
10701/15781 Machine Learning, Spring 2007: Homework 5

Due: Wednesday, April 25, beginning of the class

Instructions

There are four questions on this assignment. Refer to the webpage for policies regarding collaboration, due
dates, and extensions.

1 [25 points] Bayes Net structure learning [Brian]

1.1 Mutual information

Consider the following dataset with four binary variables A, B, C, D:

A B C D
1 0 1 0
1 0 1 1
1 0 0 1
0 1 0 1
1 0 1 0

Your goal is to learn a Bayesian network structure for this data set.

1. Compute the mutual information I(X, Y ) for each pair of variables X, Y .

2. Using the computed mutual informations, find a tree Bayesian network that maximizes the likelihood
of the training data.
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(b)

Figure 1: Bayesian networks for Question 1.2.1.
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1.2 Learning forests with BIC score

In this part, you will derive a variation of the Chow-Liu algorithm for learning Bayesian networks with forest
graph structure using the BIC score.

1. Recall that the BIC score is

scoreBIC(G;D) = log p(D |G, θG) − NumberParams(G)

2
log M,

where G is a Bayesian network, D is the dataset, θG are the parameters that represent the CPDs in G,
and NumberParams(G) is the total number of independent parameters in the CPDs of G. For example,
for the Bayesian network in Figure 1(a), the number of parameters is NA−1+NA(NB−1) = NANB−1,
where NX = |Val[X ]| is the number of possible values for variable X .

Write down the number of independent parameters in the CPDs for each Bayesian network in Fig-
ure 1(b), in terms of NA, NB, NC , and ND. Show your work.

2. A forest is a graph that consists of one or more connected components, each of which is a tree (but not
a poly-tree, i.e., each node has at most one parent). Prove that the number of independent parameters
for any forest G can be written as

NumberParams(G) =
∑

{X,Y }∈EG

(NX − 1)(NY − 1) +





∑

X∈VG

NX



 − |VG |. (1)

Here, EG are the undirected edges of G and VG are its vertices (variables).

Hint: In a forest G, |VG | = |EG | + #componentsG, where #componentsG is the number of connected

components in G.

3. Using (1), describe an efficient algorithm for learning a forest Bayesian network that maximizes the
BIC score. (Hint: This algorithm is a small modification of Chow Liu.)

2 [20 points] K-means and Gaussian Mixture Models [Andy]

1. Consider the data set in Figure 2. The ’+’ symbols indicate data points, and the (centers of the)
squares A, B, and C indicate the starting cluster centers. Show the results of running the K-means
algorithm on this data set. To do this, use the remaining figures, and for each iteration, indicate which
data points will be associated with each of the clusters, and show the locations of the updated class
centers. If a cluster center has no points associated with it during the cluster update step, it will not
move. Use as many figures as you need until the algorithm converges.

2. Can the starting cluster assignments affect the final output of K-means? If so, draw a data set and
two different starting cluster configurations such that running K-means (where k=3) until convergence
yields two different results. If not, explain why the starting cluster assignments do not matter.

3. Draw a data set where a mixture of spherical Gaussians (where the covariance matrix is the identity
matrix times some positive scalar) can model the data well, but K-means cannot.

4. Draw a data set where a mixture of diagonal Gaussians (where the covariance matrix can have non-zero
values on the diagonal, and zeros elsewhere) can model the data well, but K-means and a mixture of
spherical Gaussians cannot.

5. Draw a data set where a mixture of Gaussians with unrestricted covariance matrices can model the
data well, but K-means and a mixture of diagonal Gaussians cannot.
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Figure 2: K-means data set

3 [20 points] Baum-Welch [Jon]

When fitting a model we generally want to choose parameters that will maximize the likelihood of our data.
Expectation Maximization (EM) algorithm works by guessing initial parameter values, then estimating the
likelihood of the data under the current parameters. These likelihoods can then be used to re-estimate the
parameters, iteratively until a local maximum is reached.
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In this problem, you will derive the EM algorithm for HMMs (also called the Baum-Welch algorithm).
Unlike the problem from HW #4, the training set for this problem is assumed to be unlabeled. The objective
here is to use EM to find the transition matrix (we will ignore the observation model for this problem, though
it’s not much harder to include it).

First we define two hidden variables. Given a series of observations o, ξt(i, j) is defined as the probability
of being in state i at time index t and in state j at time index t + 1:

ξt(i, j) = P (Xt = i, Xt+1 = j|o)

and γt(i) is the posterior probability
γt(i) = P (Xt = i|o)

where o is the sequence of observations.

1. (E-step)

We saw in class that the E-step for Bayes Nets is just inference. For HMM, this means that we must
calculate the distribution of hidden variables ξt(i, j) and γt(i). In class we also derived the expression
of γt(i) as

γt(i) =
αt(i)βt(i)

∑

i αt(i)βt(i)

Now show that ξt(i, j) can be computed as:

ξt(i, j) =
αt(i)ai,jbj(ot+1)βt+1(j)

P (o)

where αt and βt are the factors from Forward-Backward algorithm. ai,j and bj(ot+1) are the parameters
of the model: ai,j is the probability of making a transition from state i to state j; ot+1 is the t + 1-th
element of the observation sequence o; and bj(ot+1) is the probability of emitting ot+1 if we are in state
j.

2. (M-step)

The M-step for Bayes Nets sets:

P (Xi = xi|PaXi
= z) =

E[Count(Xi = xi,PaXi
= z)]

E[Count(PaXi
= z)]

Use this M-step update rule to show that for Baum-Welch, we can re-estimate the model parameters
using the following formulas:

π(i) =

∑N
n γn,1(i)

N
(2)

where π(i) = P (X1 = i) is the starting state distribution, and N is the number of training examples.
and

ai,j =

∑N
n

∑T−1
t=1 ξn,t(i, j)

∑N
n

∑T−1
t=1 γn,t(i)

(3)

where the ai,j are the transition probabilities as in part (1).

4 [35 points] Spectral Clustering [Jon & Purna]

There is a class of clustering algorithms, called spectral clustering algorithms, which has recently become
quite popular. Many of these algorithms are quite easy to implement and perform well on certain clustering
problems compared to more traditional methods like k-means. In this problem, we will try to develop some
intuition about why these approaches make sense and implement one of these algorithms.

Before beginning, we’ll review a few basic linear algebra concepts you may find useful for some of the
problems.
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• If A is a matrix, it has an v with eigenvalue λ if Av = λv.

• For any m × m symmetric matrix A, the Singular Value Decomposition of A yields a factorization of
A into

A = USUT

where U is an m × m orthogonal matrix (meaning that the columns are pairwise orthogonal). and
S = diag(|λ1|, |λ2|, . . . , |λm|) where the λi are the eigenvalues of A.

Given a set of m datapoints x1, . . . , xm, the input to a spectral clustering algorithm typically consists of
a matrix, A, of pairwise similarities between datapoints. A is often called the affinity matrix. The choice of
how to measure similarity between points is one which is often left to the practitioner. A very simple affinity
matrix can be constructed as follows:

A(i, j) = A(j, i) =

{

1 if d(xi, xj) < Θ
0 otherwise

(4)

where d(xi, xj) denotes the Euclidean distance between points xi and xj .
The general idea of spectral clustering is to construct a mapping of the datapoints to an eigenspace of

A with the hope that points are well separated in this eigenspace so that something simple like k-means
applied to these new points will perform well.

Figure 3: Simple dataset

As an example, consider forming the affinity matrix for the dataset in Figure 3 using Equation 4 with
Θ = 1. We have that

A =













a b c d

a 1 1 0 0
b 1 1 0 0
c 0 0 1 1
d 0 0 1 1













Now for this particular example, the clusters {a, b} and {c, d} show up as nonzero blocks in the affinity
matrix. This is, of course, artificial, since we could have constructed the matrix A using any ordering of
{a, b, c, d}. For example, another possibile affinity matrix for A could have been:

Ã =













a c b d

a 1 0 1 0
c 0 1 0 1
b 1 0 1 0
d 0 1 0 1













The key insight here is that the eigenvectors of matrices A and Ã have the same entries (just permuted).
The eigenvectors with nonzero eigenvalue of A are: e1 = (.7, .7, 0, 0)T , e2 = (0, 0, .7, .7)T . And the nonzero
eigenvectors of Ã are: ẽ1 = (.7, 0, .7, 0)T , ẽ2 = (0, .7, 0, .7)T . Spectral clustering embeds the original data-
points in a new space by using the coordinates of these eigenvectors. Specifically, it maps the point xi to
the point (e1(i), e2(i), . . . , ek(i)) where e1, . . . , ek are the top k eigenvectors of A. We refer to this mapping
as the spectral embedding. See Figure 4 for an example.

1. For the dataset in Figure 5 assume that the first cluster has m1 points and the second one has m2

points. If we use equation 4 to compute affinity matrix A, is there a value of Θ for which you can
analytically compute the first two eigenvalues and eigenvectors? If not, explain why not. If yes, what
are they? What are the other eigenvalues ?
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Figure 4: Using the eigenvectors of A to embed the datapoints. Notice that the points {a, b, c, d} are tightly
clustered in this space
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Figure 5: Dataset with rectangles

2. As in Figure 4 we can now compute the spectral embedding of the datapoints using the k top eigen-
vectors. For the dataset in figure 5 write down your best guess for the coordinates of the k = 2 cluster
centers using the Θ that you picked in part 1.

3. A desirable property for any clustering algorithm is that its output should be be invariant with re-
spect to the ordering of the datapoints. Let A be the affinity matrix constructed using the ordering
x1, . . . , xm. And let B be the affinity matrix constructed using the ordering xπ(1), . . . , xπ(m) where π

is a permutation of {1, . . . , m}.
A permutation matrix P is a matrix obtained by permuting the columns of an m×m identity matrix
according to some permutation of the numbers 1 to m. Every row and column therefore contains
precisely a single 1 with 0s everywhere else, and every permutation corresponds to a unique permutation
matrix. For example, one possible permutation matrix is:

P =









1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0









(a) Show that there exists a permutation matrix P such that AP = PB. Hint: Work a few exam-

ples to see how left multiplication by a permutation matrix compares to right multiplication by a

permutation matrix.
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(b) Show that PT P = I.

4. Show that A and B have the same eigenvectors up to a permutation of the entries. Hint: Use the

Singular Value Decomposition and the fact that both A and B are symmetric.

4.1 Algorithm description

Frequently, the affinity matrix is constructed as

Aij = e−d(xi,xj)
2/σ (5)

where σ is some user-specified parameter. The best that we can hope for in practice is a near block-diagonal
affinity matrix. It can be shown in this case, that after projecting to the space spanned by the top k

eigenvectors, points which belong to the same block are close to each other in a euclidean sense. We won’t
try to prove this, but using this intuition, you will implement one (of many) possible spectral clustering
algorithms. This particular algorithm is described in

On Spectral Clustering: Analysis and an algorithm

Andrew Y. Ng, Michael I. Jordan, Yair Weiss (2001)

We won’t try to justify every step, but see the paper if you are interested. The steps are as follows:

• Construct an affinity matrix A using Equation 5.

• Symmetrically ‘normalize’ the rows and columns of A to get a matrix N : such that N(i, j) = A(i,j)√
d(i)d(j)

,

where d(i) =
∑

k A(i, k).

• Construct a matrix Y whose columns are the first k eigenvectors of N .

• Normalize each row of Y such that it is of unit length.

• Cluster the dataset by running k-means on the set of spectrally embedded points, where each row of
Y is a datapoint.

1. Run k-means on the datasets provided on the class webpage and provide plots of the results. For
text.mat, take k = 6. For all others use k = 2.

2. Implement the above spectral clustering algorithm and run it on the four provided datasets using the
same k. Plot your clustering results using σ = .025, .05, .2, .5. Hints: You may find the MATLAB

functions pdist and eig to be helpful. A function plotClusters.m has been provided to help visualize

clustering results.

3. Plot the first 10 eigenvalues for the rectangles.mat and text.mat datasets when σ = .05. What do you
notice?

4. How do k-means and spectral clustering compare?
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Figure 6: Synthetic Datasets.
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