EM for HMMs a.k.a. The Baum-Welch Algorithm

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 11th, 2007

The general learning problem with missing data

Marginal likelihood – **x** is observed, **z** is missing:

$$\ell(\theta:\mathcal{D}) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} \mid \theta)$$

$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} \mid \theta)$$

$$= \sum_{j=1}^{m} \log \sum_{\mathbf{Z}} P(\mathbf{x}_{j}, \mathbf{z} \mid \theta)$$
Show over (marginelize out)

EM is coordinate ascent

■ **M-step**: Fix Q, maximize F over θ (a lower bound on $\ell(\theta : \mathcal{D})$):

$$\ell(\theta: \mathcal{D}) \geq F(\theta, Q^{(t)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) + m.H(Q^{(t)})$$

E-step: Fix θ, maximize F over Q:

$$\ell(\theta^{(t)}: \mathcal{D}) \ge F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) - m \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_j) || P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})\right)$$

"Realigns" F with likelihood:

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

What you should know about EM

- K-means for clustering:
 - algorithm
 - □ converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it <u>DOES</u>
- EM is coordinate ascent
- General case for EM

Learning HMMs from fully observable data is easy

$$X_1 = \{a, ...z\}$$
 $X_2 = \{a, ...z\}$ $X_3 = \{a, ...z\}$ $X_4 = \{a, ...z\}$ $X_5 = \{a, ...z\}$

Learn 3 distributions:

$$P(X_1)$$

$$P(O_i \mid X_i)$$

$$P(X_i | X_{i-1})$$

Learning HMMs from fully observable data is easy

$$X_1 = \{a, ...z\}$$
 $X_2 = \{a, ...z\}$ $X_3 = \{a, ...z\}$ $X_4 = \{a, ...z\}$ $X_5 = \{a, ...z\}$

Learn 3 distributions:

$$P(X_1)^{-1} = (\text{ount (# first letter a}))$$
 select training distance of the letter was a $P(O_i \mid X_i)^{-1} = (\text{ount (Pixel 12 was white, Xi=9}))$

$$P(X_i^{\circ}|X_{i-}^{\circ})$$

$P(X_i^{\bullet}|X_i^{\bullet})$ What if **O** is observed, but **X** is hidden

Log likelihood for HMMs when **X** is hidden

- Marginal likelihood O is observed, X is missing
 - □ For simplicity of notation, training data consists of only one sequence:

$$\ell(\theta : \mathcal{D}) = \log P(\mathbf{o} \mid \theta)$$
$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

☐ If there were m sequences:

$$\ell(\theta: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o}^{(j)} | \theta)$$

Computing Log likelihood for HMMs when **X** is hidden

$$X_1 = \{a, ...z\}$$
 $X_2 = \{a, ...z\}$ $X_3 = \{a, ...z\}$ $X_4 = \{a, ...z\}$ $X_5 = \{a, ...z\}$

$$\ell(\theta : \mathcal{D}) = \log P(\mathbf{o} \mid \theta)$$
$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

Computing Log likelihood for HMMs when **X** is hidden – variable elimination

Can compute efficiently with variable elimination:

$$\ell(\theta : \mathcal{D}) = \log P(\mathbf{o} \mid \theta)$$
$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

EM for HMMs when X is hidden

E-step: Use inference (forwards-backwards algorithm)

M-step: Recompute parameters with weighted data

E-step

E-step computes probability of hidden vars x given o

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

- Will correspond to inference
 - use forward-backward algorithm!

The M-step

Maximization step:

$$\theta^{(t+1)} \leftarrow \arg \max_{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta)$$

- Use expected counts instead of counts:
 - □ If learning requires Count(x,o)
 - □ Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{o})]$

Decomposition of likelihood $P(X_1)$

revisited $P(O_i \mid X_i)$

Likelihood optimization decomposes:

$$\max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta) = \\ \max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(x_1 \mid \theta_{X_1}) P(o_1 \mid x_1, \theta_{O|X}) \prod_{t=2}^{n} P(x_t \mid x_{t-1}, \theta_{X_t \mid X_{t-1}}) P(o_t \mid x_t, \theta_{O|X})$$

Starting state probability P(X₁)

$$\square$$
 P(X₁=a) = $\theta_{X1=a}$

$$\max_{\theta_{X_1}} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(x_1 \mid \theta_{X_1})$$

$$\theta_{X_1=a} = \frac{\sum_{j=1}^m Q(X_1 = a \mid \mathbf{o}^{(j)})}{m}$$

14

Transition probability $P(X_t|X_{t-1})$

$$\max_{\theta_{X_t|X_{t-1}}} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log \prod_{t=2}^{n} P(x_t \mid x_{t-1}, \theta_{X_t|X_{t-1}})$$

$$\theta_{X_t=a|X_{t-1}=b} = \frac{\sum_{j=1}^m \sum_{t=2}^n Q(X_t=a, X_{t-1}=b \mid \mathbf{o}^{(j)})}{\sum_{j=1}^m \sum_{t=2}^n \sum_{i=1}^k Q(X_t=i, X_{t-1}=b \mid \mathbf{o}^{(j)})}$$

Observation probability P(O_t|X_t)

$$\square$$
 P(O_t=a|X_t=b) = θ _{Ot=a|Xt=b}

$$\max_{\theta_{O|X}} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log \prod_{t=1}^{n} P(o_t \mid x_t, \theta_{O|X})$$

$$\theta_{O_t = a \mid X_t = b} = \frac{\sum_{j=1}^m \sum_{t=1}^n \delta(\mathbf{o}_t^{(j)} = a) Q(X_t = b \mid \mathbf{o}^{(j)})}{\sum_{j=1}^m \sum_{t=1}^n Q(X_t = b \mid \mathbf{o}^{(j)})}$$

E-step revisited

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

- E-step computes probability of hidden vars x given o
- Must compute:
 - \square Q(x_t=a|o) marginal probability of each position
 - □ Q(x_{t+1}=a,x_t=b|o) joint distribution between pairs of positions

The forwards-backwards algorithm

- Initialization: $\alpha_1(X_1) = P(X_1)P(o_1 \mid X_1)$
- For i = 2 to n
- Generate a forwards factor by eliminating X_{i-1}

$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

- Initialization: $\beta_n(X_n) = 1$
- For i = n-1 to 1
 - □ Generate a backwards factor by eliminating X_{i+1}

$$\beta_i(X_i) = \sum_{x_{i+1}} P(o_{i+1} \mid x_{i+1}) P(x_{i+1} \mid X_i) \beta_{i+1}(x_{i+1})$$

■ 8 i, probability is: $P(X_i | o_{1..n})$

 $P(X_i \mid o_{1..n}) \rightleftharpoons \alpha_i(X_i)\beta_i(X_i)$

B1 (X1)X, (X normalized = P(X1101:n)

E-step revisited

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

- E-step computes probability of hidden vars x given o
- Must compute:
 - $\square Q(x_t=a|o)$ marginal probability of each position
 - Just forwards-backwards!
 - □ Q(x_{t+1}=a,x_t=b|o) joint distribution between pairs of positions

What can you do with EM for HMMs? 1 — Clustering sequences

Independent clustering:

Sequence clustering:

What can you do with EM for HMMs? 2

Exploiting unlabeled data

- Labeling data is hard work! save (graduate student) time by using both labeled and unlabeled data
 - □ Labeled data:
 - <X="brace",O=</p>
 - □ Unlabeled data:
 - <X=?????,O=</pre>

Exploiting unlabeled data in clustering

- A few data points are labeled
 - □ <x,o>
- Most points are unlabeled
 - <?,o>
- In the E-step of EM:
 - ☐ If i'th point is unlabeled:
 - compute Q(X|o_i) as usual
 - □ If i'th point is labeled:
 - set $Q(X=x|o_i)=1$ and $Q(X\neq x|o_i)=0$
- M-step as usual

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0		Iteration 1	Iteration 2
intelligence		DD	D
DD		D	DD
artificial	Using one	lecture	lecture
understanding	labeled	cc	cc
DDw		D^{\star}	DD:DD
dist	example per	DD:DD	due
identical		handout	D^{\star}
rus	class	due	homework
arrange		problem	assignment
games		set	handout
dartmouth	tay		set
natural	DDam		hw
cognitive	yurttas		exam
logic	homework		problem
proving	kfoury		DDam
prolog	sec		postscript
knowledge		postscript	solution
human		exam	quiz
representation		solution	chapter
field		assaf	ascii

20 Newsgroups data – advantage of adding unlabeled data

20 Newsgroups data – Effect of additional unlabeled data

Exploiting unlabeled data in HMMs

- A few data points are labeled
 - □ < x,o >
- Most points are unlabeled
 - □ <?,0>
- In the E-step of EM:
 - ☐ If i'th point is unlabeled:
 - compute Q(X|o_i) as usual
 - ☐ If i'th point is labeled:
 - set Q(X=x|o_i)=1 and Q(X≠x|o_i)=0
- M-step as usual
 - Speed up by remembering counts for labeled data

What you need to know

- Baum-Welch = EM for HMMs
- E-step:
 - □ Inference using forwards-backwards
- M-step:
 - □ Use weighted counts
- Exploiting unlabeled data:
 - Some unlabeled data can help classification
 - Small change to EM algorithm
 - In E-step, only use inference for unlabeled data

Acknowledgements

 Experiments combining labeled and unlabeled data provided by Tom Mitchell