Transductive SVMs

Reading:
Vapnik 1998
Joachims 1999 (see class website)
Semi-supervised learning and discriminative models

- We have seen semi-supervised learning for generative models
 - EM

- What can we do for discriminative models
 - Not regular EM
 - we can’t compute $P(x)$
 - But there are discriminative versions of EM
 - Co-Training!
 - Many other tricks… let’s see an example
Linear classifiers – Which line is better?

Data:

\[
\begin{align*}
\langle x_1^{(1)}, \ldots, x_1^{(m)}, y_1 \rangle \\
\vdots \\
\langle x_n^{(1)}, \ldots, x_n^{(m)}, y_n \rangle
\end{align*}
\]

Example i:

\[
\langle x_i^{(1)}, \ldots, x_i^{(m)} \rangle \quad \text{— m features}
\]

\[
y_i \in \{-1, +1\} \quad \text{— class}
\]

\[
w.x = \sum_j w^{(j)} x^{(j)}
\]
Support vector machines (SVMs)

minimize \(\mathbf{w} \cdot \mathbf{w} \)

\[
\left(\mathbf{w} \cdot \mathbf{x}_j + b \right) y_j \geq 1, \; \forall j
\]

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
- Hyperplane defined by support vectors

\[w \cdot x + b = +1 \]
\[w \cdot x + b = 0 \]
\[w \cdot x + b = -1 \]
What if we have unlabeled data?

\[\mathbf{w} \cdot \mathbf{x} = \sum_j w^{(j)} x^{(j)} \]

n_L Labeled Data:
\[
\begin{cases}
\langle x_1^{(1)}, \ldots, x_1^{(m)}, y_1 \rangle \\
\vdots \\
\langle x_n^{(1)}, \ldots, x_n^{(m)}, y_{n_L} \rangle
\end{cases}
\]

Example i:
\[
\langle x_i^{(1)}, \ldots, x_i^{(m)} \rangle \quad \text{— m features}
\]
\[
y_i \in \{-1, +1\} \quad \text{— class}
\]

n_U Unlabeled Data:
\[
\begin{cases}
\langle x_1^{(1)}, \ldots, x_1^{(m)}, ? \rangle \\
\vdots \\
\langle x_n^{(1)}, \ldots, x_n^{(m)}, ? \rangle
\end{cases}
\]
Transductive support vector machines (TSVMs)

minimize \(w \cdot w \)

\[(w \cdot x_j + b) y_j \geq 1, \quad \forall j \]
Transductive support vector machines (TSVMs)

\[w \cdot x + b = +1 \]
\[w \cdot x + b = -1 \]
\[w \cdot x + b = 0 \]

\[\gamma \]

minimize_{w, \{\hat{y}_1, \ldots, \hat{y}_{n_U}\}} \quad w \cdot w

\[
(w \cdot x_j + b) y_j \geq 1, \quad \forall j = 1, \ldots, n_L
\]

\[
(w \cdot x_u + b) \hat{y}_u \geq 1, \quad \forall u = 1, \ldots, n_U
\]

\[\hat{y}_u \in \{-1, +1\}, \quad \forall u = 1, \ldots, n_U \]
What’s the difference between transductive learning and semi-supervised learning?

- Not much, and
- A lot!!!

- Semi-supervised learning:
 - labeled and unlabeled data → learn w
 - use w on test data

- Transductive learning
 - same algorithms for labeled and unlabeled data, but…
 - unlabeled data is test data!!!

- You are learning on the test data!!!
 - OK, because you never look at the labels of the test data
 - can get better classification
 - but be very careful!!!
 - never use test data prediction accuracy to tune parameters, select kernels, etc.
Adding slack variables

\[
\begin{align*}
\text{minimize}_{\mathbf{w}, \{\hat{y}_1, \ldots, \hat{y}_{n_U}\}} & \quad \mathbf{w} \cdot \mathbf{w} \\
(\mathbf{w} \cdot \mathbf{x}_j + b) y_j & \geq 1 \quad \forall j = 1, \ldots, n_L \\
(\mathbf{w} \cdot \mathbf{x}_u + b) \hat{y}_u & \geq 1 \quad \forall u = 1, \ldots, n_U \\
\hat{y}_u & \in \{-1, +1\}, \quad \forall u = 1, \ldots, n_U
\end{align*}
\]
Transductive SVMs – now with slack variables! [Vapnik 98]

Optimize \(\{\xi_1, ..., \xi_{n_L}\}, \{\hat{y}_1, ..., \hat{y}_{n_U}\}, \{\hat{\xi}_1, ..., \hat{\xi}_{n_U}\} \)

minimize \(\mathbf{w} \cdot \mathbf{w} + C \sum_j \xi_j + \hat{C} \sum_u \hat{\xi}_u \)

\((\mathbf{w} \cdot \mathbf{x}_j + b) y_j \geq 1 - \xi_j, \ \forall j = 1, ..., n_L\)

\((\mathbf{w} \cdot \mathbf{x}_u + b) \hat{y}_u \geq 1 - \hat{\xi}_u, \ \forall u = 1, ..., n_u\)

\(\hat{y}_u \in \{-1, +1\}, \ \forall u = 1, ..., n_u\)
Learning Transductive SVMs is hard!

Optimize \(w, \{\xi_1, \ldots, \xi_{n_L}\}, \{\hat{y}_1, \ldots, \hat{y}_{n_U}\}, \{\hat{\xi}_1, \ldots, \hat{\xi}_{n_U}\} \)

minimize \(w \cdot w + C \sum_j \xi_j + \hat{C} \sum_u \hat{\xi}_u \)

\[
(w \cdot x_j + b) y_j \geq 1 - \xi_j, \quad \forall j = 1, \ldots, n_L
\]

\[
(w \cdot x_u + b) \hat{y}_u \geq 1 - \hat{\xi}_u, \quad \forall u = 1, \ldots, n_u
\]

\(\hat{y}_u \in \{-1, +1\}, \quad \forall u = 1, \ldots, n_u \)

- Integer Program
 - NP-hard!!!
 - Well-studied solution algorithms, but will not scale up to very large problems
A (heuristic) learning algorithm for Transductive SVMs [Joachims 99]

minimize \(\mathbf{w} . \mathbf{w} + C \sum_j \xi_j + \tilde{C} \sum_u \tilde{\xi}_u \)

\[
(w . x_j + b) y_j \geq 1 - \xi_j, \quad \forall j = 1, \ldots, n_L
\]

\[
(w . x_u + b) \hat{y}_u \geq 1 - \tilde{\xi}_u, \quad \forall u = 1, \ldots, n_u
\]

\(\hat{y}_u \in \{-1, +1\}, \quad \forall u = 1, \ldots, n_u \)

- If you set \(\tilde{C} \) to zero → ignore unlabeled data
- Intuition of algorithm:
 - start with small \(\tilde{C} \)
 - add labels to some unlabeled data based on classifier prediction
 - slowly increase \(\tilde{C} \)
 - keep on labeling unlabeled data and re-running classifier
Some results classifying news articles – from [Joachims 99]

Figure 6: Average P/R-breakeven point on the Reuters dataset for different training set sizes and a test set size of 3,299.
What you need to know about transductive SVMs

- What is transductive v. semi-supervised learning

- Formulation for transductive SVM
 - can also be used for semi-supervised learning

- Optimization is hard!
 - Integer program

- There are simple heuristic solution methods that work well here
Recommended reading:
Bishop, Chapters 3.6, 8.6
Shlens PCA tutorial
Wall et al. 2003 (PCA applied to gene expression data)
Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., text data has

- **Dimensionality reduction**: represent data with fewer dimensions
 - easier learning – fewer parameters
 - visualization – hard to visualize more than 3D or 4D
 - discover “intrinsic dimensionality” of data
 - high dimensional data that is truly lower dimensional
Feature selection

- Want to learn $f: \mathbf{X} \rightarrow \mathbf{Y}$
 - $\mathbf{X} = \langle X_1, \ldots, X_n \rangle$
 - but some features are more important than others

- Approach: select subset of features to be used by learning algorithm
 - Score each feature (or sets of features)
 - Select set of features with best score
Simple greedy **forward** feature selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select **next best feature** X_i
 - e.g., X_j that results in lowest cross-validation error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse
Simple greedy **backward** feature selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy heuristic:
 - Start from all features $F_0 = F$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select **next worst feature** X_i
 - e.g., X_j that results in lowest cross-validation error learner when learning with $F_t - \{X_j\}$
 - $F_{t+1} \leftarrow F_t - \{X_i\}$
 - Recurse
Impact of feature selection on classification of fMRI data

![Image](image.png)

Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted line corresponds to the best mean accuracy, obtained using 300 voxels.

<table>
<thead>
<tr>
<th>#voxels</th>
<th>mean</th>
<th>subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>233B</td>
</tr>
<tr>
<td>50</td>
<td>0.735</td>
<td>0.783</td>
</tr>
<tr>
<td>100</td>
<td>0.742</td>
<td>0.707</td>
</tr>
<tr>
<td>200</td>
<td>0.737</td>
<td>0.783</td>
</tr>
<tr>
<td>300</td>
<td>0.755</td>
<td>0.8</td>
</tr>
<tr>
<td>400</td>
<td>0.742</td>
<td>0.8</td>
</tr>
<tr>
<td>800</td>
<td>0.735</td>
<td>0.833</td>
</tr>
<tr>
<td>1600</td>
<td>0.698</td>
<td>0.8</td>
</tr>
<tr>
<td>all (~2500)</td>
<td>0.638</td>
<td>0.767</td>
</tr>
</tbody>
</table>

Voxels scored by p-value of regression to predict voxel value from the task.
Lower dimensional projections

- Rather than picking a subset of the features, we can new features that are combinations of existing features

- Let’s see this in the unsupervised setting
 - just \mathbf{X}, but no \mathbf{Y}
Liner projection and reconstruction

project into 1-dimension

reconstruction: only know z_1, what was (x_1, x_2)
Principal component analysis – basic idea

- Project n-dimensional data into k-dimensional space while preserving information:
 - e.g., project space of 10000 words into 3-dimensions
 - e.g., project 3-d into 2-d

- Choose projection with minimum reconstruction error
Linear projections, a review

- Project a point into a (lower dimensional) space:
 - **point**: $\mathbf{x} = (x_1, \ldots, x_n)$
 - **select a basis** – set of basis vectors – $(\mathbf{u}_1, \ldots, \mathbf{u}_k)$
 - we consider orthonormal basis:
 - $\mathbf{u}_i \cdot \mathbf{u}_i = 1$, and $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ for $i \neq j$
 - **select a center** – $\bar{\mathbf{x}}$, defines offset of space
 - **best coordinates** in lower dimensional space defined by dot-products: (z_1, \ldots, z_k), $z_i = (\mathbf{x} - \bar{\mathbf{x}}) \cdot \mathbf{u}_i$
 - minimum squared error
PCA finds projection that minimizes reconstruction error

- Given m data points: \(\mathbf{x}^i = (x_1^i, \ldots, x_n^i) \), i=1…m
- Will represent each point as a projection:

\[
\hat{x}^i = \bar{x} + \sum_{j=1}^{k} z_j^i \mathbf{u}_j \quad \text{where:} \quad \bar{x} = \frac{1}{m} \sum_{i=1}^{m} x^i \quad \text{and} \quad z_j^i = x^i \cdot \mathbf{u}_j
\]

- PCA:
 - Given \(k \leq n \), find \((\mathbf{u}_1, \ldots, \mathbf{u}_k)\)
 - minimizing reconstruction error:

\[
error_k = \sum_{i=1}^{m} (x^i - \bar{x}^i)^2
\]
Understanding the reconstruction error

- Note that x^i can be represented exactly by n-dimensional projection:
 $$x^i = \bar{x} + \sum_{j=1}^{n} z_j^i u_j$$

- Rewriting error:
 $$\hat{x}^i = \bar{x} + \sum_{j=1}^{k} z_j^i u_j$$

 Given $k \leq n$, find (u_1, \ldots, u_k) minimizing reconstruction error:
 $$\text{error}_k = \sum_{i=1}^{m} (x^i - \hat{x}^i)^2$$
Reconstruction error and covariance matrix

\[
\text{error}_k = \sum_{i=1}^{m} \sum_{j=k+1}^{n} (u_{ij} \cdot (x^i - \bar{x}))^2
\]

\[
\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^i - \bar{x})(x^i - \bar{x})^T
\]
Minimizing reconstruction error and eigen vectors

- Minimizing reconstruction error equivalent to picking orthonormal basis \((u_1, \ldots, u_n)\) minimizing:

\[
error_k = \sum_{j=k+1}^{n} u_j^T \Sigma u_j
\]

- Eigen vector:

- Minimizing reconstruction error equivalent to picking \((u_{k+1}, \ldots, u_n)\) to be eigen vectors with smallest eigen values
Basic PCA algorithm

- Start from m by n data matrix X

- **Recenter**: subtract mean from each row of X
 - $X_c \leftarrow X - \bar{X}$

- **Compute covariance matrix**:
 - $\Sigma \leftarrow X_c^T X_c$

- Find **eigen vectors and values** of Σ

- **Principal components**: k eigen vectors with highest eigen values
PCA example

\[\hat{x}^i = \bar{x} + \sum_{j=1}^{k} z_j^i u_j \]
PCA example – reconstruction

\[\hat{x}^i = \bar{x} + \sum_{j=1}^{k} z^i_j u_j \]

only used first principal component
Eigenfaces [Turk, Pentland ’91]

- Input images:
- Principal components:
Eigenfaces reconstruction

- Each image corresponds to adding 8 principal components:
Relationship to Gaussians

- PCA assumes data is Gaussian
 - $\mathbf{x} \sim \mathcal{N}(\mathbf{x};\Sigma)$

- Equivalent to weighted sum of simple Gaussians:
 - $\mathbf{x} = \bar{\mathbf{x}} + \sum_{j=1}^{n} z_j \mathbf{u}_j; \quad z_j \sim \mathcal{N}(0; \sigma_j^2)$

- Selecting top k principal components equivalent to lower dimensional Gaussian approximation:
 - $\mathbf{x} \approx \bar{\mathbf{x}} + \sum_{j=1}^{k} z_j \mathbf{u}_j + \mathbf{\varepsilon}; \quad z_j \sim \mathcal{N}(0; \sigma_j^2)$

- $\mathbf{\varepsilon} \sim \mathcal{N}(0;\sigma^2)$, where σ^2 is defined by error \mathbf{e}_k
Scaling up

- Covariance matrix can be really big!
 - Σ is n by n
 - 10,000 features $\rightarrow |\Sigma|$
 - finding eigenvectors is very slow…

- Use singular value decomposition (SVD)
 - finds to k eigenvectors
 - great implementations available, e.g., Matlab svd
SVD

- Write $X = U S V^T$
 - $X \leftarrow$ data matrix, one row per datapoint
 - $U \leftarrow$ weight matrix, one row per datapoint – coordinate of x^i in eigenspace
 - $S \leftarrow$ singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_j
 - $V^T \leftarrow$ singular vector matrix
 - in our setting each row is eigenvector v_j
PCA using SVD algorithm

- Start from m by n data matrix X
- **Recenter**: subtract mean from each row of X
 - $X_c \leftarrow X - \bar{X}$
- Call SVD algorithm on X_c – ask for k singular vectors
- **Principal components**: k singular vectors with highest singular values (rows of V^T)
 - **Coefficients** become:
Using PCA for dimensionality reduction in classification

- Want to learn $f: X \rightarrow Y$
 - $X = <X_1, \ldots, X_n>$
 - but some features are more important than others

- **Approach:** Use PCA on X to select a few important features
PCA for classification can lead to problems...

- Direction of maximum variation may be unrelated to “discriminative” directions:

- PCA often works very well, but sometimes must use more advanced methods
 - e.g., Fisher linear discriminant
What you need to know

- Dimensionality reduction
 - why and when it’s important
- Simple feature selection
- Principal component analysis
 - minimizing reconstruction error
 - relationship to covariance matrix and eigenvectors
 - using SVD
 - problems with PCA