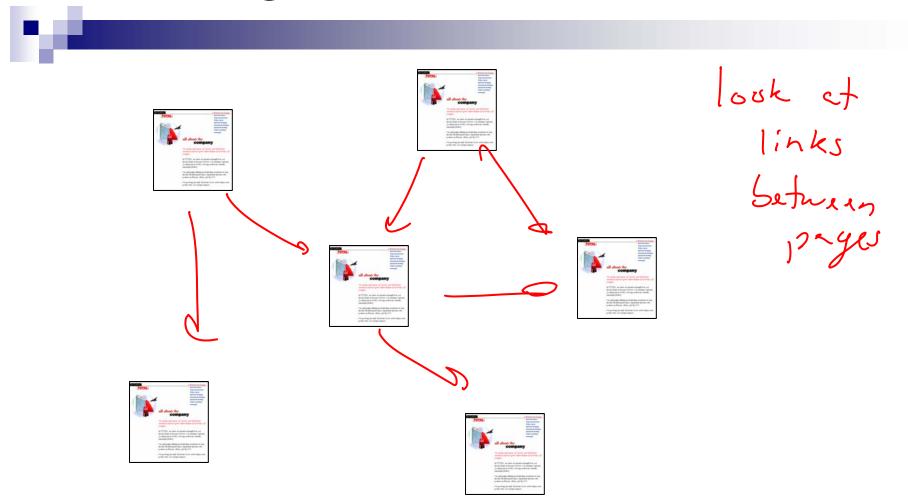


Handwriting recognition 2



brack

Webpage classification 2

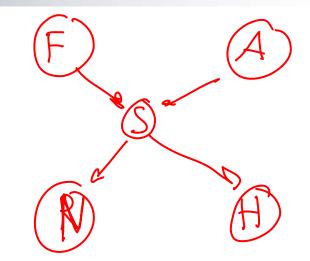


Today – Bayesian networks

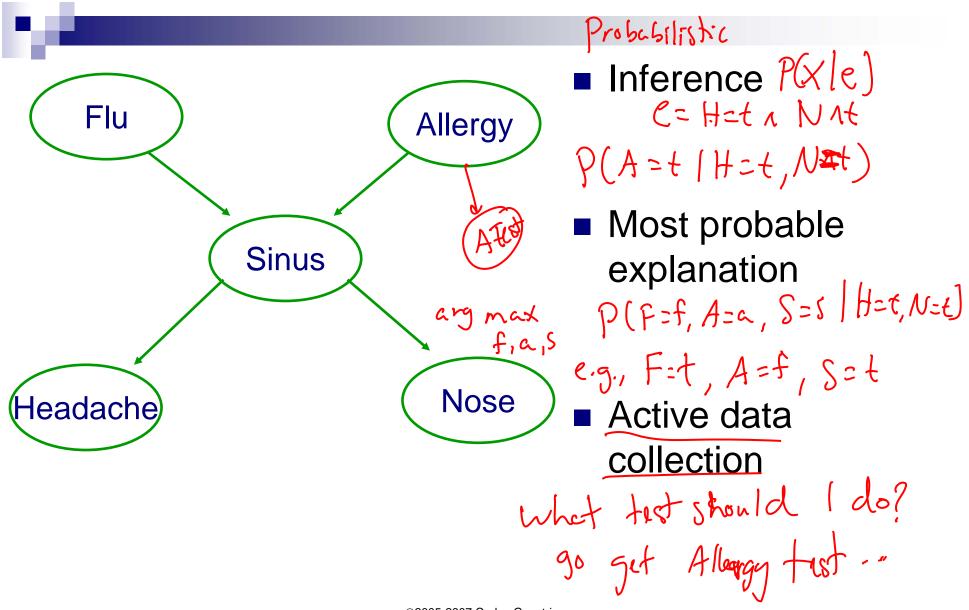
- One of the most exciting advancements in statistical AI in the last 10-15 years
- Generalizes naïve Bayes and logistic regression classifiers
- Compact representation for exponentially-large probability distributions
- Exploit conditional independencies

Causal structure

- Suppose we know the following:
 - □ The flu causes sinus inflammation
 - □ Allergies cause sinus inflammation
 - □ Sinus inflammation causes a runny nose
 - □ Sinus inflammation causes headaches
- How are these connected?



Possible queries



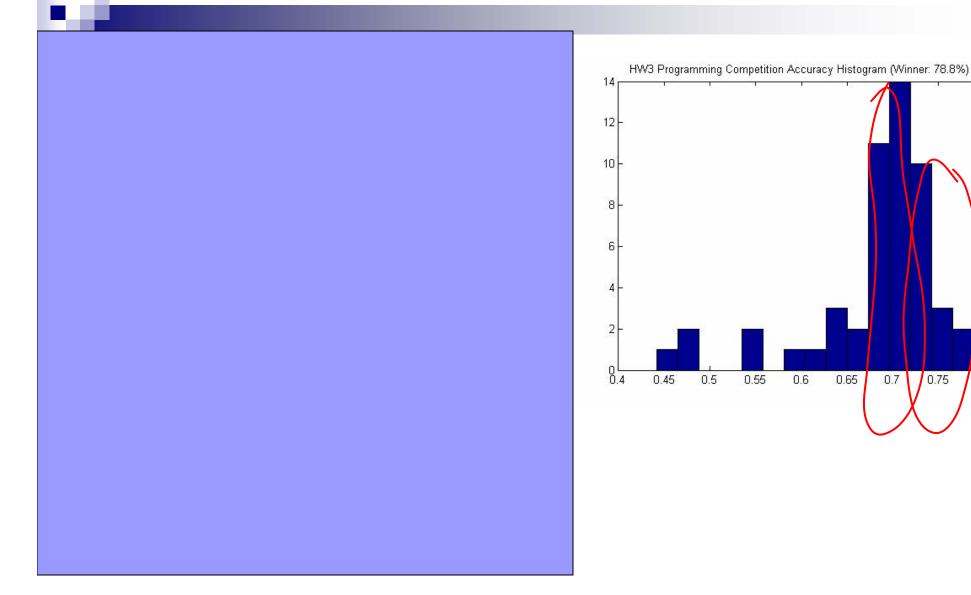
Car starts BN 18 binary attributes Alternator FanBelt BattervAge Inference _old BatteryState Charg □ P(BatteryAge|Starts=f) go through 211 joint instantiating add up probability ~217 forms GasinTank BattervRower Lights GasGauge Radio Starte EngineCranks Starts FuelPump 2¹⁶ terms, why so fast? Distributor Not impressed? SparkPlugs

□ HailFinder BN – more than 3⁵⁴ = 58149737003040059690390169 terms

Announcements

- Welcome back!
- <u>One page project proposal due Wednesday</u>
 - Individual or groups of two
 - □ Must be something related to ML! ☺
 - $\hfill line is a second to your research <math display="inline">\rightarrow$ it must be something you started this semester
- Midway progress report
 - □ 5 pages NIPS format
 - □ April 16th
 - □ Worth 20%
- Poster presentation
 - □ May 4, 2-5pm in the NSH Atrium
 - □ Worth 20%
- Final report
 - □ May 10th
 - □ 8 pages NIPS format
 - □ Worth 60%
- It will be fun!!! ③

And the winner is...



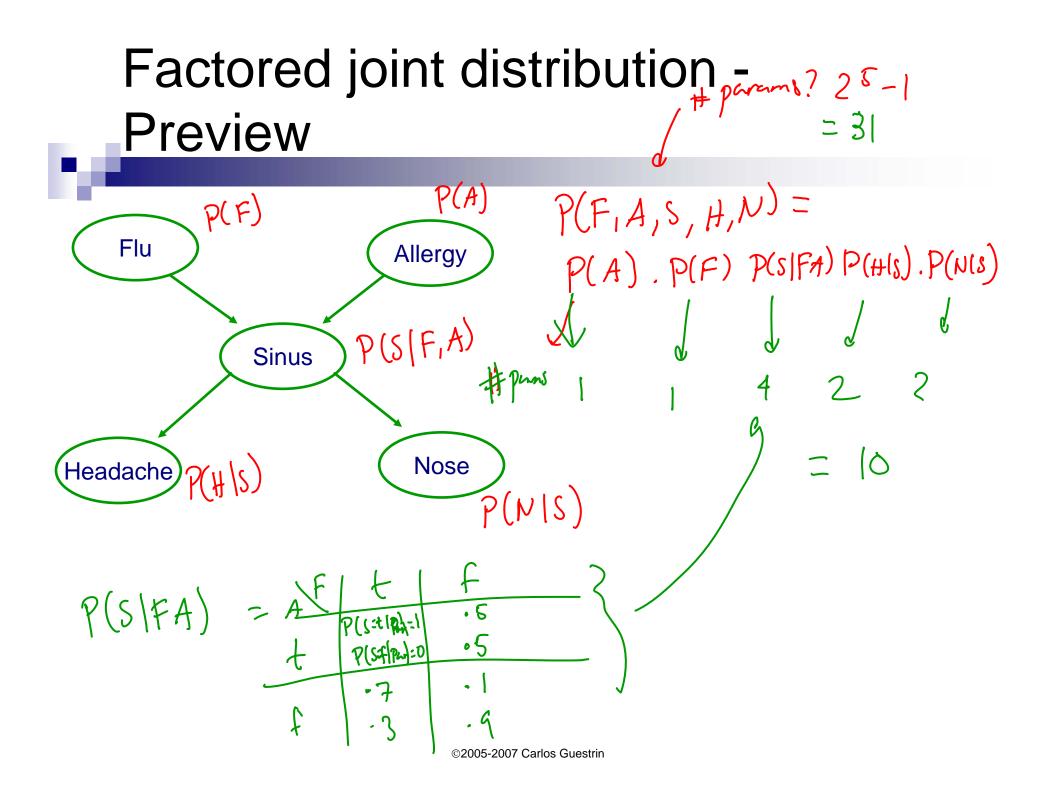
©2005-2007 Carlos Guestrin

0.65

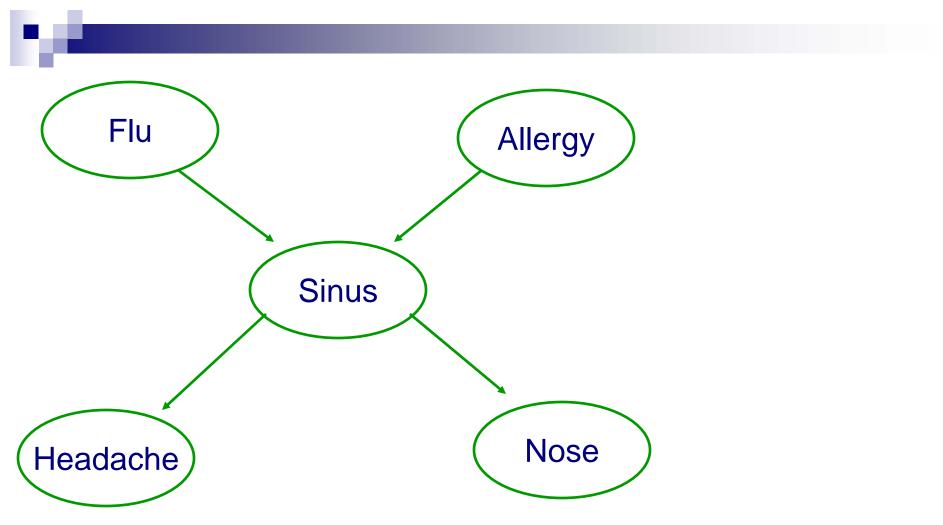
0.7

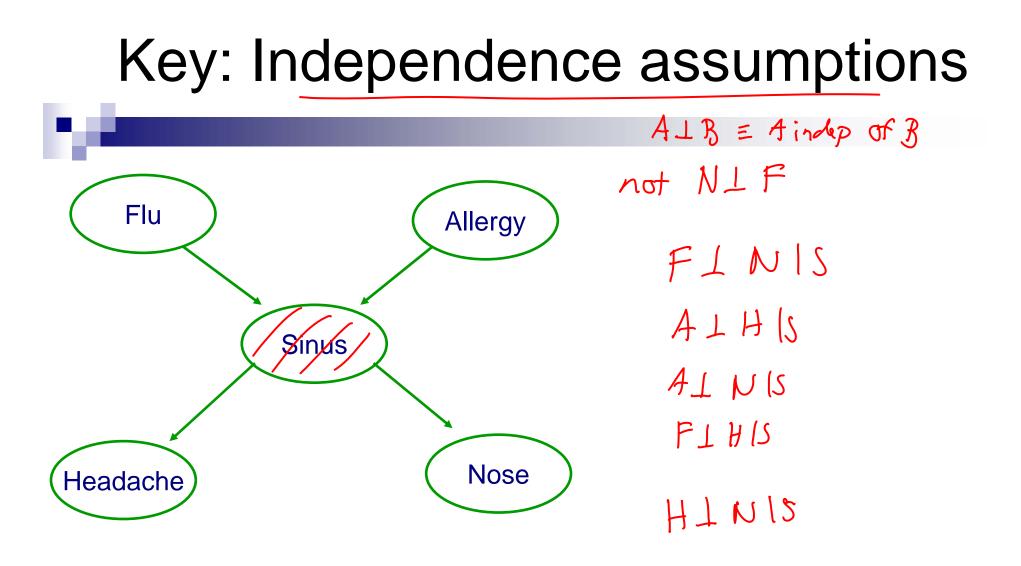
0.75

0.8



Number of parameters





Knowing sinus separates the variables from each other

(Marginal) Independence

Flu and Allergy are (marginally) independent FLA \Rightarrow P(F,A) = P(A), P(F) 9

More Generally:

XiLXi => $P(X_{i}, X_{j}) = P(X_{i}) \cdot P(X_{j})$ P(FA)

$$Flu = t - 4$$

$$Flu = f - 6$$

(A) Allergy = t
$$\cdot 3$$

Allergy = f $\cdot 7$

Flu = tFlu = fAllergy = t
$$\cdot 3 \times \cdot 4$$
 $-3 \times \cdot 6$ $= 0 \cdot 12$ $-3 \times \cdot 6$ Allergy = f $\cdot 4 \times \cdot 7$ $-7 \times \cdot 6$

©2005-2007 Carlos Guestrin

()

Marginally independent random variables

Possiby

Sets of variables X, Y

■ X is independent of Y if $P \models (\mathbf{X} = \mathbf{x} \perp \mathbf{Y} = \mathbf{y}), \forall \mathbf{x} \in Val(\mathbf{X}), \mathbf{y} \in Val(\mathbf{Y})$ $P(X = \mathbf{x}, Y = \mathbf{y}) = P(X = \mathbf{x}) \cdot P(\mathbf{x} = \mathbf{y})$

Shorthand:

 \Box Marginal independence: $P \vDash (X \perp Y)$

Proposition: P statisfies $(X \perp Y)$ if and only if P(X,Y) = P(X) P(Y) P(X|Y) = P(X) P(X|Y) = P(X) P(X|Y) = P(X)

Conditional independence

- Flu and Headache are not (marginally) independent $rot F \perp H$
- Flu and Headache are independent given Sinus infection
 F1 HIS
 P(F, HIS) = P(FIS) · P(HIS)
 P(FIH,S) = P(FIS)
- More Generally: $\chi_i \perp \chi_j | \chi_j \subset P(\chi_i | \chi_j, \gamma) = P(\chi_i | \gamma)$

Conditionally independent random variables

- **Sets** of variables **X**, **Y**, **Z**
- X is independent of Y given Z if $\square P \models (\mathbf{X} = \mathbf{x} \perp \mathbf{Y} = \mathbf{y} | \mathbf{Z} = \mathbf{z}), \forall \mathbf{x} \in Val(\mathbf{X}), \mathbf{y} \in Val(\mathbf{Y}), \mathbf{z} \in Val(\mathbf{Z})$ $\rightarrow P(X = X | \mathbf{Z} = \mathbf{Z}) = P(X = x | \mathbf{Z} = \mathbf{Z}, Y = \mathbf{y})$
- Shorthand:
 - \Box Conditional independence: $P \vDash (X \perp Y \mid Z)$

 $\Box \text{ For } P \vDash (\mathbf{X} \perp \mathbf{Y} | \emptyset), \text{ write } \mathsf{P} \vDash (\mathbf{X} \perp \mathbf{Y})$

• **Proposition:** *P* statisfies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ if and only if • $\mathbf{P}(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z}) = \mathbf{P}(\mathbf{X} \mid \mathbf{Z}) \mathbf{P}(\mathbf{Y} \mid \mathbf{Z})$

Properties of independence

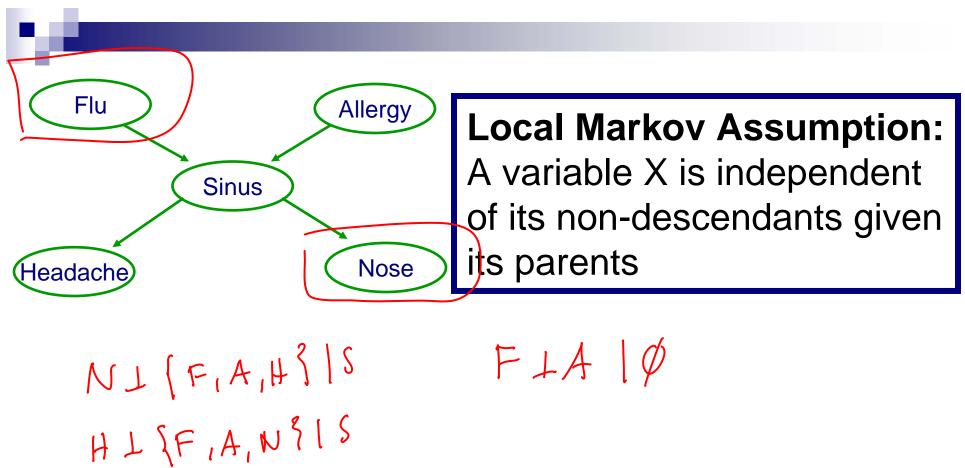
Symmetry:

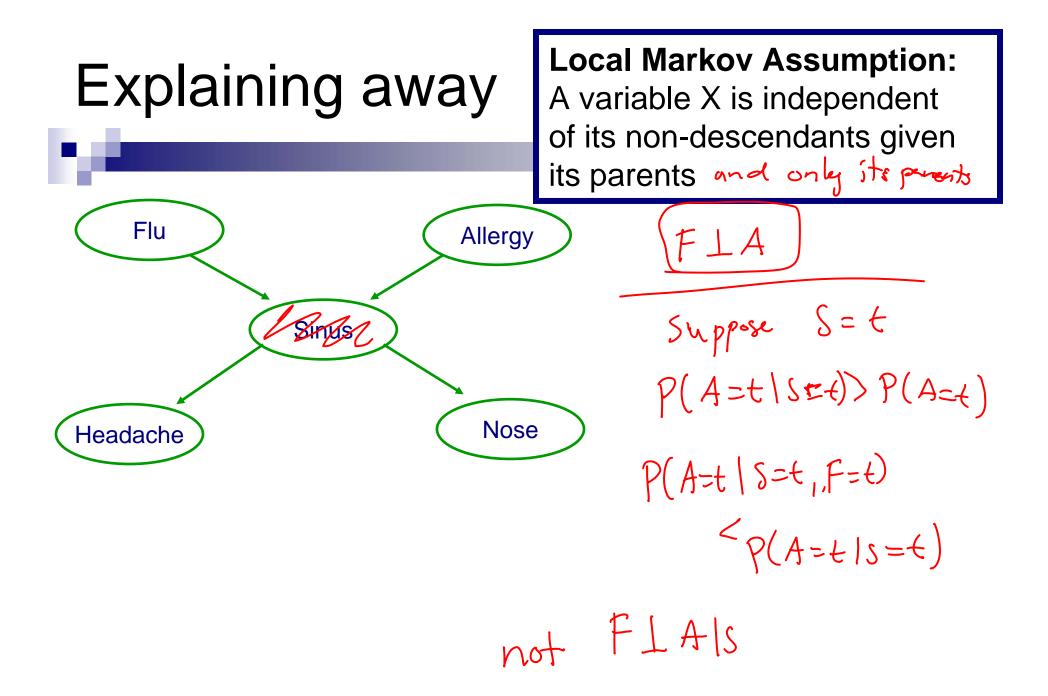
- $\Box \; (\textbf{X} \perp \textbf{Y} \mid \textbf{Z}) \Rightarrow (\textbf{Y} \perp \textbf{X} \mid \textbf{Z})$
- Decomposition:
 - $\Box (\mathsf{X} \perp \mathsf{Y}, \mathsf{W} \mid \mathsf{Z}) \Rightarrow (\mathsf{X} \perp \mathsf{Y} \mid \mathsf{Z})$
- Weak union:
 - $\Box (\mathsf{X} \perp \mathsf{Y}, \mathsf{W} \mid \mathsf{Z}) \Rightarrow (\mathsf{X} \perp \mathsf{Y} \mid \mathsf{Z}, \mathsf{W})$
- Contraction:
 - $\Box (\mathsf{X} \perp \mathsf{W} \mid \mathsf{Y}, \mathsf{Z}) \And (\mathsf{X} \perp \mathsf{Y} \mid \mathsf{Z}) \Rightarrow (\mathsf{X} \perp \mathsf{Y}, \mathsf{W} \mid \mathsf{Z})$

Intersection:

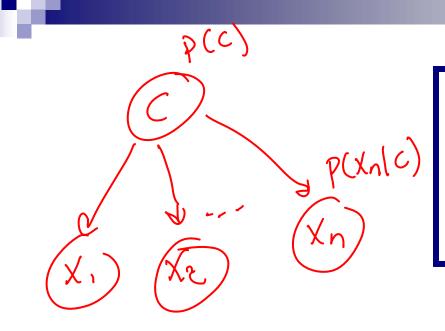
- $\Box (\mathsf{X} \perp \mathsf{Y} \mid \mathsf{W}, \mathsf{Z}) \And (\mathsf{X} \perp \mathsf{W} \mid \mathsf{Y}, \mathsf{Z}) \Rightarrow (\mathsf{X} \perp \mathsf{Y}, \mathsf{W} \mid \mathsf{Z})$
- □ Only for positive distributions!
- \Box P(α)>0, $\forall \alpha, \alpha \neq \emptyset$

The independence assumption





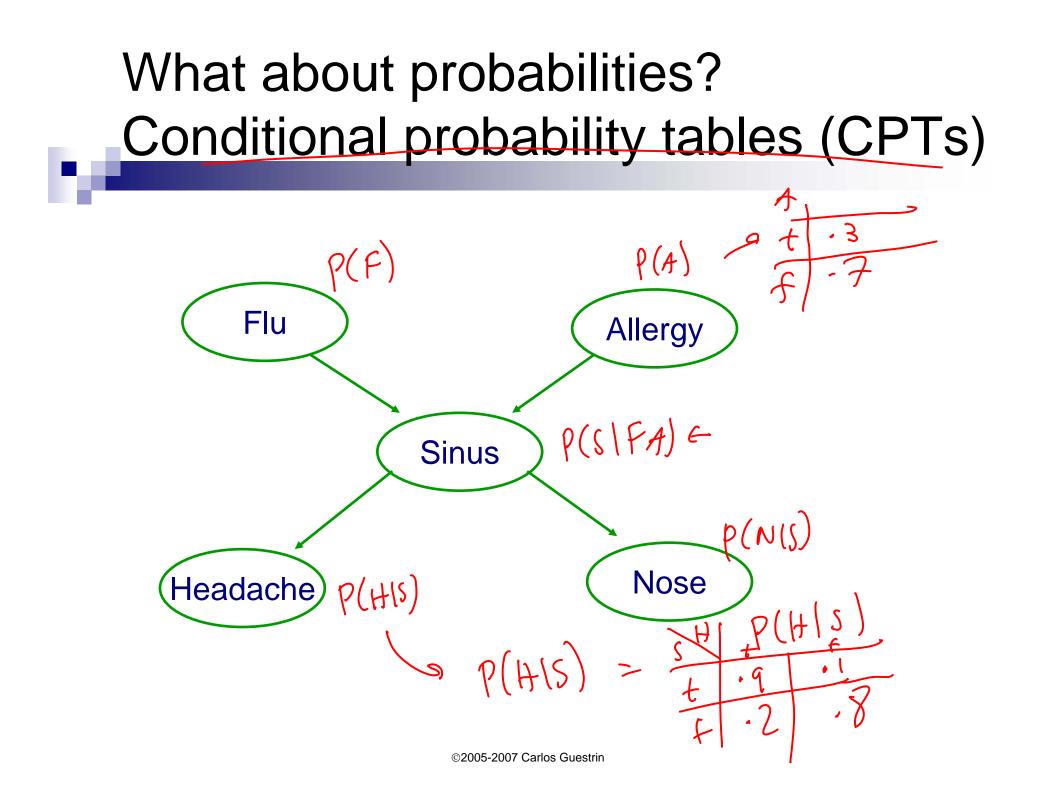
Naïve Bayes revisited



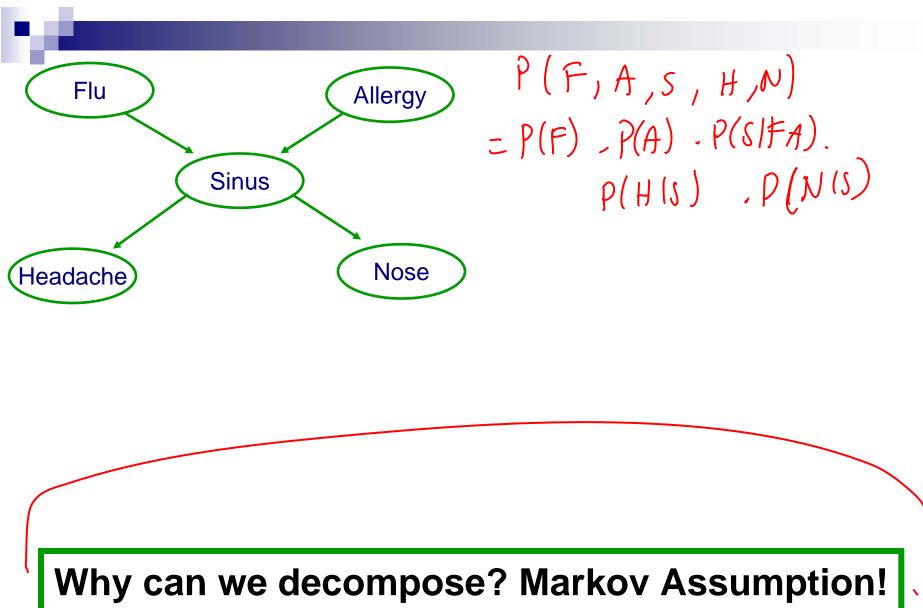
Local Markov Assumption: A variable X is independent of its non-descendants given its parents

$$\frac{X_{1} \perp X_{2} \mid C}{X_{1} \perp \{X_{2} - X_{n}\} \mid C}$$

P(C,X,...,Xn) = P(c). II P(Xilc) j=1

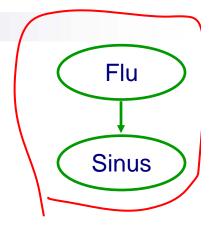


Joint distribution



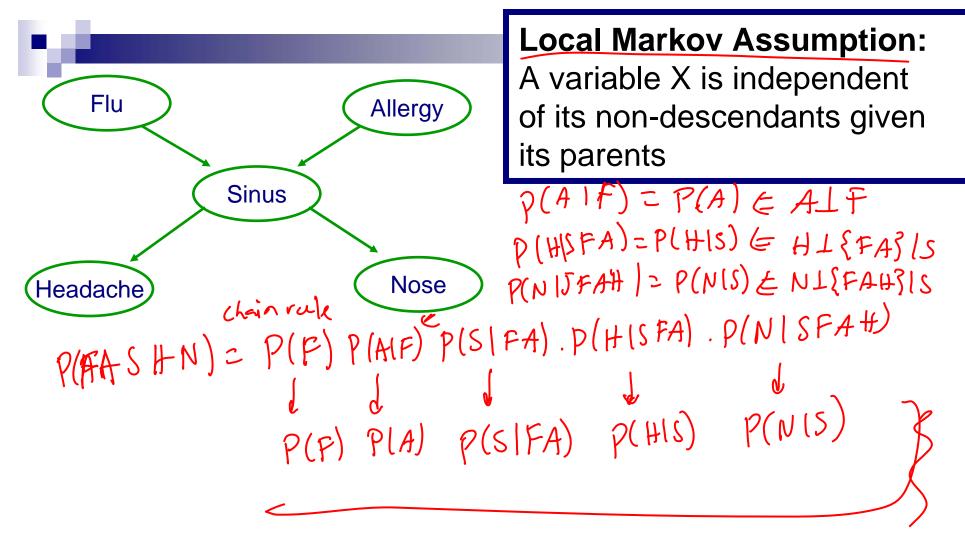
The chain rule of probabilities

P(A,B) = P(A)P(B|A) P(F,S) = P(F) , P(S|F)

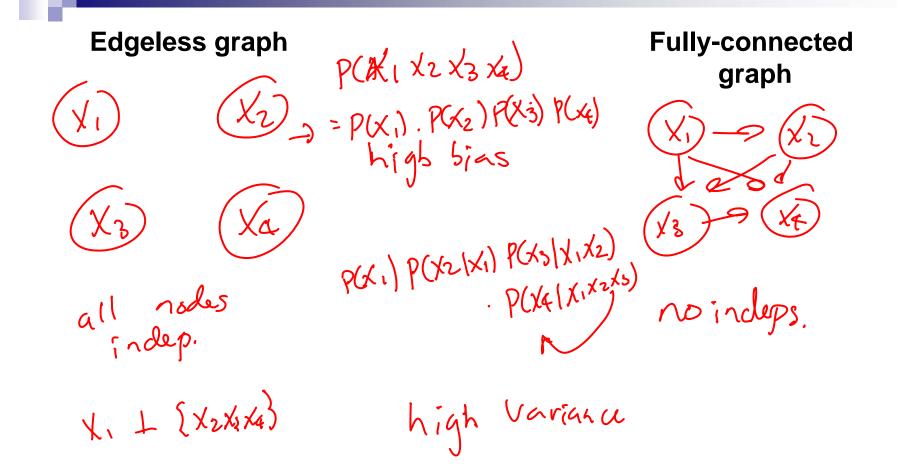


• More generally: $P(X_{1},...,X_{n}) = P(X_{1}) \cdot P(X_{2}|X_{1}) \cdot ... \cdot P(X_{n}|X_{1},...,X_{n-1})$ $P(F \land S H \land N) = P(F) \cdot P(A|F) \cdot P(S|AF) \cdot P(H|FAS) \cdot P(N|FAS H)$

Chain rule & Joint distribution

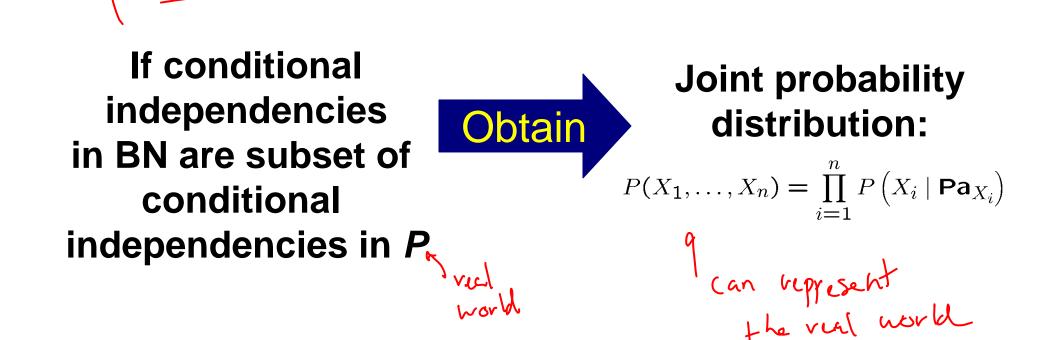


Two (trivial) special cases



The Representation Theorem – Joint Distribution to BN

BN:



assumptions

Encodes independence

Real Bayesian networks applications

- Diagnosis of lymph node disease
- Speech recognition
- Microsoft office and Windows
 - http://www.research.microsoft.com/research/dtg/
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault dianosis

C)

Modeling sensor network data

- Set of random variables
- Directed acyclic graph
 - Encodes independence assumptions

Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P\left(X_i \mid \mathbf{Pa}_{X_i}\right)$$

How many parameters in a BN?

- Discrete variables X₁, ..., X_n
- Graph
 - \Box Defines parents of X_i, **Pa**_{Xi}
- CPTs P(X_i| Pa_{Xi})

Another example

Variables:

- 🗆 B Burglar
- E Earthquake
- □ A Burglar alarm
- \square N Neighbor calls
- □ R Radio report
- Both burglars and earthquakes can set off the alarm
- If the alarm sounds, a neighbor may call
- An earthquake may be announced on the radio

Another example – Building the BN

- B Burglar
- E Earthquake
- A Burglar alarm
- N Neighbor calls
- R Radio report

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - \Box (X_i \perp NonDescendants_{Xi} | **Pa**_{Xi})
- But then we talked about other (in)dependencies
 e.g., explaining away

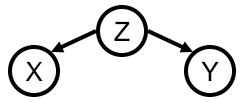
- What are the independencies encoded by a BN?
 - Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!

Understanding independencies in BNs – BNs with 3 nodes Local Markov Assumption:

Indirect causal effect:

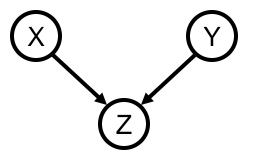
Indirect evidential effect:

Common cause:

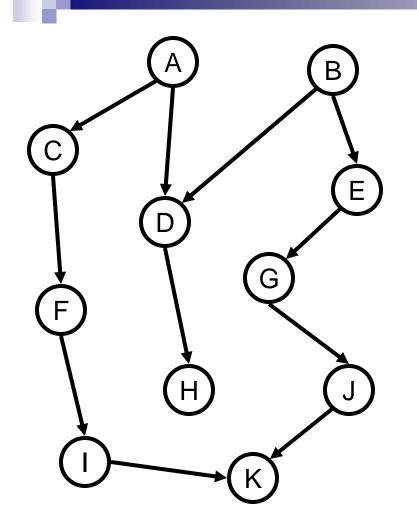


Local Markov Assumption: A variable X is independent of its non-descendants given its parents

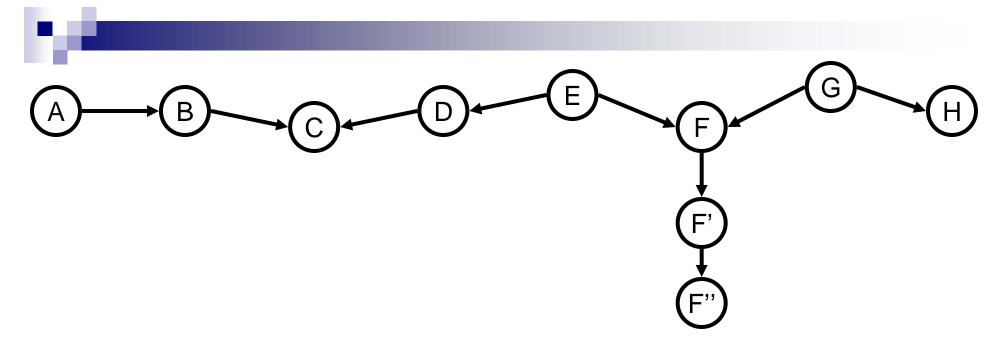
Common effect:



Understanding independencies in BNs – Some examples



An active trail – Example



When are A and H independent?

Active trails formalized

A path X₁ − X₂ − · · · −X_k is an active trail when variables O⊆{X₁,...,X_n} are observed if for each consecutive triplet in the trail:

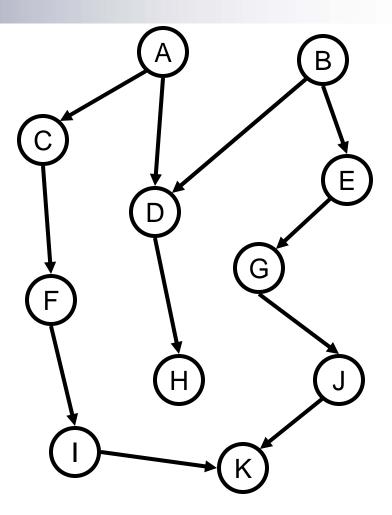
 $\Box X_{i-1} \rightarrow X_i \rightarrow X_{i+1}, \text{ and } X_i \text{ is not observed } (X_i \notin \boldsymbol{O})$

$$\Box X_{i-1} \leftarrow X_i \leftarrow X_{i+1}, \text{ and } X_i \text{ is not observed } (X_i \notin O)$$

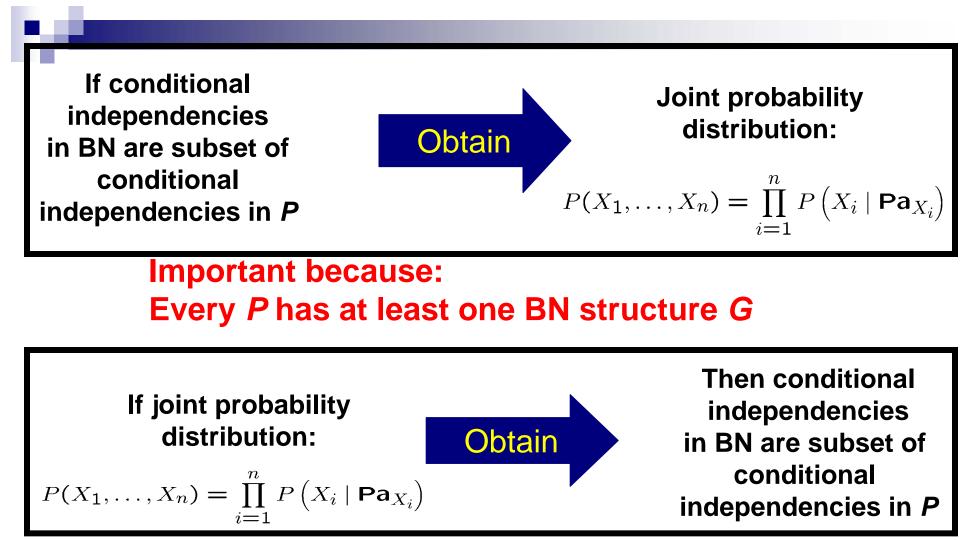
- $\Box X_{i-1} \leftarrow X_i \rightarrow X_{i+1}, \text{ and } X_i \text{ is not observed } (X_i \notin \boldsymbol{O})$
- □ $X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed ($X_i \in O$), or one of its descendents

Active trails and independence?

Theorem: Variables X_i and X_j are independent given Z⊆{X₁,...,X_n} if the is no active trail between X_i and X_j when variables Z⊆{X₁,...,X_n} are observed



The BN Representation Theorem



Important because: Read independencies of *P* from BN structure *G*

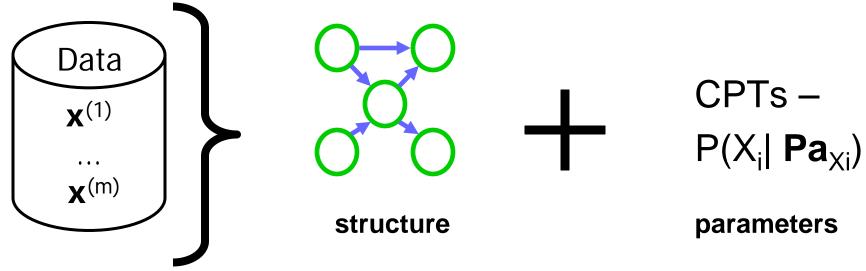
"Simpler" BNs

A distribution can be represented by many BNs:

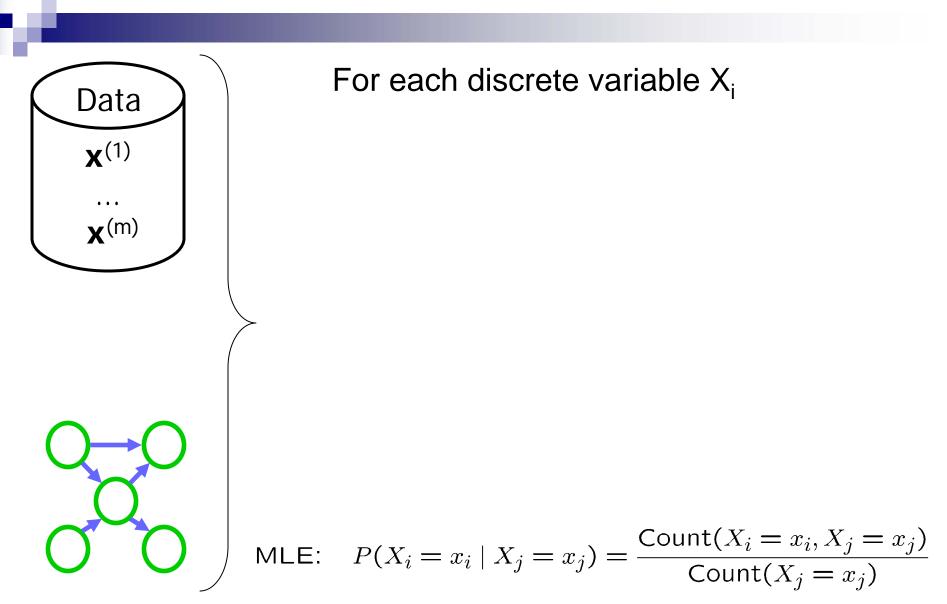
Simpler BN, requires fewer parameters

Learning Bayes nets

	Known structure	Unknown structure
Fully observable data		
Missing data		



Learning the CPTs



Queries in Bayes nets

• Given BN, find:

 \square Probability of X given some evidence, P(X|e)

□ Most probable explanation, $\max_{x_1,...,x_n} P(x_1,...,x_n | e)$

□ Most informative query

Learn more about these next class

What you need to know

- Bayesian networks
 - □ A compact **representation** for large probability distributions
 - Not an algorithm
- Semantics of a BN
 - Conditional independence assumptions
- Representation
 - Variables
 - Graph
- Why BNs are useful
- Learning CPTs from fully observable data
- Play with applet!!! ③

Acknowledgements

JavaBayes applet

http://www.pmr.poli.usp.br/ltd/Software/javabayes/Ho me/index.html