EM for HMMs a.k.a. The Baum-Welch Algorithm

Machine Learning - 10701/15781 Carlos Guestrin
Carnegie Mellon University
April 11 th, 2007

The general learning problem with missing data

- Marginal likelihood $-\mathbf{x}$ is observed, \mathbf{z} is missing:

$$
\left.\ell(\theta: \mathcal{D})=\log \prod_{j=1}^{m} P \text { P(} \mathbf{x}_{j} \mid \theta\right) \text { obsernd parts }
$$

$$
=\sum_{j=1}^{m} \log P\left(\mathbf{x}_{j} \mid \theta\right)
$$

EM is coordinate ascent

$$
\ell(\theta: \mathcal{D}) \geq F(\theta, Q)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log \frac{P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)}{Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)}
$$

- M-step: Fix Q, maximize F over θ (a lower bound on $\ell(\theta: \mathcal{D})$):

$$
\ell(\theta: \mathcal{D}) \geq F\left(\theta, Q^{(t)}\right)=\sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}\left(\mathbf{z} \mid \mathbf{x}_{j}\right) \log P\left(\mathbf{z}, \mathbf{x}_{j} \mid \theta\right)+m \cdot H\left(Q^{(t)}\right)
$$

- E-step: Fix θ, maximize F over Q:

$$
\ell\left(\theta^{(t)}: \mathcal{D}\right) \geq F\left(\theta^{(t)}, Q\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)-m \sum_{j=1}^{m} K L\left(Q\left(\mathbf{z} \mid \mathbf{x}_{j}\right)| | P\left(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}\right)\right)
$$

"Realigns" F with likelihood:

$$
F\left(\theta^{(t)}, Q^{(t+1)}\right)=\ell\left(\theta^{(t)}: \mathcal{D}\right)
$$

What you should know about EM

- K-means for clustering:
\square algorithm
\square converges because it's coordinate ascent
- EM for mixture of Gaussians:
\square How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it DOES
- EM is coordinate ascent
- General case for EM

Learning HMMs from fully observable data is easy

Learn 3 distributions:
$P\left(X_{1}\right)$
$P\left(O_{i} \mid X_{i}\right)$
$P\left(X_{i} \mid X_{i-1}\right)$

Learning HMM from fully observable data is easy

Learn 3 distributions:

$$
P\left(O_{i}^{a} \mid X_{i}^{2}\right)=\begin{gathered}
\text { (ont (pixel biz was white, } \left.x_{i}=a\right)
\end{gathered}
$$

$$
P\left(X_{i}^{=a} \mid X_{i}^{z-b}\right.
$$

What if \mathbf{O} is observed, but \mathbf{X} is hidden

$$
\begin{aligned}
& \left.T P\left(X_{1}^{\prime}\right)^{\prime}\right)=\left(\text { hunt (\# first letterva }{ }^{\text {was }}\right. \text {) } \\
& \text { select training data } \\
& \text { white letter was a }
\end{aligned}
$$

Log likelihood for HMMs when \mathbf{X} is hidden

- Marginal likelihood - \mathbf{O} is observed, \mathbf{X} is missing
\square For simplicity of notation, training data consists of only one sequence:

$$
\begin{aligned}
\ell(\theta: \mathcal{D}) & =\log P(\mathbf{o} \mid \theta) \\
& =\log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)
\end{aligned}
$$

\square If there were m sequences:

$$
\ell(\theta: \mathcal{D})=\sum_{j=1}^{m} \log \sum_{\mathbf{x}} P\left(\mathbf{x}, \mathbf{o}^{(j)} \mid \theta\right)
$$

Computing Log likelihood for

 HMMs when \mathbf{X} is hidden

$$
\begin{aligned}
\ell(\theta: \mathcal{D}) & =\log P(\mathbf{o} \mid \theta) \\
& =\log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)
\end{aligned}
$$

Computing Log likelihood for HMMs when \mathbf{X} is hidden - variable elimination

- Can compute efficiently with variable elimination:

$$
\begin{aligned}
\ell(\theta: \mathcal{D}) & =\log P(\mathbf{o} \mid \theta) \\
& =\log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)
\end{aligned}
$$

EM for HMMs when \mathbf{X} is hidden

- E-step: Use inference (forwards-backwards algorithm)
- M-step: Recompute parameters with weighted data

E-step

- E-step computes probability of hidden vars \mathbf{x} given \mathbf{o}

$$
Q^{(t+1)}(\mathbf{x} \mid \mathbf{o})=P\left(\mathbf{x} \mid \mathbf{o}, \theta^{(t)}\right)
$$

- Will correspond to inference
\square use forward-backward algorithm!

The M-step

- Maximization step:

$$
\theta^{(t+1)} \leftarrow \arg \max _{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta)
$$

- Use expected counts instead of counts:
\square If learning requires $\operatorname{Count}(\mathbf{x}, \mathbf{o})$
\square Use $\mathrm{E}_{\mathrm{Q}(\mathrm{t}+1)}[$ Count $(\mathbf{x}, \mathbf{o})]$

Decomposition of likelihood $P\left(X_{1}\right)$

- Likelihood optimization decomposes:
$\begin{aligned} \max _{\theta} & \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta)= \\ & \max _{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P\left(x_{1} \mid \theta_{X_{1}}\right) P\left(o_{1} \mid x_{1}, \theta_{O \mid X}\right) \prod_{t=2}^{n} P\left(x_{t} \mid x_{t-1}, \theta_{X_{t} \mid X_{t-1}}\right) P\left(o_{t} \mid x_{t}, \theta_{O \mid X}\right)\end{aligned}$

Starting state probability $\mathrm{P}\left(\mathrm{X}_{1}\right)$

- Using expected counts
$\square P\left(X_{1}=a\right)=\theta_{X_{1}=a}$
$\max _{\theta_{X_{1}}} \sum_{\mathrm{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P\left(x_{1} \mid \theta_{X_{1}}\right)$

$$
\theta_{X_{1}=a}=\frac{\sum_{j=1}^{m} Q\left(X_{1}=a \mid \mathbf{o}^{(j)}\right)}{m} 14
$$

Transition probability $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)$

- Using expected counts
$\square \mathrm{P}\left(\mathrm{X}_{\mathrm{t}}=\mathrm{a} \mid \mathrm{X}_{\mathrm{t}-1}=\mathrm{b}\right)=\theta_{\mathrm{Xt}=a \mid \mathrm{Xt}-1=b}$
$\max _{\theta_{X} \mid X_{t-1}} \sum_{\mathrm{x}} Q(\mathrm{x} \mid \mathrm{o}) \log \prod_{t=2}^{n} P\left(x_{t} \mid x_{t-1}, \theta_{X_{t} \mid X_{t-1}}\right)$

$$
\theta_{X_{t}=a \mid X_{t-1}=b}=\frac{\sum_{j=1}^{m} \sum_{t=2}^{n} Q\left(X_{t}=a, X_{t-1}=b \mid \mathbf{o}^{(j)}\right)}{\sum_{j=1}^{m} \sum_{t=2}^{n} \sum_{i=1}^{k} Q\left(X_{t}=i, X_{t-1}=b \mid \mathbf{o}^{(j)}\right)}
$$

Observation probability $\mathrm{P}\left(\mathrm{O}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}}\right)$

- Using expected counts
$\square \mathrm{P}\left(\mathrm{O}_{\mathrm{t}}=\mathrm{a} \mid \mathrm{X}_{\mathrm{t}}=\mathrm{b}\right)=\theta_{\mathrm{Ot}=\mathrm{a} \mid \mathrm{Xt}=\mathrm{b}}$
$\max _{\theta_{O \mid X}} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log \prod_{t=1}^{n} P\left(o_{t} \mid x_{t}, \theta_{O \mid X}\right)$

$$
\theta_{O_{t}=a \mid X_{t}=b}=\frac{\sum_{j=1}^{m} \sum_{t=1}^{n} \delta\left(\mathbf{o}_{t}^{(j)}=a\right) Q\left(X_{t}=b \mid \mathbf{o}^{(j)}\right)}{\sum_{j=1}^{m} \sum_{t=1}^{n} Q\left(X_{t}=b \mid \mathbf{o}^{(j)}\right)}
$$

E-step revisited

$$
Q^{(t+1)}(\mathbf{x} \mid \mathbf{o})=P\left(\mathbf{x} \mid \mathbf{o}, \theta^{(t)}\right)
$$

- E-step computes probability of hidden vars \mathbf{x} given \mathbf{o}
- Must compute:
$\square \mathrm{Q}\left(\mathrm{x}_{\mathrm{t}}=\mathrm{a} \mid \mathbf{0}\right)$ - marginal probability of each position
$\square \mathrm{Q}\left(\mathrm{x}_{\mathrm{t}+1}=\mathrm{a}, \mathrm{x}_{\mathrm{t}}=\mathrm{b} \mid \mathrm{o}\right)$ - joint distribution between pairs of positions

The forwards-backwards algorithm

- Initialization: $\alpha_{1}\left(X_{1}\right)=P\left(X_{1}\right) P\left(o_{1} \mid X_{1}\right)$
- For $\mathrm{i}=2$ to n
\square Generate a forwards factor by eliminating X_{i-1}

$$
\frac{\alpha_{i}\left(X_{i}\right)}{=} \sum_{x_{i-1}} P\left(o_{i} \mid X_{i}\right) P\left(X_{i} \mid X_{i-1}=x_{i-1}\right) \alpha_{\text {o }}(a)\left(x_{i-1}\right)
$$

- Initialization: $\beta_{n}\left(X_{n}\right)=1$
- For $\mathrm{i}=\mathrm{n}-1$ to 1

$$
\alpha_{5}^{\dot{i}}(z)
$$

\square Generate a backwards factor by eliminating $\mathrm{X}_{\mathrm{i}+1}$
$\forall x^{\prime}$

$$
\beta_{i}\left(X_{i}^{=}\right)^{x_{1}}=\sum_{x_{i+1}} P\left(o_{i+1} \mid x_{i+1}\right) P\left(x_{i+1} \mid X_{i}^{\sim}\right) x_{i+1}\left(x_{i+1}\right)
$$

E-step revisited

$$
Q^{(t+1)}(\mathbf{x} \mid \mathbf{o})=P\left(\mathbf{x} \mid \mathbf{o}, \theta^{(t)}\right)
$$

- E-step computes probability of hidden vars \mathbf{x} given o
- Must compute:
$\square \mathrm{Q}\left(\mathrm{x}_{\mathrm{t}}=\mathrm{a} \mid \mathrm{o}\right)$ - marginal probability of each position - Just forwards-backwards!
$\square \mathrm{Q}\left(\mathrm{x}_{\mathrm{t}+1}=\mathrm{a}, \mathrm{x}_{\mathrm{t}}=\mathrm{b} \mid \mathrm{o}\right)$ - joint distribution between pairs of positions

What can you do with EM for HMMs? 1 - Clustering sequences

Independent clustering:
Sequence clustering:

What can you do with EM for HMMs? 2 - Exploiting unlabeled data

- Labeling data is hard work! save (graduate student) time by using both labeled and unlabeled data
\square Labeled data:
- <X="brace",O= >
\square Unlabeled data:
- <X=?????,O= >

Exploiting unlabeled data in clustering

- A few data points are labeled $\square<\mathrm{X}, \mathrm{O}>$
- Most points are unlabeled -<?,o>
- In the E-step of EM:
\square If i'th point is unlabeled:
- compute $\mathrm{Q}\left(\mathrm{X} \mid \mathrm{o}_{\mathrm{i}}\right)$ as usual
\square If i'th point is labeled:

- $\operatorname{set} Q\left(X=x \mid o_{i}\right)=1$ and $Q\left(X \neq x \mid o_{i}\right)=0$
- M-step as usual

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.
\square

Iteration 0	Iteration	Iteration 2
intelligence		$D D$
$D D$	D	D
artificial	Using one	lecture
understanding	labeled	cc
$D D w$	D^{\star}	$D D$
dist	example per	$D D: D D$
identical	class	handout
rus	due	lecture
arrange		problem
games	set	cc
dartmouth		tay
natural	$D D a m$	due
cognitive	yurttas	D^{\star}
logic	homework	homework
proving	kfoury	assignment
prolog	sec	handout
knowledge	postscript	set
human	exam	hw
representation	solution	exam
field	assaf	problem

20 Newsgroups data - advantage of adding unlabeled data

20 Newsgroups data - Effect of additional unlabeled data

Exploiting unlabeled data in HMMs

- A few data points are labeled
$\square<\mathrm{x}, \mathrm{o}>$
- Most points are unlabeled
$\square<?, \mathrm{o}>$
- In the E-step of EM:
\square If i'th point is unlabeled:
- compute $\mathrm{Q}\left(\mathrm{X} \mid \mathrm{o}_{\mathrm{i}}\right)$ as usual
\square If i'th point is labeled:
- $\operatorname{set} Q\left(X=x \mid o_{i}\right)=1$ and $Q\left(X \neq x \mid o_{i}\right)=0$
- M-step as usual
\square Speed up by remembering counts for labeled data

What you need to know

- Baum-Welch = EM for HMMs
- E-step:
\square Inference using forwards-backwards
- M-step:
\square Use weighted counts
- Exploiting unlabeled data:
\square Some unlabeled data can help classification
\square Small change to EM algorithm
- In E-step, only use inference for unlabeled data

Acknowledgements

- Experiments combining labeled and unlabeled data provided by Tom Mitchell

