EM for HMMs a.k.a. The Baum-Welch Algorithm

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

April 11th, 2007

The general learning problem with missing data

Marginal likelihood – x is observed, z is missing:

$$\ell(\theta:\mathcal{D}) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} \mid \theta)$$

$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} \mid \theta)$$

$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_{j}, \mathbf{z} \mid \theta)$$
Show over (marginelize out)

EM is coordinate ascent

$$\ell(\theta:\mathcal{D}) \geq F(\theta,Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z},\mathbf{x}_j \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

M-step: Fix Q, maximize F over θ (a lower bound on $\ell(\theta : \mathcal{D})$):

$$\ell(\theta:\mathcal{D}) \geq F(\theta,Q^{(t)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z},\mathbf{x}_{j} \mid \theta) + m.H(Q^{(t)})$$
Expected Courts.

E-step: Fix θ , maximize F over Q:

$$\ell(\theta^{(t)}: \mathcal{D}) \ge F(\theta^{(t)}, Q) = \ell(\theta^{(t)}: \mathcal{D}) - \sum_{j=1}^{m} \frac{KL(Q(\mathbf{z} \mid \mathbf{x}_j) || P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)}))}{2}$$

'Realigns" F with likelihood:

$$F(\theta^{(t)}, Q^{(t+1)}) = \ell(\theta^{(t)} : \mathcal{D})$$

What you should know about EM

- K-means for clustering:
 - algorithm
 - □ converges because it's coordinate ascent
- EM for mixture of Gaussians:
 - How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
- Be happy with this kind of probabilistic analysis
- Remember, E.M. can get stuck in local minima, and empirically it DOES
- EM is coordinate ascent
- General case for EM

Learning HMMs from fully

observable data is easy

Learn 3 distributions:
$$P(X_1) = (a...z) - (x_3 = (a...z) - (x_4 = (a...z) - (x_5 = (a...z$$

Learning HMMs from fully observable data is easy

$$X_1 = \{a, \dots z\} \longrightarrow X_2 = \{a, \dots z\} \longrightarrow X_3 = \{a, \dots z\} \longrightarrow X_4 = \{a, \dots z\} \longrightarrow X_5 = \{a, \dots z\} \longrightarrow X_5$$

Learn 3 distributions:

$$P(X_1) = (\text{ount (# first letter a}))$$
 sulect training distant points $P(O_i \mid X_i) = (\text{ount (Pixel 12 was white, Xi=9}))$

$$P(X_i^{\circ}|X_i^{\circ})$$

 $P(X_i^{i}|X_i^{i})$ What if **O** is observed, but **X** is hidden

Log likelihood for HMMs when X is

hidden

Marginal likelihood - O is observed, X is missing

□ For simplicity of notation, training data consists of only one sequence:
, \(\text{Observed} \)

$$\frac{\ell(\theta : \mathcal{D})}{= \log P(\mathbf{o} \mid \theta)}$$

$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

☐ If there were m sequences:

$$\ell(\theta: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o}^{(j)} | \theta)$$

Computing Log likelihood for HMMs when **X** is hidden

$$\begin{array}{l} (A_{1}-A_{2}-A_{2}-A_{3}-A_{4}-A_{3}-A_{4$$

Computing Log likelihood for HMMs when X is hidden – variable elimination

Can compute efficiently with variable elimination:

$$\ell(\theta : \mathcal{D}) = \log P(\mathbf{o} \mid \theta)$$
$$= \log \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{o} \mid \theta)$$

EM for HMMs when X is hidden

E-step: Use inference (forwards-backwards algorithm)

M-step: Recompute parameters with weighted data

if fully observable:
$$\hat{P}(X_1=a) = Count(X_1=a)$$

if hielden vars: $\hat{P}(X_1=a) = \sum_{j=1}^{m} Q(X_1=a)O(j)$

E-step

E-step computes probability of hidden vars x given o

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$
 example

- Will correspond to inference
 - □ use forward-backward algorithm!

The M-step

Maximization step:

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{\mathbf{x}} Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta)$$

■ Use expected counts instead of counts:

- □ If learning requires Count(x,o)
- \square Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{o})]$

Decomposition of likelihood $P(X_1) \leftarrow Q_1$ $P(O_i \mid X_i) \subseteq O_{\mathcal{O}_{\mathcal{V}}}$

Likelihood optimization decomposes:

$$\max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}, \mathbf{o} \mid \theta) = \max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}_{1} \mid \theta_{X_{1}}) P(o_{1} \mid \mathbf{x}_{1}, \theta_{O\mid X}) \prod_{l=2}^{n} P(\mathbf{x}_{l} \mid \mathbf{x}_{l-1}, \theta_{X_{l} \mid X_{l-1}}) P(o_{l} \mid \mathbf{x}_{l}, \theta_{O\mid X})$$

$$\max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}_{1} \mid \theta_{X_{1}}) P(o_{1} \mid \mathbf{x}_{1}, \theta_{O\mid X}) \prod_{l=2}^{n} P(\mathbf{x}_{l} \mid \mathbf{x}_{l-1}, \theta_{X_{l} \mid X_{l-1}}) P(o_{l} \mid \mathbf{x}_{l}, \theta_{O\mid X})$$

$$\max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}_{1} \mid \theta_{X_{1}}) P(o_{1} \mid \mathbf{x}_{1}, \theta_{O\mid X}) \prod_{l=2}^{n} P(\mathbf{x}_{l} \mid \mathbf{x}_{l-1}, \theta_{X_{l} \mid X_{l-1}}) P(o_{l} \mid \mathbf{x}_{l}, \theta_{O\mid X})$$

$$\max_{\theta} \sum_{\mathbf{x}} Q(\mathbf{x} \mid \mathbf{o}) \log P(\mathbf{x}_{1} \mid \theta_{X_{1}}) + \sum_{l=1}^{n} \log P(o_{1} \mid \mathbf{x}_{l}, \theta_{X_{l} \mid X_{l-1}}) P(o_{1} \mid \mathbf{x}_{l}, \theta_{X_{l} \mid X_{l}}) P(o_{1} \mid \mathbf{$$

H siquences:

Starting state probability P(X₁)

Transition probability $P(X_t|X_{t-1})$

Using expected counts

$$P(X_{t}=a|X_{t-1}=b) = \theta_{Xt=a|X_{t-1}=b}$$

$$\max_{\theta X_{t}|X_{t-1}} \sum_{x} Q(x|o) \log \prod_{t=2}^{n} P(x_{t}|x_{t-1},\theta_{X_{t}|X_{t-1}}) = \max_{\theta X_{t}|X_{t-1}} \sum_{x} Q(x|o) \sum_{t=2}^{n} \log P(x_{t}|x_{t-1},\theta_{X_{t}|X_{t-1}}) = \max_{\theta X_{t}|X_{t-1}} \sum_{t=2}^{n} Q(x|o) \log P(x_{t}|X_{t-1},\theta_{X_{t}|X_{t-1}}) = \max_{\theta X_{t}|X_{t-1}} \sum_{t=2}^{n} Q(x|o) \log P(x_{t}|X_{t-1},\theta_{X_{t}|X_{t-1}}) = \max_{\theta X_{t}|X_{t}|} \sum_{t=2}^{n} Q(x|o) \log P(x_{t}|X_{t-1},\theta_{X_{t}|X_{t-1}}) = \max_{\theta X_{t}|X_{t}|} \sum_{t=2}^{n} Q(x_{t}|o) \log P(x_{t}|X_{t-1},\theta_{X_{t}|X_{t-1}}) = \max_{\theta X_{t}|X_{t}|} \sum_{t=2}^{n} Q(x_{t}|o) \log P(x_{t}|X_{t-1},\theta_{X_{t}|X_{t-1}}) = \max_{\theta X_{t}|X_{t}|} \sum_{t=2}^{n} Q(x_{t}|o) \log P(x_{t}|X_{t-1},\theta_{X_{t}|X_{t-1}}) = \min_{\theta X_{t}|X_{t}|} \sum_{t=2}^{n} Q(x_{t}|o) \log P(x_{t}|X_{t}|o) = \min_{\theta X_{t}|X_{t}|} \sum_{t=2}^{n} Q(x_{t}|o) = \min_{\theta X_{t}|X_{t}|} \sum$$

©2005-2007 Carlos Guestrin

Observation probability P(Ot | Xt)

only count for a total of
$$\Omega$$
. (K-1) positions where $O_{t=a}$ $\sum_{j=1}^{m} \sum_{t=1}^{n} \delta(\mathbf{o}_{t}^{(j)} = a) Q(X_{t} = b \mid \mathbf{o}^{(j)})$

$$\theta_{O_t = a \mid X_t = b} = \frac{\sum_{j=1}^m \sum_{t=1}^n \delta(\mathbf{o}_t^{(j)} = a) Q(X_t = b \mid \mathbf{o}^{(j)})}{\sum_{j=1}^m \sum_{t=1}^n Q(X_t = b \mid \mathbf{o}^{(j)})}$$

SZUUD-ZUUT GAHUS GUESHIII

E-step revisited

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

- E-step computes probability of hidden vars x given o
- Must compute:
 - □ Q(x_t=a|**o**) marginal probability of each position
 - □ Q(x_{t+1}=a,x_t=b|o) joint distribution between pairs of positions

use forwards-backerards

The forwards-backwards algorithm

- Initialization: $\alpha_1(X_1) = P(X_1)P(o_1 \mid X_1)$
- For i = 2 to n
- Generate a forwards factor by eliminating X_{i-1}

$$\alpha_i(X_i) = \sum_{x_{i-1}} P(o_i \mid X_i) P(X_i \mid X_{i-1} = x_{i-1}) \alpha_{i-1}(x_{i-1})$$

- Initialization: $\beta_n(X_n) = 1$
- For i = n-1 to 1
 - Generate a backwards factor by eliminating X_{i+1}

$$\beta_i(X_i) = \sum_{x_{i+1}} P(o_{i+1} \mid x_{i+1}) P(x_{i+1} \mid X_i) \beta_{i+1}(x_{i+1})$$

• \forall i, probability is: $P(X_i \mid o_{1..n}) \rightleftharpoons \alpha_i(X_i)\beta_i(X_i)$

orne);zed =P(xn|01:n|

B, (X1)x, (x) normalized = P(X1101:h)

E-step revisited

$$Q^{(t+1)}(\mathbf{x} \mid \mathbf{o}) = P(\mathbf{x} \mid \mathbf{o}, \theta^{(t)})$$

- E-step computes probability of hidden vars x given o
- Must compute:
 - $\square Q(x_t=a|\mathbf{o})$ marginal probability of each position
 - Just forwards-backwards!
 - $\Box Q(x_{t+1}=a,x_t=b|\mathbf{o})$ joint distribution between pairs

What can you do with EM for HMMs? 1

What can you do with EM for HMMs? 2

Exploiting unlabeled data

- Labeling data is hard work → save (graduate student) time by using both labeled and unlabeled data
 - □ Labeled data:
 - □ Unlabeled data:

Exploiting unlabeled data in clustering

- A few data points are labeled
 - <X,0>
- Most points are unlabeled
 - □ <?,o>
- In the E-step of EM:
 - ☐ If i'th point is unlabeled:
 - compute Q(X|o_i) as usual
 - ☐ If i'th point is labeled:
 - set $Q(X=x|o_i)=1$ and $Q(X\neq x|o_i)=0$ M-step as usual

Table 3. Lists of the words most predictive of the course class in the WebkB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0		Iteration 1	Iteration 2
intelligence		DD	D
DD		D	DD
artificial	Using one	lecture	lecture
understanding	labeled	cc	cc
DDw		D^{\star}	DD:DD
dist	example per	DD:DD	$\frac{\mathrm{due}}{D^{\star}}$
identical		handout	\overline{D}^{\star}
rus	class	due	homework
arrange		problem	assignment
games		set	handout
dartmouth		$_{\mathrm{tay}}$	set
natural		DDam	hw
cognitive	yurttas		exam
logic	homework		' problem
proving	kfoury		, DD am
prolog	sec		postscript
knowledge	postscript		solution
human	/	exam	quiz
representation		solution	chapter
field		assaf	ascii

20 Newsgroups data – advantage of adding unlabeled data

20 Newsgroups data – Effect of additional unlabeled data

Exploiting unlabeled data in HMMs

- A few data points are labeled
 - □ <X,0>
- Most points are unlabeled
 - □ <?,o>
- In the E-step of EM:
 - ☐ If i'th point is unlabeled:
 - compute Q(X|o_i) as usual
 - ☐ If i'th point is labeled:
 - set Q(X=x|o_i)=1 and Q(X≠x|o_i)=0
- M-step as usual
 - □ Speed up by remembering counts for labeled data

What you need to know

- Baum-Welch = EM for HMMs
- E-step:
 - □ Inference using forwards-backwards
- M-step:
 - Use weighted counts
- Exploiting unlabeled data:
 - Some unlabeled data can help classification
 - Small change to EM algorithm
 - In E-step, only use inference for unlabeled data

Acknowledgements

 Experiments combining labeled and unlabeled data provided by Tom Mitchell