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Neural Nets:
Many possible refs
e.g., Mitchell Chapter 4

Simple Model Selection
Cross Validation
Regularization
Neural Networks
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Announcements

� Recitations stay on Thursdays
� 5-6:30pm in Wean 5409
� This week: Cross Validation and Neural Nets

� Homework 2
� Due next Monday, Feb. 20th

� Updated version online with more hints
� Start early
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OK… now we’ll learn to pick those 
darned parameters…

� Selecting features (or basis functions)
� Linear regression
� Naïve Bayes
� Logistic regression

� Selecting parameter value
� Prior strength 

� Naïve Bayes, linear and logistic regression
� Regularization strength

� Naïve Bayes, linear and logistic regression
� Decision trees

� MaxpChance, depth, number of leaves
� Boosting

� Number of rounds
� More generally, these are called Model Selection Problems
� Today: 

� Describe basic idea
� Introduce very important concept for tuning learning approaches: Cross-Validation



©2006 Carlos Guestrin 4

Test set error as a function of 
model complexity
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Simple greedy model selection algorithm

� Pick a dictionary of features
� e.g., polynomials for linear regression

� Greedy heuristic:
� Start from empty (or simple) set of 

features F0 = ∅
� Run learning algorithm for current set 

of features Ft
� Obtain ht

� Select next best feature Xi
� e.g., Xj that results in lowest training error 

learner when learning with Ft  ∪ {Xj}
� Ft+1 ← Ft ∪ {Xi}
� Recurse
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Greedy model selection

� Applicable in many settings:
� Linear regression: Selecting basis functions
� Naïve Bayes: Selecting (independent) features P(Xi|Y)
� Logistic regression: Selecting features (basis functions)
� Decision trees: Selecting leaves to expand

� Only a heuristic!
� But, sometimes you can prove something cool about it

� e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that 
include Naïve Bayes

� There are many more elaborate methods out there
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Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough? 
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Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough?
� When test set error is low enough? 
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Validation set

� Thus far: Given a dataset, randomly split it into two parts: 
� Training data – {x1,…, xNtrain}
� Test data – {x1,…, xNtest}

� But Test data must always remain independent!
� Never ever ever ever learn on test data, including for model selection

� Given a dataset, randomly split it into three parts: 
� Training data – {x1,…, xNtrain}
� Validation data – {x1,…, xNvalid}
� Test data – {x1,…, xNtest}

� Use validation data for tuning learning algorithm, e.g., model 
selection
� Save test data for very final evaluation
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Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough?
� When test set error is low enough?
� When validation set error is low enough? 



©2006 Carlos Guestrin 11

Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough?
� When test set error is low enough?
� When validation set error is low enough?
� Man!!! OK, should I just repeat until I get tired???

� I am tired now…
� No, “There is a better way!”
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(LOO) Leave-one-out cross validation

� Consider a validation set with 1 example:
� D – training data
� D\i – training data with i th data point moved to validation set

� Learn classifier hD\i with D\i dataset
� Estimate true error as:

� 0 if hD\i classifies i th data point correctly
� 1 if hD\i is wrong about i th data point
� Seems really bad estimator, but wait!

� LOO cross validation: Average over all data points i:
� For each data point you leave out, learn a new classifier hD\i

� Estimate error as: 
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LOO cross validation is (almost) 
unbiased estimate of true error!

� When computing LOOCV error, we only use m-1 data points
� So it’s not estimate of true error of learning with m data points!
� Usually pessimistic, though – learning with less data typically gives worse answer

� LOO is almost unbiased!
� Let errortrue,m-1 be true error of learner when you only get m-1 data points
� In homework, you’ll prove that LOO is unbiased estimate of errortrue,m-1:

� Great news!
� Use LOO error for model selection!!!
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Simple greedy model selection algorithm

� Greedy heuristic:
� …
� Select next best feature Xi

� e.g., Xj that results in lowest training error 
learner when learning with Ft  ∪ {Xj}

� Ft+1 ← Ft ∪ {Xi}
� Recurse

When do you stop???
� When training error is low enough?
� When test set error is low enough?
� When validation set error is low enough?
� STOP WHEN errorLOO IS LOW!!!
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Using LOO error for model selection
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Computational cost of LOO

� Suppose you have 100,000 data points
� You implemented a great version of your learning 

algorithm
� Learns in only 1 second 

� Computing LOO will take about 1 day!!!
� If you have to do for each choice of basis functions, it will 

take fooooooreeeve’!!!
� Solution 1: Preferred, but not usually possible

� Find a cool trick to compute LOO (e.g., see homework)
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Solution 2 to complexity of computing LOO:  
(More typical) Use k-fold cross validation

� Randomly divide training data into k equal parts
� D1,…,Dk

� For each i
� Learn classifier hD\Di using data point not in Di 
� Estimate error of hD\Di on validation set Di:

� k-fold cross validation error is average over data splits:

� k-fold cross validation properties:
� Much faster to compute than LOO
� More (pessimistically) biased – using much less data, only m(k-1)/k
� Usually, k = 10 ☺
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Regularization – Revisited 

� Model selection 1: Greedy
� Pick subset of features that have yield low LOO error

� Model selection 2: Regularization
� Include all possible features!
� Penalize “complicated” hypothesis
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Regularization in linear regression

� Overfitting usually leads to very large parameter choices, e.g.:

� Regularized least-squares (a.k.a. ridge regression), for λ≥0:

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + …
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Other regularization examples

� Logistic regression regularization
� Maximize data likelihood minus penalty for large parameters

� Biases towards small parameter values

� Naïve Bayes regularization
� Prior over likelihood of features
� Biases away from zero probability outcomes

� Decision tree regularization
� Many possibilities, e.g., Chi-Square test and MaxPvalue parameter
� Biases towards smaller trees
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How do we pick magic parameter?

λ in Linear/Logistic Regression
(analogously for # virtual examples in Naïve Bayes, 
MaxPvalue in Decision Trees)

Cross Validation!!!!
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Regularization and Bayesian learning

� We already saw that regularization for logistic 
regression corresponds to MAP for zero mean, 
Gaussian prior for w

� Similar interpretation for other learning approaches:
� Linear regression: Also zero mean, Gaussian prior for w
� Naïve Bayes: Directly defined as prior over parameters
� Decision trees: Trickier to define… but we’ll get back to this
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Occam’s Razor

� William of Ockham (1285-1349) Principle of Parsimony:
� “One should not increase, beyond what is necessary, the number of

entities required to explain anything.”
� Regularization penalizes for “complex explanations”

� Alternatively (but pretty much the same), use Minimum 
Description Length (MDL) Principle:
� minimize length(misclassifications) + length(hypothesis)

� length(misclassifications) – e.g., #wrong training examples
� length(hypothesis) – e.g., size of decision tree
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Minimum Description Length Principle

� MDL prefers small hypothesis that fit data well:

� LC1(D|h) – description length of data under code C1 given h
� Only need to describe points that h doesn’t explain (classify correctly)

� LC2(h) – description length of hypothesis h
� Decision tree example

� LC1(D|h) – #bits required to describe data given h
� If all points correctly classified, LC1(D|h) = 0

� LC2(h) – #bits necessary to encode tree
� Trade off quality of classification with tree size
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Bayesian interpretation of MDL Principle

� MAP estimate

� Information theory fact:
� Smallest code for event of probability p requires –log2p bits

� MDL interpretation of MAP:
� -log2 P(D|h) – length of D under hypothesis h
� -log2 P(h) – length of hypothesis h (there is hidden parameter here)
� MAP prefers simpler hypothesis:

� minimize length(misclassifications) + length(hypothesis)

� In general, Bayesian approach usually looks for simpler 
hypothesis – Acts as a regularizer
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What you need to know about Model Selection, 
Regularization and Cross Validation

� Cross validation
� (Mostly) Unbiased estimate of true error
� LOOCV is great, but hard to compute
� k-fold much more practical
� Use for selecting parameter values!

� Model selection
� Search for a model with low cross validation error

� Regularization
� Penalizes for complex models
� Select parameter with cross validation
� Really a Bayesian approach

� Minimum description length
� Information theoretic interpretation of regularization
� Relationship to MAP
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Logistic regression

� P(Y|X) represented by:

� Learning rule – MLE:
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Sigmoid

w0=2, w1=1 w0=0, w1=1 w0=0, w1=0.5
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Perceptron as a graph
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Linear perceptron
classification region
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Optimizing the perceptron

� Trained to minimize sum-squared error
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Derivative of sigmoid
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The perceptron learning rule

� Compare to MLE:
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Percepton, linear classification, 
Boolean functions
� Can learn x1 ∨ x2

� Can learn x1 ∧ x2

� Can learn any conjunction or disjunction
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Percepton, linear classification, 
Boolean functions
� Can learn majority

� Can perceptrons do everything?
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Going beyond linear classification

� Solving the XOR problem
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Hidden layer

� Perceptron:

� 1-hidden layer:  



Example data for NN with hidden layer
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Learned weights for hidden layer
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NN for images
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Weights in NN for images
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Forward propagation for 1-hidden 
layer - Prediction
� 1-hidden layer:  
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Gradient descent for 1-hidden layer –
Back-propagation: Computing

Dropped w0 to make derivation simpler
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Gradient descent for 1-hidden layer –
Back-propagation: Computing

Dropped w0 to make derivation simpler
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Multilayer neural networks
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Forward propagation – prediction

� Recursive algorithm
� Start from input layer
� Output of node Vk with parents U1,U2,…:
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Back-propagation – learning

� Just gradient descent!!! 
� Recursive algorithm for computing gradient
� For each example

� Perform forward propagation 
� Start from output layer
� Compute gradient of node Vk with parents U1,U2,…
� Update weight wi

k
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Many possible response functions

� Sigmoid

� Linear

� Exponential

� Gaussian

� …
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Convergence of backprop

� Perceptron leads to convex optimization
�Gradient descent reaches global minima

� Multilayer neural nets not convex
�Gradient descent gets stuck in local minima
� Hard to set learning rate
� Selecting number of hidden units and layers =  fuzzy process
� NNs falling in disfavor in last few years
�We’ll see later in semester, kernel trick is a good alternative
� Nonetheless, neural nets are one of the most used ML 

approaches
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Training set error

� Neural nets represent 
complex functions
�Output becomes more complex 

with gradient steps

� Training set error
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What about test set error?
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Overfitting

� Output fits training data “too well”
� Poor test set accuracy

� Overfitting the training data 
� Related to bias-variance tradeoff 
�One of central problems of ML

� Avoiding overfitting?
�More training data
� Regularization
� Early stopping
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What you need to know

� Perceptron:
� Representation
� Perceptron learning rule
� Derivation

� Multilayer neural nets
� Representation
� Derivation of backprop
� Learning rule

� Overfitting
� Definition
� Training set versus test set
� Learning curve
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