
Hidden Markov Model Inference 
 
A Hidden Markov Model (HMM) has hidden states X1, …, Xn and observed states O1, …, 
On that have values x1, …, xn and o1, …, on.  These values come from some set (or 
alphabet) xi � {xa, xb, … }, oi � {oa, ob, … }. 
 

 
An HMM is specified by the initial state probability P(X1) for each {xa, xb, …}, the state 
transition probability P(Xi+1|Xi) for pairs of {xa, xb, …}, and the output probability 
P(Oi|Xi) for Xi = {xa, xb, …} and Oi = {oa, ob, …}.  For the purpose of inference, these 
probability tables are known.  One main assumption for Hidden Markov models is that 
the state and out probabilities are time-invariant, holding equivalently for timestep 2 and 
4. 
 
A (sometimes) useful visualization for the state transition model is to draw the graph with 
edges weighted by the conditional probability of traveling from the origin state to the 
destination state. 

 
For (an entirely unrealistic) example, life after college  
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Some useful observations for this HMM might be “what hour you go to sleep,” “how 
much of your diet consists of Ramen noodles,”  “how many papers you read,” etc. � 
 
Remember, Bayes Nets factor (using the Chain Rule) according to their parents, so for a 
HMM: 
 
P(X1, … Xn, O1, … On)  = P(X1) �i=2 to n P(Xi|Xi-1) �i=1 to n P(Oi|Xi).  
 

Viterbi Decoding 
 
We want to find the choice of hidden variable assignments that has the highest 
probability (given the known observations). 
     
Argmaxx1,x2,…xN P(X1=x1, X2=x2, … Xn=xn|O1=o1,…On=on)  
= Argmaxx1,x2,…xN P(X1=x1, X2=x2, … Xn=xn, O1=o1,…On=on)      

By Bayes’ rule and because P(O1=o1,…On=on) is just a constant 
since o1..on known 

 
We can “eliminate” variables in either direction along the chain.   
This is just simple algebra for what order we distribute the maximization.  First use the 
chain rule for the variables and “push” the maximums as far right as possible: 
 
= Argmaxx4 P(O4 = o4|X4 = x4) *  

maxx3 P(X4 = x4|X3 = x3) P(O3 = o3|X3 = x3) *  
 maxx2 P(X3 = x3|X2 = x2) P(O2 = o2|X2 = x2) * 
 maxx1 P(X2 = x2|X1 = x1) P(X1 = x1) P(O1 = o1|X1 = x1)                      
 
Let �i+1(Xi+1 = xi+1) = maxxi P(Xi+1 = xi+1|Xi = xi) P(Oi = oi|Xi = xi) �i(Xi = xi) 

Base case: �0(…) = 1 
 

Then: 
 
Argmaxx1,x2,…xN P(X1=x1, X2=x2, … Xn=xn, O1=o1,…On=on)  
= Argmaxx4 P(O4 = o4|X4 = x4)  �4(X4 = x4) 
= Argmaxx4 P(O4 = o4|X4 = x4) maxx3 P(X4 = x4|X3 = x3) P(O3 = o3|X3 = x3) �3(X3 = x3)  
= … 
 
Algorithm 
Set: �0(…) = 1 
Then compute �1(x1) for each choice of x1 
Then compute �2(x2) for each choice of x2 
Once you have �n(xn), find the xn

* that maximizes P(On = on|Xn = xn) �n(Xn = xn). 
Now you can go backwards and find the xn-1

* such that: 
 �n(Xn = xn

*) = P(Xn = xn
*|Xn-1 = xn-1) P(On = on|Xn = xn

*) �n-1(Xn-1 = xn-1) 
Then find xn-2

* in the same way until you’ve found all x1
*…xn

*. 
 



Or we can eliminate in the other direction as well: 
 
= Argmaxx1 P(X1 = x1) P(O1 = o1|X1 = x1) *  

maxx2 P(X2 = x2|X1 = x1) P(O2 = o2|X2 = x2) *  
 maxx3 P(X3 = x3|X2 = x2) P(O3 = o3|X3 = x3)  * 
 maxx4 P(X4 = x4|X3 = x3) P(O4 = o4|X4 = x4)  
 
Let �i-1(Xi-1 = xi-1) = maxxi P(Xi = xi|Xi-1 = xi-1) P(Oi = oi|Xi = xi) �i(Xi = xi) 

Base case: �n(…) = 1 
  
Then: 
 
Argmaxx1,x2,…xN P(X1=x1, X2=x2, … Xn=xn, O1=o1,…On=on)  
= Argmaxx1 P(X1 = x1) P(O1 = o1|X1 = x1) * �1(X1=x1) 
= Argmaxx1 P(X1 = x1) P(O1 = o1|X1 = x1) *  

maxx2 P(X2 = x2|X1 = x1) P(O2 = o2|X2 = x2) �2(X2=x2) 
= … 
 
Algorithm 
Set: �n(…) = 1 
Then compute �n-1(xn-1) for each choice of xn-1 
Then compute �n-1(xn-2) for each choice of xn-2 
Once you have �1(x1), find the x1

* that maximizes P(X1 = x1) P(O1 = o1|X1 = x1) �1(x1) 
Then find x2

* such that �2(x2
*) = P(X2 = x2

*|X1 = x1) P(O2 = o2|X2 = x2
*) �1(x1

*) 
Then find x3

* similarly…  
 

Forward-Backward Algorithm 
 
We want to find the marginal probability of each hidden variable Xj. 
 
P(Xj|O1=o1,…, On=on)  = P(Xj, O1=o1,…, On=on) * C 

Some constant C, by Bayes’ rule and because P(O1=o1,…On=on) is 
just a constant since o1..on known 

P(Xj, O1=o1,…, On=on) = �x1, x2, … x(i-1), x(i+1), …, xn P(X1, … Xn, O1=o1,…, On=on)  
We are just summing over all other hidden variables except for the 
one we want the marginal of.  This is the definition of 
marginalization. 

 
Bayes Nets factor according to parents, so… 
P(X1,…Xn, O1, …, On) = P(X1) �i=2 to n P(Xi|Xi-1) �i=1 to n P(Oi|Xi) 
 
= P(X1) �i=2 to j P(Xi|Xi-1) �i=1 to j P(Oi|Xi) �i=(j+1) to n P(Xi|Xi-1) �i=(j+1) to n P(Oi|Xi) 
   Splitting up the products 
= P(X1, …, Xj, O1, …, Oi) * P(Xj+1, … Xn, Oi+1, … On|Xj) 
 
So now to get the marginal of Xj 



�x1, x2, … x(j-1), x(j+1), …, xn P(X1, … Xn, O1=o1,…, On=on)  
=  �x1, x2, … x(j-1) P(X1, …, Xj, O1, …, Oj) �x(j+1), …, xn P(Xj+1, … Xn, Oj+1, … On|Xj)  
= �j(xj) �j(xj) 
 
Let �j(xj) = �x1, x2, … x(j-1) P(X1, …, Xj, O1, …, Oi) 
Let �j(xj) = �x(j+1), …, xn P(Xj+1, … Xn, Oj+1, … On|Xj) 
 
Can we compute these efficiently?  Replace every “max” with a “sum” in the Viterbi 
computations of �i(xi) and �i(xi) and run the same algorithms.  Voila! 
 

Discussion 
 
When would you want to find the best “string” of hidden states versus finding the 
distribution for each individual hidden state? 
 
This depends on the application.  If you are trying to make predictions based on having 
the whole string (e.g., if the string is a word), then Viterbi makes more sense since than 
taking the most likely choice for each marginal probability individually, which may 
produce gibberish.  This is because the single most likely sequence of states could differ 
greatly from the sum of a number of possible sequences with a different value in one of 
the hidden variables. 
 
A simple example 
“aaa”   30% probability 
“abb”   20% probability 
“bab”   25% probability 
“bbb”   25% probability 
 
“aaa” is the most likely sequence 
“a” is the most likely first character 
“a” is the most likely second character  
“b” is the most likely third character, … but the string “aab” has 0 probability 
 
 
For other applications, knowing the probability of the hidden state at a particular instant 
is more important (e.g., P(fire)) since there may be many very unlikely paths that led to 
that marginal probability overall being reasonably large (maybe enough to call the fire 
department?) 


