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The general learning problem with

missing data
"
m Marginal likelihood — x is observed, z is missing:
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EM Is coordinate ascent

(6 :D) > F(0,Q) = i > Q(z | x;)log Dz x; |.8>
=17 Q(z | X])

m M-step: Fix Q, maximize F over 6 (a lower bound on¢(6 : D) ):
(0:D) > FO,Q0) =3 Y QW] x,)l0g P(zx, | 0) + m.H@QW)

j=1 7

m E-step: Fix 6, maximize F over Q:

(0 DY > FOW Q) = 26 D) —m fj KL (Q(z | x)||P(z | xj,e)(t)))
j=1

“Realigns” F with likelihood:
oW, QU+ = ¢ - p)
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What you should know about EM
"

K-means for clustering:
algorithm
converges because it's coordinate ascent

EM for mixture of Gaussians:

How to “learn” maximum likelihood parameters (locally max. like.) in
the case of unlabeled data

Be happy with this kind of probabilistic analysis

Remember, E.M. can get stuck in local minima, and
empirically it DOES

EM is coordinate ascent
General case for EM

©2005-2007 Carlos Guestrin



Learning HMMSs from fully
observable data is easy

Learn 3 distributions:

P(X1)
P(O; | X;)

P(X; | X;-1)
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Learning HMMSs from fully
observable data is easy

Learn 3 distributions: s > L e
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Log likelihood for HMMs when X is

hidden
" J
m Marginal likelihood — O is observed, X is missing
For simplicity of notation, training data consists of only one sequence:

(0 :D) log P(o | 0)

log ) P(x,0|0)

If there were m sequences:

00 :D) = i 09} P(x,019) | 6)
j=1 X
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Computing Log likelihood for
H|\/||\/|S when Xis hldden

¢(0:D) = logP(o|6)
= log)» P(x,0]0)
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Computing Log likelihood for HMMs
when X is hidden — variable elimination

m Can compute efficiently with variable elimination:
¢(0:D) = logP(o|8)
= log) P(x,0|6)
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EM for HMMs when X is hidden

m E-step: Use inference (forwards-backwards algorithm)

m M-step: Recompute parameters with weighted data
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m E-step computes probability of hidden vars x given o

QU (x|0) = P(x]o,6M)

m Will correspond to inference
use forward-backward algorithm!
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The M-step

m Maximization step:

p(t+1)  arg m@axZQ(H'l)(x | 0) log P(x,0 | 6)

m Use expected counts instead of counts:
If learning requires Count(x,0)
Use Eq .1 [Count(x,0)]
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Decomposmon of likelihood P(X1)

m Likelihood optimization decomposes:
m@aXZQ(X | 0) log P(x,0 | 0) =

maxZQ(X | 0)log P(z1 | 0x,)P(o1 | #1,00|x) H P(ay | we—1,0x,x, ) P(ot | zt,00.x)
t=2
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Starting state probability P(X,)

m Using expected counts
P(Xi=a) = Bx4-,

rg]axZQ(x | 0)log P(xq1 | 0x,)
X1 X




Transition probability P(X|X;_4)

m Using expected counts
P(X{=a|X.1=b) = Oxi=aixt-1=b

n
max » Q(x|o)log ] P(zt|x—1,0x,x, ;)




Observation probability P(O,|X;)

m Using expected counts
P(O=a|X=b) = Ooi=axt=b

mn
max» Q(x|o)log [[ P(ot | zt,00,x)
Oo1x x t=1




m E-step computes probability of hidden vars x given o

m Must compute:
Q(x;=alo) — marginal probability of each position

Q(x,.1=a,x;=blo) — joint distribution between pairs of
positions
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+ I he forwards-backwards algorithm

m Initialization: a1 (X1) = P(X1)P (o1 | X1) ot b )

m Fori=2ton ~— \ :’}‘;’"n’fzx/
Generate a forwards factor by eliminating X . Ovn]
Qum oud ?rlv‘{ous vsr prob o5 Senon ﬁgﬁj’\ ~———
ai(Xi) = ) Ploj | Xi)P(X; | Xi—1 = @i—1)ai-1(@i—1) |£ k) 4
o [ s (=) :P(Zfd)
m [nitialization: Bn(Xn) =1 A (o) s
m Fori=n-1to1 s ()
Generate a backwards factor by eliminating X, ,
Y . —

| ~% o Xy
Bi(X;) = > P(oj41 | wix1)P(wiq1 | Xi)Biy1(xig1)
Li41
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E-step revisited w16y = x| o.00)

m E-step computes probability of hidden vars x
given o
m Must compute:
Q(x;=alo) — marginal probability of each position
m Just forwards-backwards!

Q(x,4=a,X;=b|o) — joint distribution between pairs
of positions
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What can you do with EM for HMMs? 1
— Clusterln seuences

Independent clustering: Sequence clustering:

20
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What can you do with EM for HMMs? 2
— Exploiting unlabeled data

m Labeling data is hard work ! save (graduate student) time
by using both labeled and unlabeled data

Labeled data:
m <X=*brace”,O= >

Unlabeled data:

21
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Exploiting unlabeled data in

] Clustering

m A few data points are labeled = mm
<X,0>

0.8 T

m Most points are unlabeled
<?,0>

0.6 T

0.4 T -

m |In the E-step of EM:

If i'th point is unlabeled:
= compute Q(X|o;) as usual

If i'th point is labeled: 1
» set Q(X=x|o,)=1 and Q(X=x|o,)=0

m M-step as usual

-+
-+

-+

-+ |
-+

-+
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Table 3. Lists of the words most predictive of the course class in the WebKB data set. as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common

course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0

Iteration 1

[teration 2

intelligence
DD
artificial
understanding
DDw
dist
identical
rus
arrange
games
dartmouth
natural
cognitive
logic
proving
prolog
knowledge
human

representation
field

Using one
labeled
example per
class

DD
D
lecture
ce
Dt
DD:DD
handout
due
problem
set
tay
DDam
yurttas
homework
kfoury
sec
postscript
exam
solution
assaf
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D
DD
lecture
ce
DD:DD
due
Di
homework
assignment
handout
s5et
hw
exam
problem
DDam
postscript
solution
quiz
chapter
ascil
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20 Newsgroups data — advantage

i of addinﬁ unlabeled data
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20 Newsgroups data — Effect of

Accuracy
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Exploiting unlabeled data in HMMs

m A few data points are labeled
<X,0>

m Most points are unlabeled
<?.0>

m In the E-step of EM:

If i'th point is unlabeled:
= compute Q(X|o;) as usual
If i'th point is labeled:
= set Q(X=x|o,)=1 and Q(X=x|o,)=0
m M-step as usual
Speed up by remembering counts for labeled data

©2005-2007 Carlos Guestrin

26



What you need to know
" J
m Baum-Welch = EM for HMMs
m E-step:
Inference using forwards-backwards
m M-step:
Use weighted counts

m Exploiting unlabeled data:

Some unlabeled data can help classification
Small change to EM algorithm

m In E-step, only use inference for unlabeled data
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