Reading: Vapnik 1998 Joachims 1999 (see class website)

Transductive SVMs

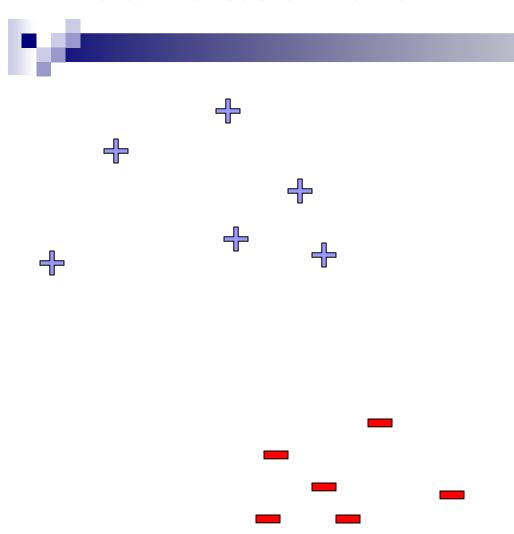
Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

April 17th, 2006

Semi-supervised learning and discriminative models

- We have seen semin-supervised learning for generative models
- What can we do for discriminative models
 - □ Not regular EM
 - we can't compute P(x)
 - But there are discriminative versions of EM
 - □ Co-Training!
 - Many other tricks… let's see an example

Linear classifiers – Which line is better?



Data:

$$\left\langle x_1^{(1)}, \dots, x_1^{(m)}, y_1 \right\rangle$$

$$\vdots$$

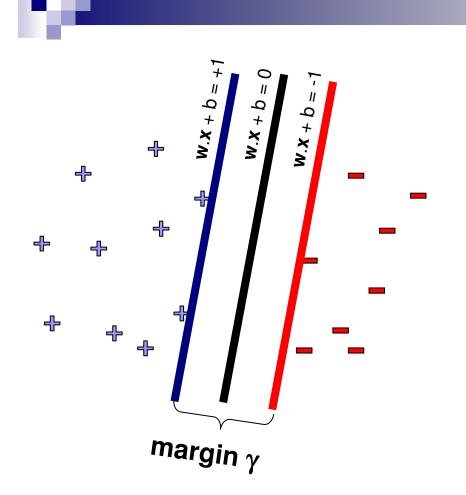
$$\left\langle x_n^{(1)}, \dots, x_n^{(m)}, y_n \right\rangle$$

Example i:

$$\left\langle x_i^{(1)},\dots,x_i^{(m)} \right\rangle$$
 — m features $y_i \in \{-1,+1\}$ — class

$$\mathbf{w}.\mathbf{x} = \sum_{j} \mathbf{w}^{(j)} \mathbf{x}^{(j)}$$

Support vector machines (SVMs)

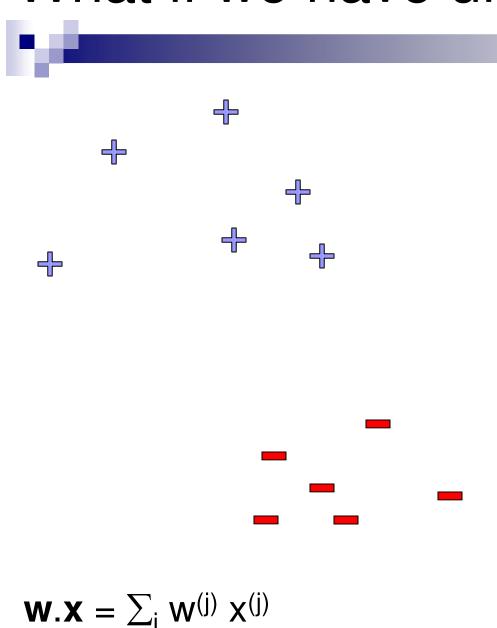


$$\min_{\mathbf{w}.\mathbf{x}_j + b} \mathbf{w}.\mathbf{w} \\
(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1, \ \forall j$$

- Solve efficiently by quadratic programming (QP)
 - □ Well-studied solution algorithms

Hyperplane defined by support vectors

What if we have unlabeled data?



$$\mathbf{w}.\mathbf{x} = \sum_{j} \mathbf{w}^{(j)} \mathbf{x}^{(j)}$$

n₁ Labeled Data:

$$\left\langle x_1^{(1)}, \dots, x_1^{(m)}, y_1 \right\rangle$$

$$\vdots$$

$$\left\langle x_n^{(1)}, \dots, x_n^{(m)}, y_{n_L} \right\rangle$$

Example i:

$$\left\langle x_i^{(1)},\dots,x_i^{(m)} \right\rangle$$
 — m features $y_i \in \{-1,+1\}$ — class

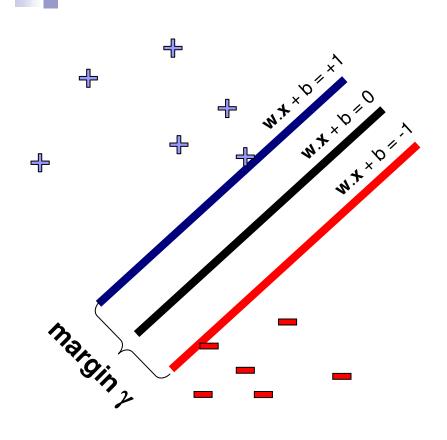
n_u Unlabeled Data:

$$\left\langle x_1^{(1)},\ldots,x_1^{(m)},?\right\rangle$$

$$\vdots$$

$$\left\langle x_n^{(1)},\ldots,x_{n_U}^{(m)},?\right\rangle$$
5

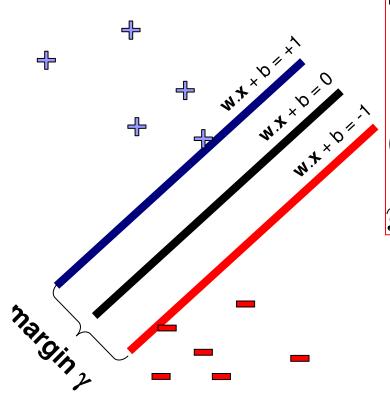
Transductive support vector machines (TSVMs)



$$minimize_{\mathbf{w}} \quad \mathbf{w}.\mathbf{w}$$

$$\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \ge 1, \ \forall j$$

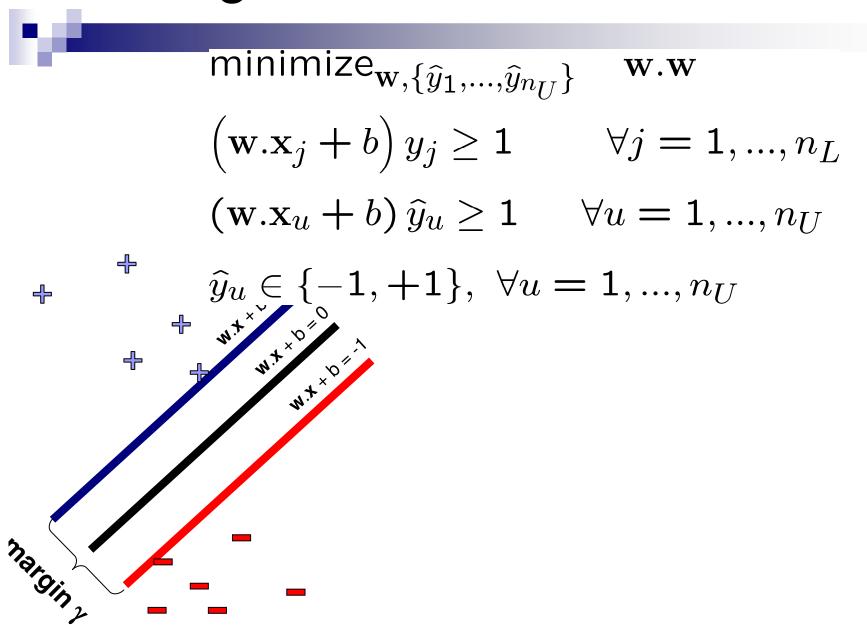
Transductive support vector machines (TSVMs)



What's the difference between transductive learning and semi-supervised learning?

- Not much, and
- A lot!!!
- Semi-supervised learning:
 - □ labeled and unlabeled data → learn w
 - □ use **w** on test data
- Transductive learning
 - □ same algorithms for labeled and unlabeled data, but...
 - unlabeled data is test data!!!
- You are learning on the test data!!!
 - OK, because you never look at the labels of the test data
 - can get better classification
 - but be very very very very very very very careful!!!
 - never use test data prediction accuracy to tune parameters, select kernels, etc.

Adding slack variables



Transductive SVMs – now with slack variables! [Vappik 98]

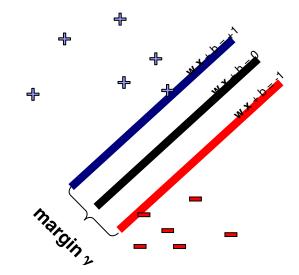
variables! [Vapnik 98] Optimizew, $\{\xi_1,...,\xi_{n_L}\}, \{\hat{y}_1,...,\hat{y}_{n_U}\}, \{\hat{\xi}_1,...,\hat{\xi}_{n_U}\}$

minimize $\mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} + \widehat{C} \sum_{u} \widehat{\xi}_{u}$

$$(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1 - \xi_j, \ \forall j = 1, ..., n_L$$

$$(\mathbf{w}.\mathbf{x}_u + b) \, \hat{y}_u \ge 1 - \hat{\xi}_u, \ \forall u = 1, ..., n_u$$

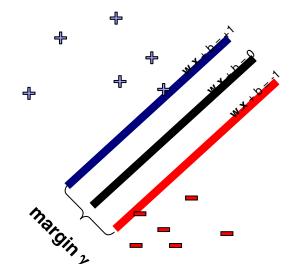
$$\hat{y}_u \in \{-1, +1\}, \ \forall u = 1, ..., n_u$$



Learning Transductive SVMs is hard!

Optimizew, $\{\xi_{1}, ..., \xi_{n_{L}}\}$, $\{\hat{y}_{1}, ..., \hat{y}_{n_{U}}\}$, $\{\hat{\xi}_{1}, ..., \hat{\xi}_{n_{U}}\}$ minimize $\mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} + \hat{C} \sum_{u} \hat{\xi}_{u}$ $(\mathbf{w}.\mathbf{x}_{j} + b) y_{j} \geq 1 - \xi_{j}, \ \forall j = 1, ..., n_{L}$ $(\mathbf{w}.\mathbf{x}_{u} + b) \hat{y}_{u} \geq 1 - \hat{\xi}_{u}, \ \forall u = 1, ..., n_{u}$

$$\hat{y}_u \in \{-1, +1\}, \ \forall u = 1, ..., n_u$$



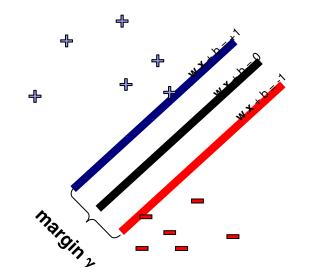
- Integer Program
 - NP-hard!!!
 - Well-studied solution algorithms, but will not scale up to very large problems

A (heuristic) learning algorithm for Transductive SVMs [Joachims 99]

minimize
$$\mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} + \widehat{C} \sum_{u} \widehat{\xi}_{u}$$

 $\left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j = 1, ..., n_{L}$
 $\left(\mathbf{w}.\mathbf{x}_{u} + b\right) \widehat{y}_{u} \geq 1 - \widehat{\xi}_{u}, \ \forall u = 1, ..., n_{u}$
 $\widehat{y}_{u} \in \{-1, +1\}, \ \forall u = 1, ..., n_{u}$

- \blacksquare If you set \widehat{C} to zero \to ignore unlabeled data
- Intuition of algorithm:
 - \square start with small \widehat{C}
 - add labels to some unlabeled data based on classifier prediction
 - \square slowly increase \widehat{C}
 - keep on labeling unlabeled data and re-running classifier



Some results classifying news articles – from [Joachims 99]

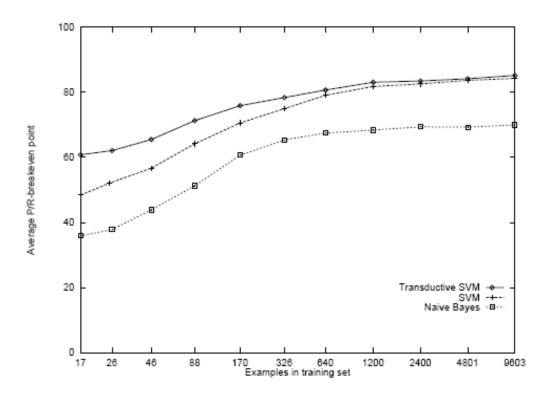


Figure 6: Average P/R-breakeven point on the Reuters dataset for different training set sizes and a test set size of 3,299.

What you need to know about transductive SVMs

- What is transductive v. semi-supervised learning
- Formulation for transductive SVM
 - can also be used for semi-supervised learning
- Optimization is hard!
 - □ Integer program
- There are simple heuristic solution methods that work well here

Recommended reading:

Bishop, Chapters 3.6, 8.6

Shlens PCA tutorial

Wall et al. 2003 (PCA applied to gene expression data)

Dimensionality reduction

Machine Learning – 10701/15781

Carlos Guestrin

Carnegie Mellon University

April 24th, 2006

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - □ e.g., text data has
- Dimensionality reduction: represent data with fewer dimensions
 - □ easier learning fewer parameters
 - □ visualization hard to visualize more than 3D or 4D
 - discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

Feature selection

- Want to learn f:X→Y
 - $\square X = \langle X_1, \dots, X_n \rangle$
 - □ but some features are more important than others
- Approach: select subset of features to be used by learning algorithm
 - □ Score each feature (or sets of features)
 - Select set of features with best score

Simple greedy **forward** feature selection algorithm

- Pick a dictionary of features
 - □ e.g., polynomials for linear regression
- Greedy heuristic:
 - □ Start from empty (or simple) set of features $F_0 = \emptyset$
 - \square Run learning algorithm for current set of features F_t
 - Obtain h_t
 - □ Select next best feature X_i
 - e.g., X_j that results in lowest cross-validation error learner when learning with $F_t \cup \{X_j\}$
 - $\Box F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - □ Recurse

Simple greedy **backward** feature selection algorithm

- Pick a dictionary of features
 - □ e.g., polynomials for linear regression
- Greedy heuristic:
 - \square Start from all features $F_0 = F$
 - \square Run learning algorithm for current set of features F_t
 - Obtain h_t
 - □ Select next worst feature X_i
 - e.g., X_j that results in lowest cross-validation error learner when learning with $F_t \{X_i\}$
 - $\square F_{t+1} \leftarrow F_t \{X_i\}$
 - □ Recurse

Impact of feature selection on classification of fMRI data [Pereira et al. '05]

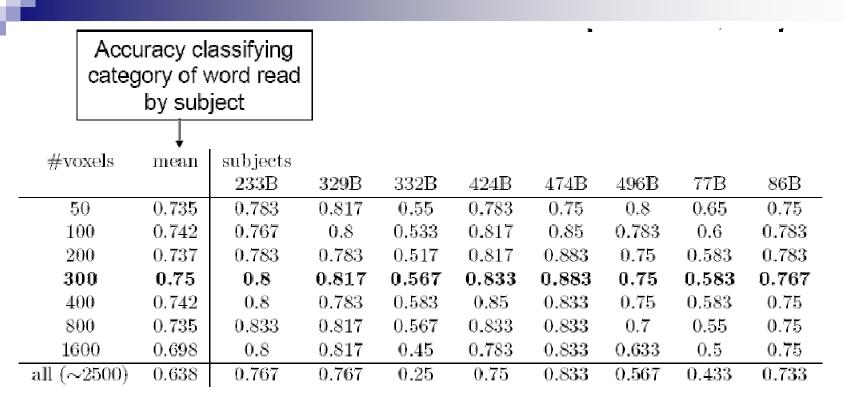


Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted line corresponds to the best mean accuracy, obtained using 300 voxels.

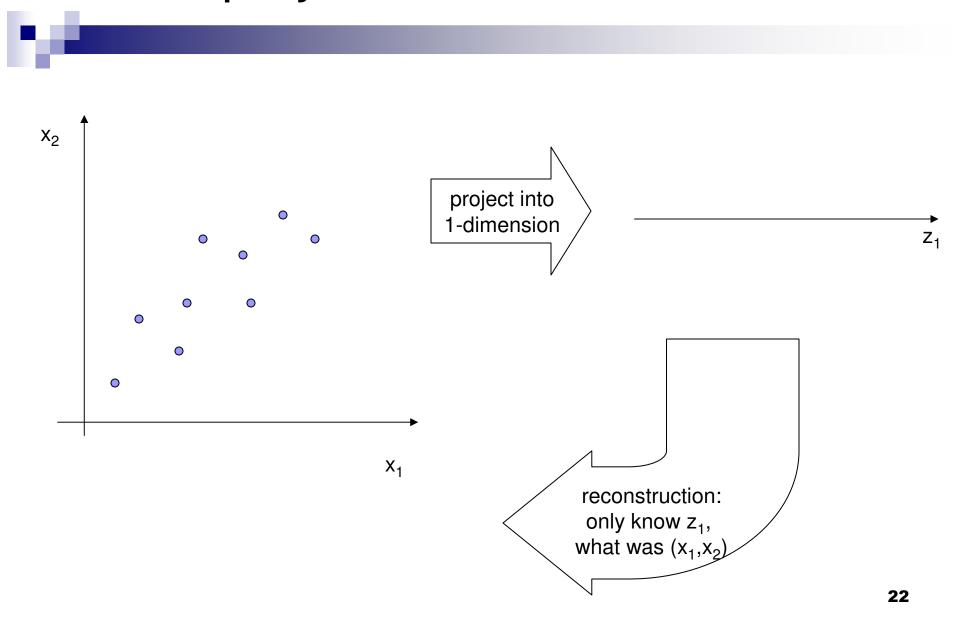
Voxels scored by p-value of regression to predict voxel value from the task

Lower dimensional projections

 Rather than picking a subset of the features, we can new features that are combinations of existing features

- Let's see this in the unsupervised setting
 - □ just **X**, but no Y

Liner projection and reconstruction



Principal component analysis – basic idea

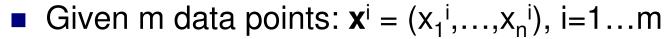
- Project n-dimensional data into k-dimensional space while preserving information:
 - □ e.g., project space of 10000 words into 3-dimensions
 - □ e.g., project 3-d into 2-d

Choose projection with minimum reconstruction error

Linear projections, a review

- Project a point into a (lower dimensional) space:
 - \square point: $\mathbf{x} = (x_1, \dots, x_n)$
 - \square select a basis set of basis vectors $(\mathbf{u}_1, ..., \mathbf{u}_k)$
 - we consider orthonormal basis:
 - \square $\mathbf{u}_i \cdot \mathbf{u}_i = 1$, and $\mathbf{u}_i \cdot \mathbf{u}_i = 0$ for $i \neq j$
 - \square select a center $-\overline{x}$, defines offset of space
 - □ **best coordinates** in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (\mathbf{x} \overline{\mathbf{x}}) \cdot \mathbf{u}_i$
 - minimum squared error

PCA finds projection that minimizes reconstruction error

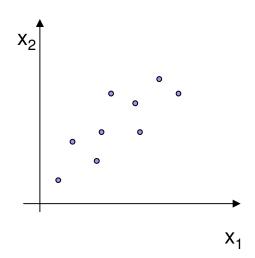


Will represent each point as a projection:

PCA:

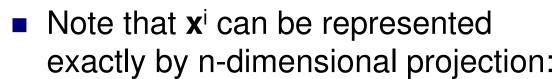
□ Given $k \le n$, find $(\mathbf{u}_1, ..., \mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$



Understanding the reconstruction

error



$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^n z_j^i \mathbf{u}_j$$

 $\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad z_j^i = \mathbf{x}^i \cdot \mathbf{u}_j$

□ Given $k \le n$, find $(\mathbf{u}_1, ..., \mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Rewriting error:

Reconstruction error and covariance matrix

$$error_k = \sum_{i=1}^m \sum_{j=k+1}^n [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}^{i} - \bar{\mathbf{x}}) (\mathbf{x}^{i} - \bar{\mathbf{x}})^{T}$$

Minimizing reconstruction error and eigen vectors

■ Minimizing reconstruction error equivalent to picking orthonormal basis (u₁,...,un) minimizing:

$$error_k = \sum_{j=k+1}^n \mathbf{u}_j^T \mathbf{\Sigma} \mathbf{u}_j$$

■ Eigen vector:

• Minimizing reconstruction error equivalent to picking $(\mathbf{u}_{k+1},...,\mathbf{u}_n)$ to be eigen vectors with smallest eigen values

Basic PCA algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X

$$\square X_c \leftarrow X - \overline{X}$$

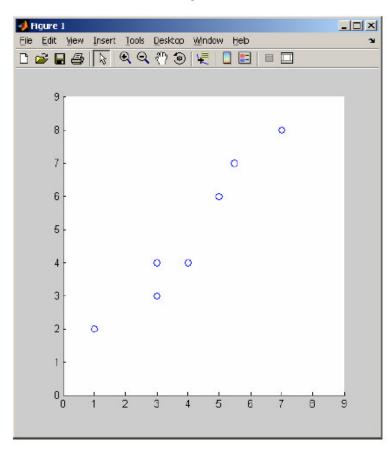
Compute covariance matrix:

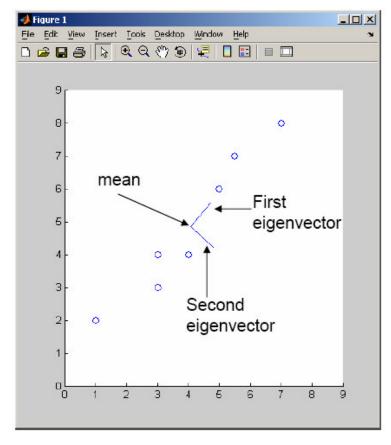
$$\square \quad \Sigma \leftarrow \mathbf{X_c}^\mathsf{T} \ \mathbf{X_c}$$

- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

PCA example

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

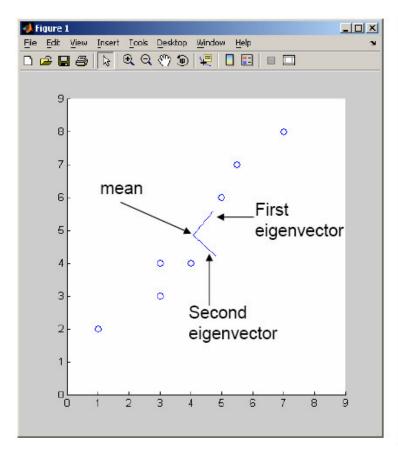


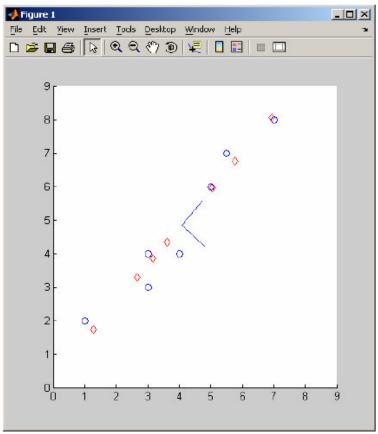


PCA example – reconstruction

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

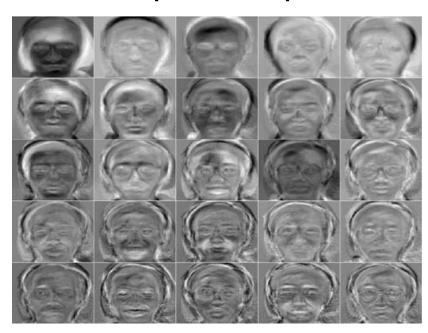
only used first principal component





Eigenfaces [Turk, Pentland '91]

Principal components:



Eigenfaces reconstruction

Each image corresponds to adding 8 principal components:

Relationship to Gaussians

$$\square$$
 $\mathbf{x} \sim \mathsf{N}(\overline{\mathbf{x}};\Sigma)$

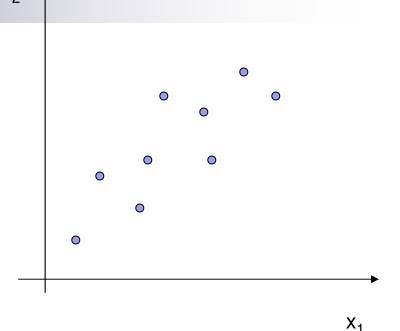
Equivalent to weighted sum of simple Gaussians:

$$\mathbf{x} = \bar{\mathbf{x}} + \sum_{j=1}^{n} z_j \mathbf{u}_j; \quad z_j \sim N(0; \sigma_j^2)$$

Selecting top k principal components equivalent to lower dimensional Gaussian approximation:

$$\mathbf{x} \approx \mathbf{\bar{x}} + \sum_{j=1}^{k} z_j \mathbf{u}_j + \varepsilon; \quad z_j \sim N(0; \sigma_j^2)$$

 \square $\varepsilon \sim N(0; \sigma^2)$, where σ^2 is defined by error_k



Scaling up

- Covariance matrix can be really big!
 - \square Σ is n by n
 - \square 10000 features $\rightarrow |\Sigma|$
 - ☐ finding eigenvectors is very slow...
- Use singular value decomposition (SVD)
 - ☐ finds to k eigenvectors
 - □ great implementations available, e.g., Matlab svd

SVD

- Write X = U S V^T
 - \square X \leftarrow data matrix, one row per datapoint
 - \Box **U** \leftarrow weight matrix, one row per datapoint coordinate of \mathbf{x}^i in eigenspace
 - □ **S** ← singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i
 - \Box $V^T \leftarrow$ singular vector matrix
 - in our setting each row is eigenvector v_i

PCA using SVD algoritm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X

$$\square X_c \leftarrow X - \overline{X}$$

- Call SVD algorithm on X_c ask for k singular vectors
- Principal components: k singular vectors with highest singular values (rows of V^T)
 - □ **Coefficients** become:

Using PCA for dimensionality reduction in classification

- Want to learn f:X→Y
 - \square **X**= $\langle X_1, \dots, X_n \rangle$
 - □ but some features are more important than others
- Approach: Use PCA on X to select a few important features

PCA for classification can lead to problems...

Direction of maximum variation may be unrelated to "discriminative" directions:

- PCA often works very well, but sometimes must use more advanced methods
 - □ e.g., Fisher linear discriminant

What you need to know

- Dimensionality reduction
 - ☐ why and when it's important
- Simple feature selection
- Principal component analysis
 - □ minimizing reconstruction error
 - □ relationship to covariance matrix and eigenvectors
 - □ using SVD
 - □ problems with PCA