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The general learning problem with
missing data

 Marginal likelihood – x is observed, z is missing:
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EM is coordinate ascent

 M-step: Fix Q, maximize F over θ (a lower bound on            ):

 E-step: Fix θ, maximize F over Q:

 “Realigns” F with likelihood:
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What you should know about EM

 K-means for clustering:
 algorithm
 converges because it’s coordinate ascent

 EM for mixture of Gaussians:
 How to “learn” maximum likelihood parameters (locally max. like.) in

the case of unlabeled data

 Be happy with this kind of probabilistic analysis
 Remember, E.M. can get stuck in local minima, and

empirically it DOES
 EM is coordinate ascent
 General case for EM
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Learning HMMs from fully
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:
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Learning HMMs from fully
observable data is easy

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Learn 3 distributions:

What if O is observed, 
but X is hidden
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Log likelihood for HMMs when X is
hidden

 Marginal likelihood – O is observed, X is missing
 For simplicity of notation, training data consists of only one sequence:

 If there were m sequences:
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Computing Log likelihood for
HMMs when X is hidden

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Computing Log likelihood for HMMs
when X is hidden – variable elimination

 Can compute efficiently with variable elimination:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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EM for HMMs when X is hidden

 E-step: Use inference (forwards-backwards algorithm)

 M-step: Recompute parameters with weighted data

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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E-step

 E-step computes probability of hidden vars x given o

 Will correspond to inference
 use forward-backward algorithm!

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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The M-step

 Maximization step:

 Use expected counts instead of counts:
 If learning requires Count(x,o)
 Use EQ(t+1)[Count(x,o)]

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Decomposition of likelihood
revisited

 Likelihood optimization decomposes:

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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Starting state probability P(X1)
 Using expected counts

 P(X1=a) =  θX1=a
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Transition probability P(Xt|Xt-1)
 Using expected counts

 P(Xt=a|Xt-1=b) =  θXt=a|Xt-1=b
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Observation probability P(Ot|Xt)
 Using expected counts

 P(Ot=a|Xt=b) =  θOt=a|Xt=b
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E-step revisited

 E-step computes probability of hidden vars x given o
 Must compute:

 Q(xt=a|o) – marginal probability of each position

 Q(xt+1=a,xt=b|o) – joint distribution between pairs of
positions

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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The forwards-backwards algorithm
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

 Initialization:
 For i = 2 to n

 Generate a forwards factor by eliminating Xi-1

 Initialization:
 For i = n-1 to 1

 Generate a backwards factor by eliminating Xi+1

  8 i, probability is:
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E-step revisited

 E-step computes probability of hidden vars x
given o

 Must compute:
Q(xt=a|o) – marginal probability of each position

 Just forwards-backwards!
Q(xt+1=a,xt=b|o) – joint distribution between pairs

of positions

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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What can you do with EM for HMMs? 1
– Clustering sequences
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

Independent clustering: Sequence clustering:
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What can you do with EM for HMMs? 2
– Exploiting unlabeled data
X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          

 Labeling data is hard work ! save (graduate student) time
by using both labeled and unlabeled data
 Labeled data:

 <X=“brace”,O=           >

 Unlabeled data:
 <X=?????,O=           >
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Exploiting unlabeled data in
clustering

 A few data points are labeled
 <x,o>

 Most points are unlabeled
 <?,o>

 In the E-step of EM:
 If i’th point is unlabeled:

 compute Q(X|oi) as usual
 If i’th point is labeled:

 set Q(X=x|oi)=1 and Q(X≠x|oi)=0

 M-step as usual
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20 Newsgroups data – advantage
of adding unlabeled data
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20 Newsgroups data – Effect of
additional unlabeled data
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Exploiting unlabeled data in HMMs

 A few data points are labeled
 <x,o>

 Most points are unlabeled
 <?,o>

 In the E-step of EM:
 If i’th point is unlabeled:

 compute Q(X|oi) as usual
 If i’th point is labeled:

 set Q(X=x|oi)=1 and Q(X≠x|oi)=0
 M-step as usual

 Speed up by remembering counts for labeled data

X1 = {a,…z}

O1 =          

X5 = {a,…z}X3 = {a,…z} X4 = {a,…z}X2 = {a,…z}

O2 =          O3 =          O4 =          O5 =          
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What you need to know

 Baum-Welch = EM for HMMs
 E-step:

 Inference using forwards-backwards
 M-step:

 Use weighted counts
 Exploiting unlabeled data:

 Some unlabeled data can help classification
 Small change to EM algorithm

 In E-step, only use inference for unlabeled data
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