Neural Nets:
Many possible refs
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Announcements
" A
m Recitations stay on Thursdays

5-6:30pm in Wean 5409
This week: Cross Validation and Neural Nets

m Homework 2
Due next Monday, Feb. 20t
Updated version online with more hints
Start early

©2006 Carlos Guestrin



OK... now we'll learn to pick those

_ _darned parameters. ..

m Selecting features (or basis functions)
Linear regression
Naive Bayes
Logistic regression
m Selecting parameter value
Rrior strength
= Naive Bayes, linear and logistic regression
Regularization strength
= Naive Bayes, linear and logistic regression
Decision trees
» MaxpChance, depth, number of leaves

Boosting
= Number of rounds

= More generally, these are called Model Selectior%

= Today: T
Describe basic idea

Introduce very important concept for tuning learning approaches: Cross-Validation
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Test set error as a function of

_ model comglexity
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Simple greedy model selection algorithm

" A
m Pick a dictionary of features
e.g., polynomials for linear regression

m Greedy heuristic: |, |

Start from empty (or simple) set of
features Fy = &

Run learning algorithm for current set

of featuresiE

= Obtain h,

Select next best feature X

= .9, X that results in lowest training error
learner when learning with F, U {Xj}%

I:t+1 — I:t U {xi} B
Recurse

(& bart pert)
X X5 K3 X
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Greedy model selection
"
m Applicable in many settings:
Linear regression: Selecting basis functions
Naive Bayes: Selecting (independent) features P(X|Y)

Logistic regression: Selecting features (basis functions)
Decision trees: Selecting leaves to expand

m Only a heuristic!

But, sometimes you can prove something cool about it

m e.d., [Krause & Guestrin '05]: Near-optimal in some settings that
Include Naive Bayes

m There are many more elaborate methods out there
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}

When do you stop???

m When training error is low enough?

- e 51|

[ 4
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

m When-training-errerislow-enough?—
m \When test set error is low enough?
Y\L\/Ll/ eNLy e NAY I,(_QV:A IS J‘QﬁL
Aevte )\ | l
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Validation set
" A

m Thus far: Given a dataset, randomly split it into two parts:
Training data — {X4,..., Xntain} ) { ’h’*\“ ,%] Fess)
Test data — {Xy,..., Xntest)

m But Test data must always remain independent!
Never ever ever ever learn on test data, including for model selection

m Given a dataset, randomly split it into three parts:
Training data — {Xy,..., Xnain} — ey
Validation data — {Xy, ..., Xnyaiia} I Lrein /%j
Test data — {X;,..., Xyest} - ,

m Use validation data for tuning learning algorithm, e.g., model
selection
Save test data for very final evaluation

—
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

m ‘Whentraining-errorislow-enedgh?—
m \Whentestseterrer-istew-enough?—
m \When validation set error is low enough?

@Vm/%_’- f)\f) \/o\\'lﬁ(orj\"o/\ &Q"‘
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Simple greedy model selection algorithm
" S

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

When-training-errer-is-lew-eneugh?—

H

H

m ‘Whenvalidatioh-seterrorislow-enough?

m Man!!! OK, should | just repeat until | get tired???

| am tired now...

No, “There is a better way!”
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(LOO) Leave-one-out cross validation
" S

m Consider a validation set with 1 example:
D — training data
D\i — training data with i th data point moved to validation set
m Learn classifier h; with D\i dataset
m Estimate true error as:
0 if hy, classifies ith data point correctly
1 if hy, iIs wrong about i th data point
Seems really bad estimator, but wait!
m LOO cross validation: Average over all data points i:

For each data point you leave out, learn a new classifier hp,
Estimate error as:

m . .
errorLo0 = — > 1 (hp\z'(XZ) 7 yz)
=1
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LOO cross validation is (almost)
unblased estimate of true error!
S

m  When computing LOOCV error, we only use m-1 data points
So it’s not estimate of true error of learning with m data points!
Usually pessimistic, though — learning with less data typically gives worse answer

m LOO is almost unbiased!
Let error,, . ., b€ true error of learner when you only get m-1 data points
In homework, you’ll prove that LOO is unbiased estimate of error

Eplerrorpool = ETTOTtrue,m—1

true,m-1-

m Great news!
Use LOO error for model selection!!!
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Simple greedy model selection algorithm
"

m Greedy heuristic:

Select next best feature X;

m eg., Xj that results in lowest training error
learner when learning with F, U {X}

U {Xi}
When do you stop???

n ‘When-tralning-erroristow-enough?—

m \Whentestseterrer-istew-enough?—

. W] idat o he
m STOP WHEN error oo IS LOW!!
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Using LOO error for model selection
" S
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Computational cost of LOO
" A
m Suppose you have 100,000 data points

m You implemented a great version of your learning
algorithm

Learns in only 1 second

m Computing LOO will take about 1 day!!!

If you have to do for each choice of basis functions, it will
take fooooooreeeve’!!!

m Solution 1: Preferred, but not usually possible
Find a cool trick to compute LOO (e.g., see homework)
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Solution 2 to complexity of computing LOO:

(More txﬁicala Use k-fold cross validation

m Randomly divide training data into k equal parts

m Foreachi
Learn classifier hyp; using data point not in D,
Estimate error of hy,; on validation set D;:
errorp, = k Z 1 (hp\pi(xj) = yj>
(x7,y/)ED;
m k-fold cross validation error is average over data splits:

1 k
BTTOTk_fOld == Z Z 6?"7"0?"1)2.
Vi=1

m Kk-fold cross validation properties:
Much faster to compute than LOO
More (pessimistically) biased — using much less data, only m(k-1)/k
Usually, k =10 ©
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Regularization — Revisited
" J
m Model selection 1: Greedy
Pick subset of features that have yield low LOO error

m Model selection 2: Regularization
Include all possible features!
Penalize “complicated” hypothesis
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Regularization in linear regression
" S

m Overfitting usually leads to very large parameter choices, e.g.:
2.2 +3.1 X —0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized least-squares (a.k.a. ridge regression), for A>0:

2 k
w* = arg m“i’nz (t(xj) — Zwihi(xj)) + )\wa
j 7 t=1

©2006 Carlos Guestrin 19



Other regularization examples
"

m Logistic regression regularization
Maximize data likelihood minus penalty for large parameters
N\ V. —~7 T a N\ v~ 1 2
argmax ) In P(y’|x7, w) — A} wj
] (/

Biases towards small parameter values

m Naive Bayes regularization
Prior over likelihood of features
Biases away from zero probability outcomes

m Decision tree regularization
Many possiblilities, e.g., Chi-Square test and MaxPvalue parameter
Biases towards smaller trees
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How do we pick magic parameter?
" S
Cross Validation!!!!

A in Linear/Logistic Regression
(analogously for # virtual examples in Naive Bayes,

MaxPvalue in Decision Trees)
©2006 Carlos Guestrin 21



Regularization and Bayesian learning
" S

/n{T'IT | V Y\
F\ /

- x P(Y | X, w)p(w)
| A 7.[‘. A i 5 \.l. I J‘.7 / \

m \We already saw that regularization for logistic

regression corresponds to MAP for zero mean,
Gaussian prior for w

m Similar interpretation for other learning approaches:
Linear regression: Also zero mean, Gaussian prior for w
Naive Bayes: Directly defined as prior over parameters
Decision trees: Trickier to define... but we’ll get back to this
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Occam’s Razor

" A
m William of Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary, the number of
entities required to explain anything.”

m Regularization penalizes for “complex explanations”

m Alternatively (but pretty much the same), use Minimum
Description Length (MDL) Principle:
minimize length(misclassifications) + length(hypothesis)

m |length(misclassifications) — e.g., #wrong training examples
m |length(hypothesis) — e.g., size of decision tree

©2006 Carlos Guestrin 23



Minimum Description Length Principle

" J
m MDL prefers s aII hypothesis that fit data well:

L-,(D|h) — description length of data under code C, given h
= Only need to describe points that h doesn’t explain (classify correctly)

L,(h) — description length of hypothesis h

m Decision tree example

L,(D]h) — #bits required to describe data given h
= If all points correctly classified, L-,(D|h) =0

L,(h) — #bits necessary to encode tree
Trade off quality of classification with tree size
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Bayesian interpretation of MDL Principle

"

m MAP estimate hyap = argmax [P(D | h)P(h)]

argmax [log> P(D | h) + logs P(h)]
h

argmin [—logpy P(D | h) — logs P(h)
h

m Information theory fact:
Smallest code for event of probability p requires —log,p bits

m MDL interpretation of MAP:
-log, P(DJh) — length of D under hypothesis h
-log, P(h) — length of hypothesis h (there is hidden parameter here)

MAP prefers simpler hypothesis:
m minimize length(misclassifications) + length(hypothesis)

m In general, Bayesian approach usually looks for simpler
nypothesis — Acts as a regularizer
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What you need to know about Model Selection,

Regularization and Cross Validation
" J
m Cross validation
(Mostly) Unbiased estimate of true error
LOOCV is great, but hard to compute
k-fold much more practical
Use for selecting parameter values!
m Model selection
Search for a model with low cross validation error
m Regularization
Penalizes for complex models
Select parameter with cross validation
Really a Bayesian approach
m Minimum description length

Information theoretic interpretation of regularization
Relationship to MAP
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Logistic regression

" A
m P(Y|X) represented by:

;

PY=1|z,W) =

= g(wp + Z’UJ@.’EZ)
m Learning rule — MLE: i
82(:3:) = Zw‘g[yj — P(Yj =1 | :Uj,W)]

= Yy — g(wo + 3 wiz))]
7 7

w,;  — wz-—l—nz:ng(sj

59 = —g(wo+2wz z))
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Sigmoid
"

1
1 4 e~ (wot)_; wiz;)

g(wo + Z WiT;) =

Wo=2, w;=1 wy=0, w;=1 wy=0, w;=0.5

1 1
0.9r b 0.9r
0.8¢ B 0.8¢
0.7¢ b 0.7¢
0.6 b 0.6
0.5¢ B 0.5¢
041 7 041
0.3r b 0.3r
0.2¢ b 0.2¢
0.1 B 0.1

06 4 2 0 2 4 6 0—6 4 2 6 2 4 6 06 4 2 0 2 4 6
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Perceptron as a graph
" J

““““
----------

g(wg + ; wix;) = 1+ o— (wot); wix;)
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Linear perceptron

classification region
" S

““““
----------

g(wg + ; wix;) = 1+ o— (wo+); wix;)
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Optimizing the perceptron
"
m Trained to minimize sum-squared error
(W) = S5 — glwo + Y wirh)?
7 (2

©2006 Carlos Guestrin
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Derivative of sigmoid
"

DLW . Ny -
W) = W — oo+ S wiad)] af g/ wo + Y wiad)
i j i i
g(z) = 1_|_1€—:1:
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The perceptron learning rule
" J

w; wz'—l—nz.ccg5j
J

& = [y - glwo+ Y wia)lg’ (1 - ¢’

g’ = g(wo+ ) wiz))
)

m Compare to MLE:

, , i |
wi = witn) T G e+ wed)
] i
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Percepton, linear classification,
_ _Boolean functions
JEE

m Can learn x; V X,

m Can learn x; A X,

m Can learn any conjunction or disjunction

©2006 Carlos Guestrin

34



Percepton, linear classification,
_ _Boolean functions
JEE

m Can learn majority

m Can perceptrons do everything?

©2006 Carlos Guestrin

35



Going beyond linear classification
" I
m Solving the XOR problem

©2006 Carlos Guestrin
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Hidden layer
" A
m Perceptron: out(x) = g(wo + ) wiz;)

m 1-hidden layer:
out(x) = g (wo + Zwkg(w’é + wafffz))
k i

©2006 Carlos Guestrin
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A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

LUUU Al ivo uucotLlinl

Example data for NN with hidden layer
" S
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Learned weights for hidden layer
"

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001




NN for images
" S

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

eV VY W IV UL
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Weights in NN for images
" S

Learned Weights

E n
'E_I
w I l

Typical input images
©2006 Carlos Guestrin

41



Forward propagation for 1-hidden

. laver_brediction

m 1-hidden layer:
out(x) = g (wo + Zwkg(wl(g + wamz))
k i

©2006 Carlos Guestrin
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Gradient descent for 1-hidden layer —

Back-BroBagatlon Computing %

Dropped w, to make derivation simpler
(W) = —Z vl — out(x9)]? °

out(x) = g(zwkg(zwzxz))
k 1

oew) dout(x)
dwp —ly — out(x)] u
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Gradient descent for 1-hidden layer —

Back-BroBagatlon Computing 2™

Dropped w, to make derivation simpler
(W) = —Z vl — out(x9)]? °

out(x) = g(zwkg(zwzxz))
k 1

32%/) _ —[y—out(x)]a()g;}x)
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Multilayer neural networks
" J

©2006 Carlos Guestrin
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Forward propagation — prediction
" J

m Recursive algorithm

m Start from input layer

m Output of node V, with parents U,,U,,...:

Vie = 9(2’%{?(%’)
i
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Back-propagation — learning

" A
m Just gradient descent!!!
m Recursive algorithm for computing gradient

m For each example
Perform forward propagation
Start from output layer
Compute gradient of node V, with parents U,,U,,...
Update weight wX

©2006 Carlos Guestrin
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Many possible response functions
"

m Sigmoid

m Linear

m Exponential

m Gaussian

©2006 Carlos Guestrin
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Convergence of backprop
" J
m Perceptron leads to convex optimization
Gradient descent reaches global minima

m Multilayer neural nets not convex
Gradient descent gets stuck in local minima
Hard to set learning rate
Selecting number of hidden units and layers = fuzzy process
NNs falling in disfavor in last few years
We'll see later in semester, kernel trick is a good alternative

Nonetheless, neural nets are one of the most used ML
approaches
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Training set error
" A
m Neural nets represent
complex functions

Output becomes more complex
with gradient steps

m Training set error

©2006 Carlos Guestrin
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What about test set error?
" A

©2006 Carlos Guestrin
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Overfitting
"
m Output fits training data “too well”
Poor test set accuracy

m Overfitting the training data
Related to bias-variance tradeoff
One of central problems of ML

m Avoiding overfitting?
More training data
Regularization
Early stopping

©2006 Carlos Guestrin
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What you need to know
" S
m Perceptron:
Representation

Perceptron learning rule
Derivation

m Multilayer neural nets
Representation
Derivation of backprop
Learning rule

m Overfitting
Definition
Training set versus test set
Learning curve

©2006 Carlos Guestrin
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