Two SVM tutorials linked in class website (please, read both):

- High-level presentation with applications (Hearst 1998)
- Detailed tutorial (Burges 1998)

Support Vector Machines (SVMs)

Machine Learning – 10701/15781
Carlos Guestrin
Carrosia Mallon University

Carnegie Mellon University

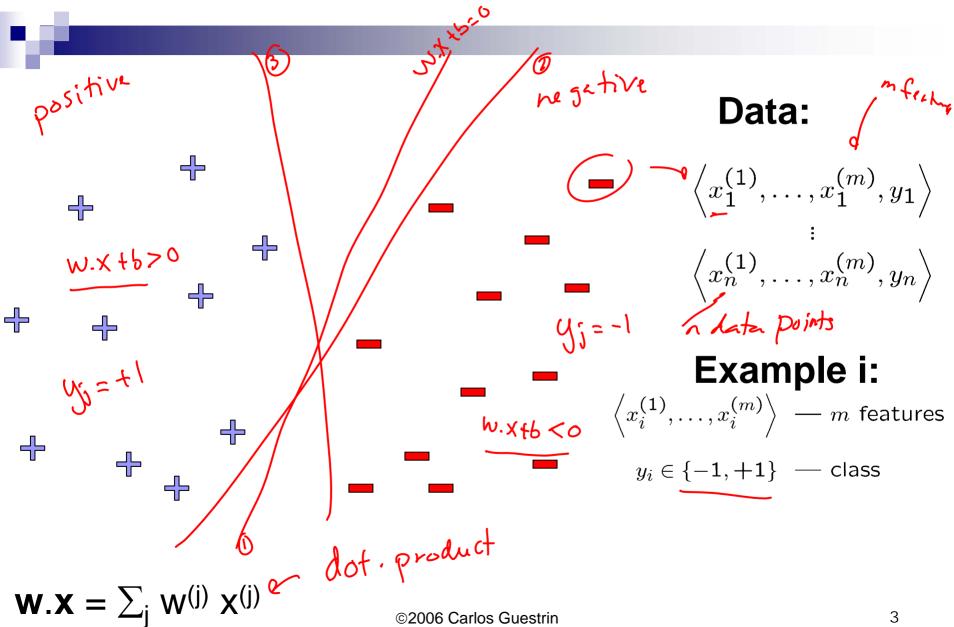
February 22nd, 2005

Announcements

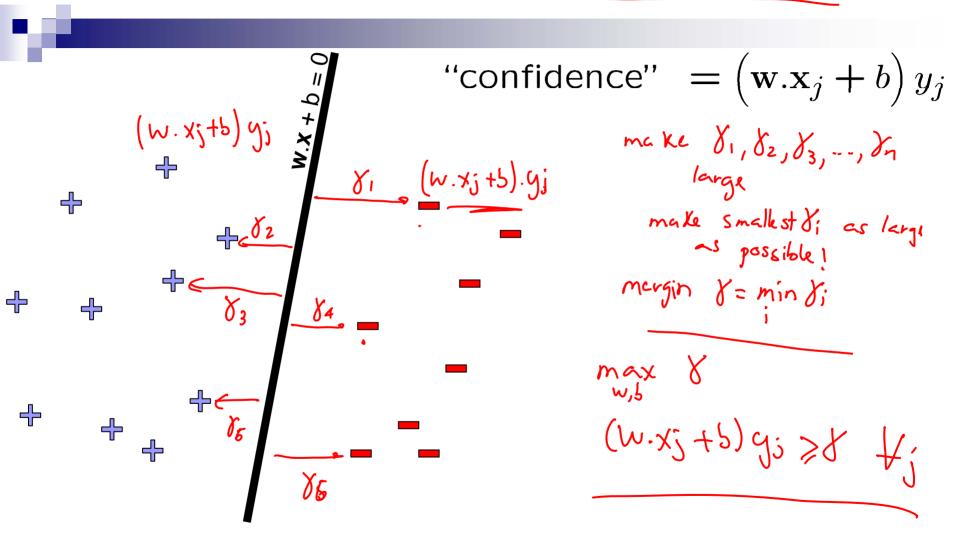
- Third homework

 - □ is out
 □ Due March 1st
- Final assigned by registrar:
 - □ May 12, 1-4p.m Friday
 - □ Location TBD

Linear classifiers – Which line is better?

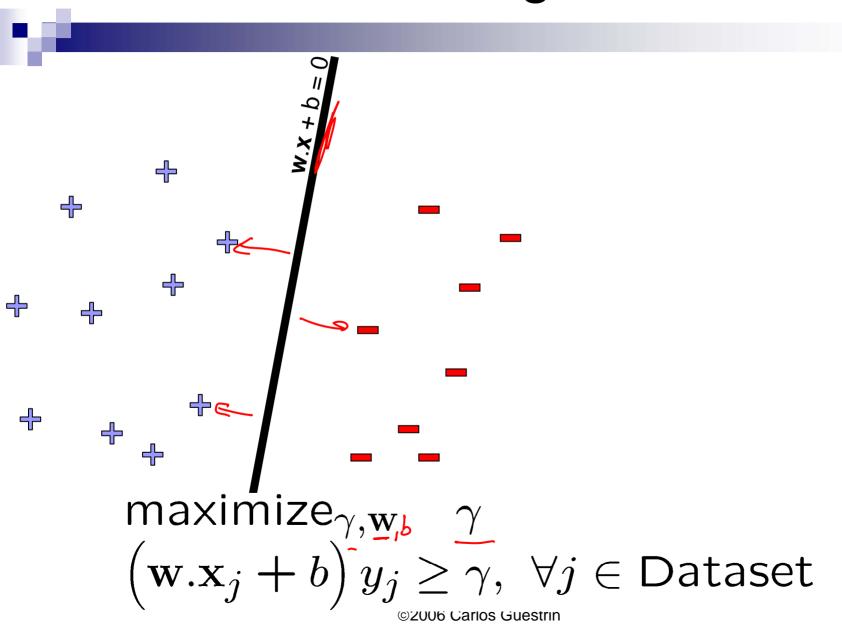


Pick the one with the largest margin!

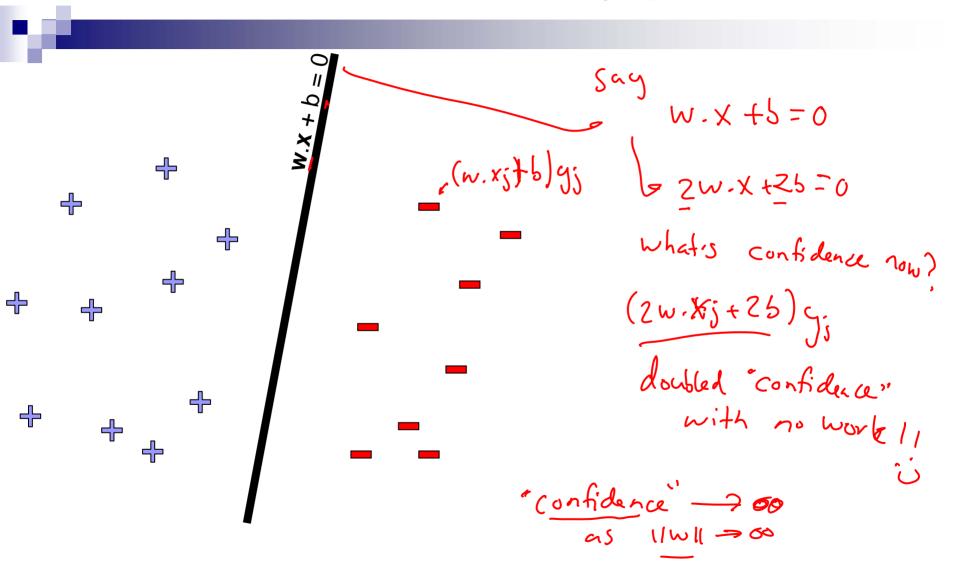


$$\mathbf{w}.\mathbf{x} = \sum_{i} \mathbf{w}^{(i)} \mathbf{x}^{(j)}$$

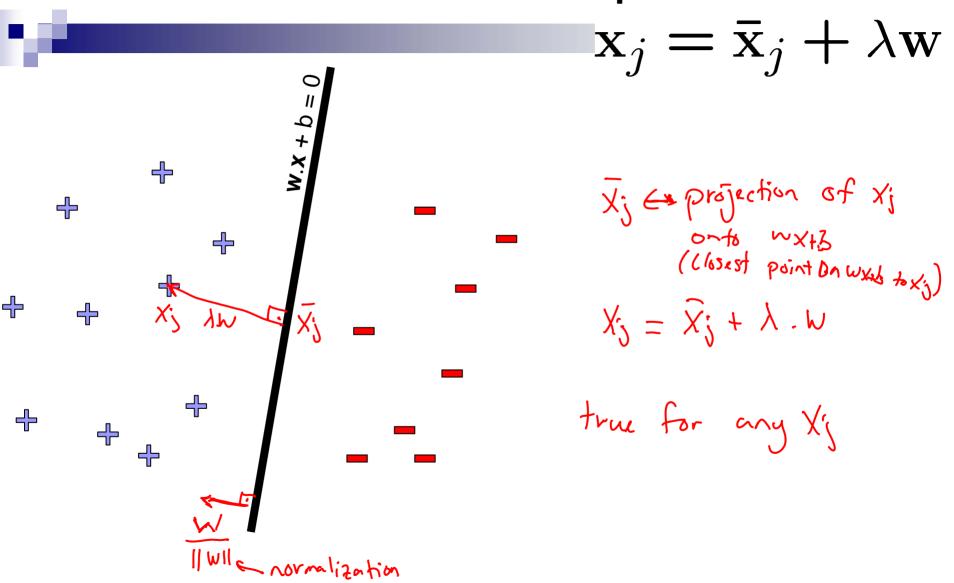
Maximize the margin



But there are a many planes...

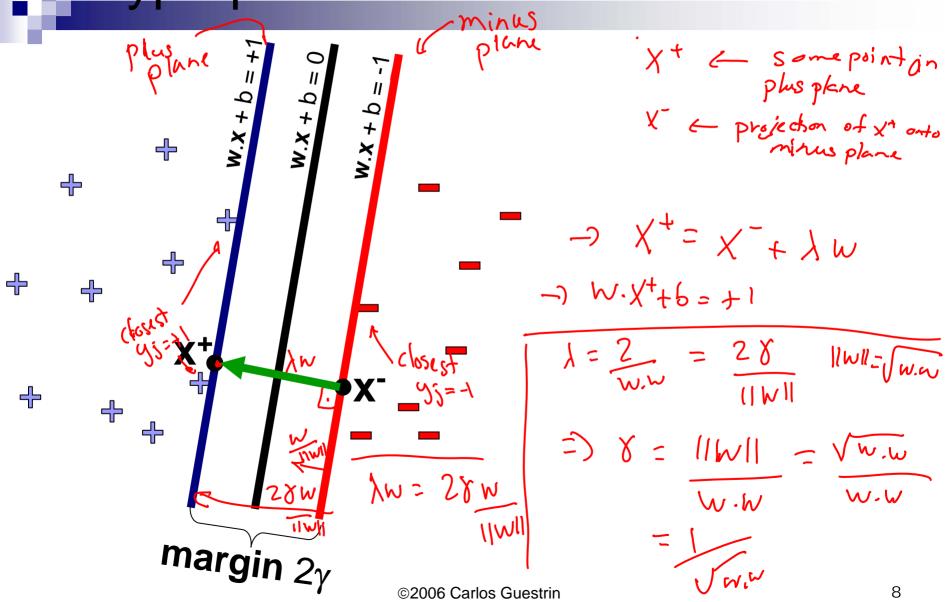


Review: Normal to a plane



Normalized margin - Canonical

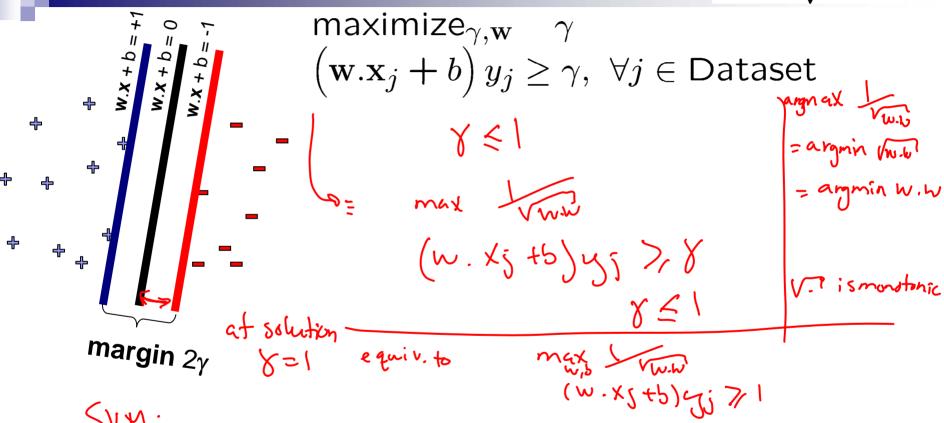
hyperplanes



Normalized margin - Canonical projection hyperplanes x- is on minus W. X- +6 =-1 X+ 1900 plus plane: W.X + b = . $-\mathbf{w}\cdot(\mathbf{x}_{-1}^{-}+\lambda\mathbf{w})+b=1$ ©2006 Carlos Guestrin

Margin maximization using canonical hyperplanes

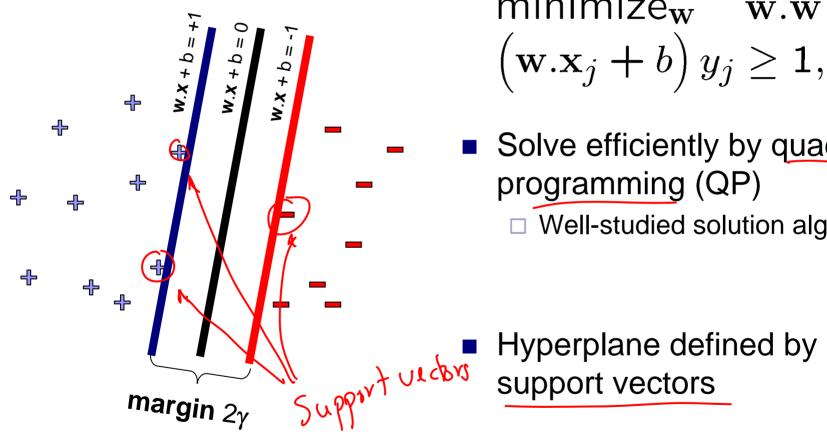
$$\gamma = \frac{1}{\sqrt{\mathbf{w}.\mathbf{w}}}$$



SVM:

margin of at least I for minimize_{w,} $\mathbf{W}.\mathbf{W}$

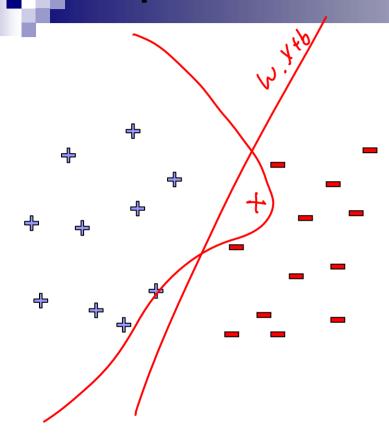
Support vector machines (SVMs)



minimize_w w.w
$$(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1, \ \forall j$$

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms

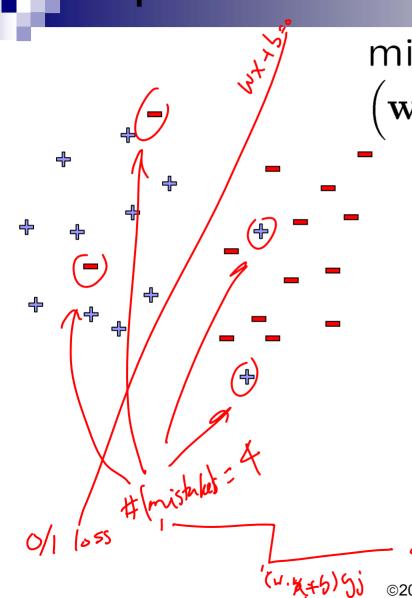
What if the data is not linearly separable?



Use features of features of features of features....

$$\chi = \langle \chi_1, \chi_2, \chi_1 \chi_2, \chi_1^2, \chi_2, \dots \rangle$$

What if the data is still not linearly separable?



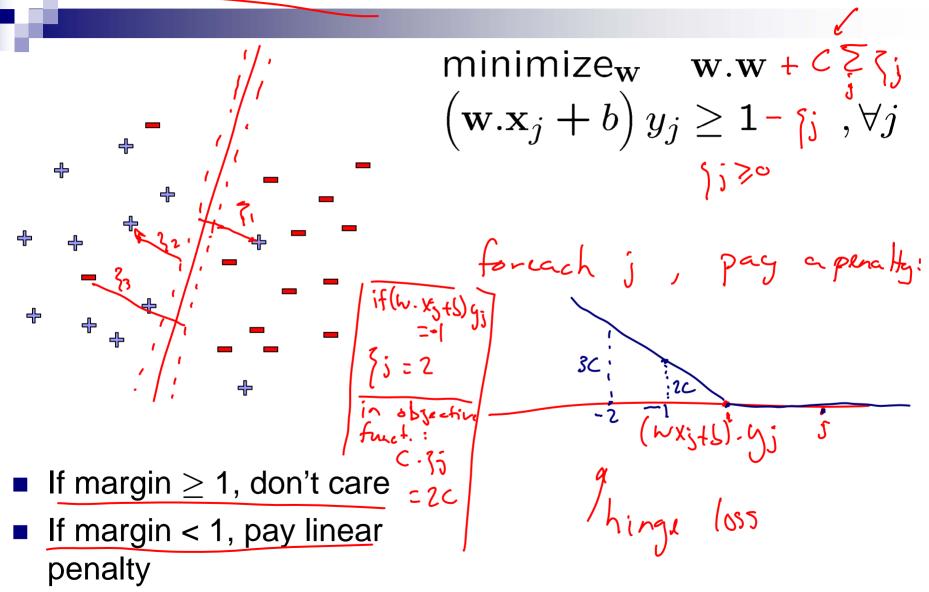
minimize
$$\mathbf{w}$$
 $\mathbf{w}.\mathbf{w}$ + $(\mathbf{w}.\mathbf{x}_j + b)$ $y_j \geq 1$, $\forall j$

- Minimize www and number of training mistakes
 - Tradeoff two criteria?

- Tradeoff #(mistakes) and w.w
 - □ 0/1 loss
 - □ Slack penalty C
 - Not QP anymore
 - Also doesn't distinguish near misses and really bad mistakes

©2006 Carlos Guestrin

Şlack variables – Hinge loss



Side note: What's the difference between SVMs and logistic regression?

SVM:

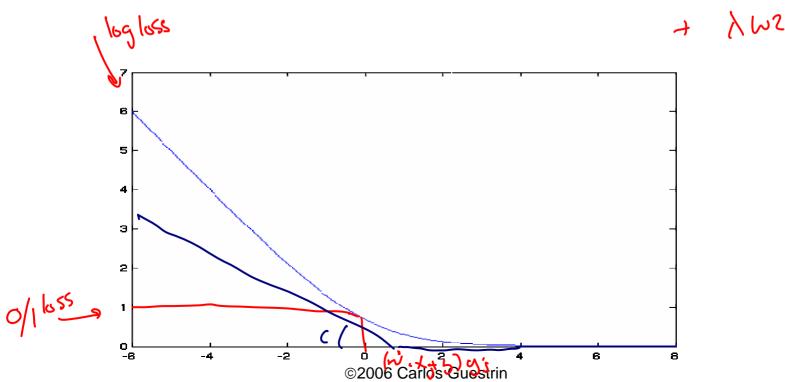
$$\begin{aligned} & \text{minimize}_{\mathbf{w}} \quad \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} \\ & \left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \quad \xi_{j} \geq 0, \ \forall j \end{aligned}$$

Regularized LR Logistic regression:

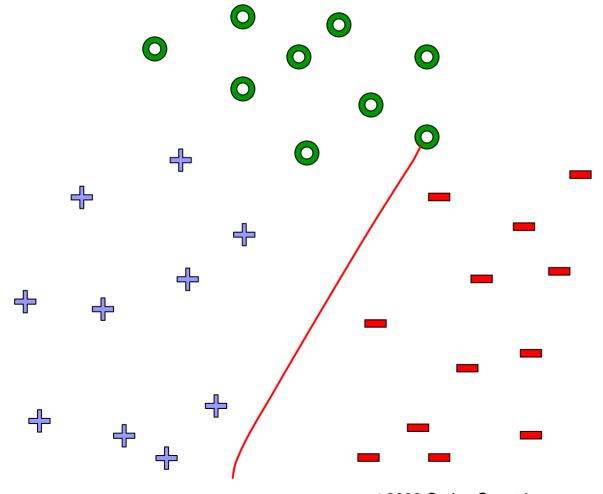
$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)}}$$

Log loss:

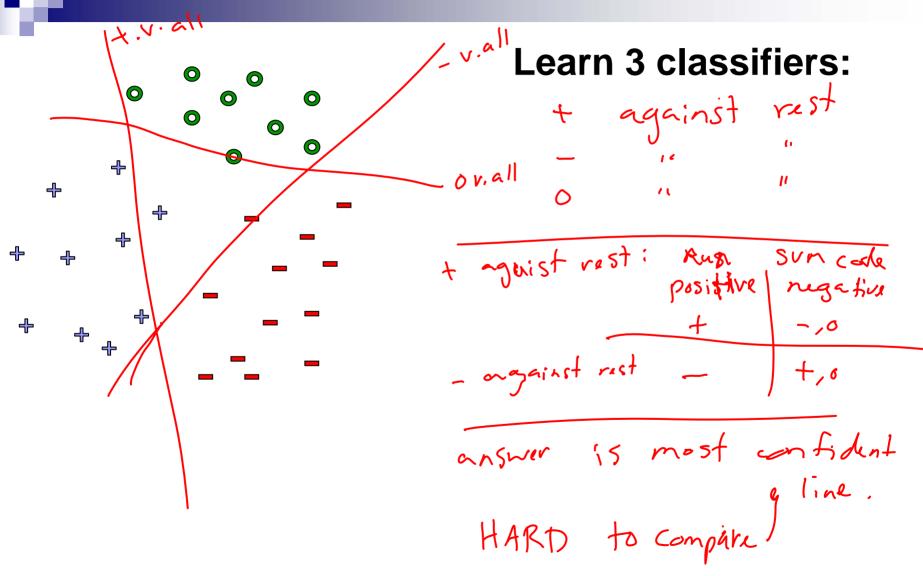
$$-\ln P(Y = 1 \mid x, \mathbf{w}) = \ln (1 + e^{-(\mathbf{w} \cdot \mathbf{x} + b)})$$



What about multiple classes?



One against All

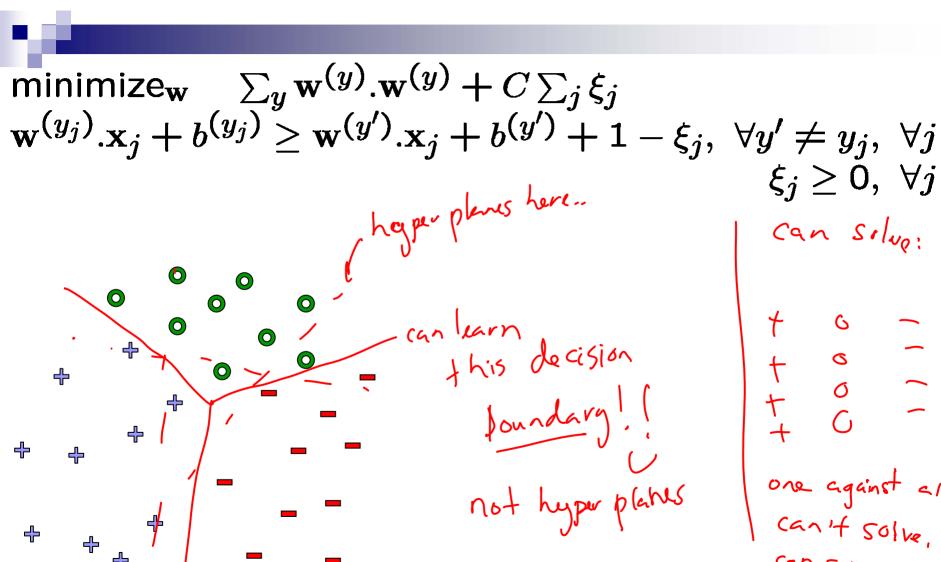


Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights

$$\underbrace{\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1}_{\text{win}}, \forall y' \neq y_j, \forall j$$

Learn 1 classifier: Multiclass SVM



©2006 Carlos Guestrin

What you need to know

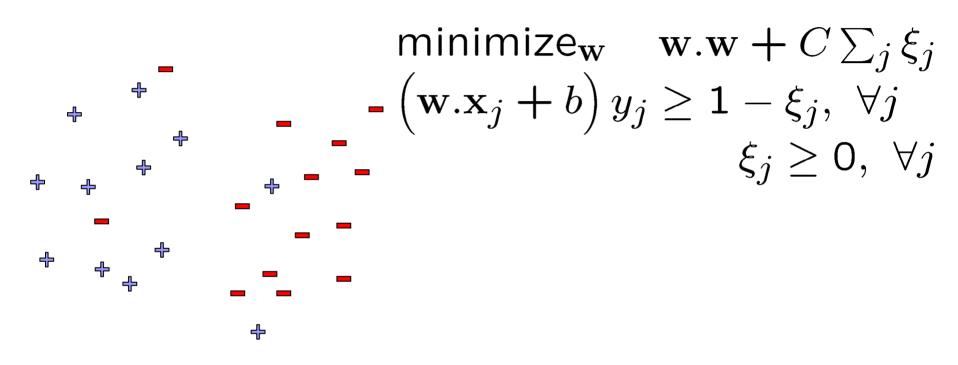
- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - □ 0/1 loss
 - ☐ Hinge loss
 - □ Log loss
- Tackling multiple class
 - □ One against All
 - ☐ Multiclass SVMs

SVMs, Duality and the Kernel Trick

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 22nd, 2005

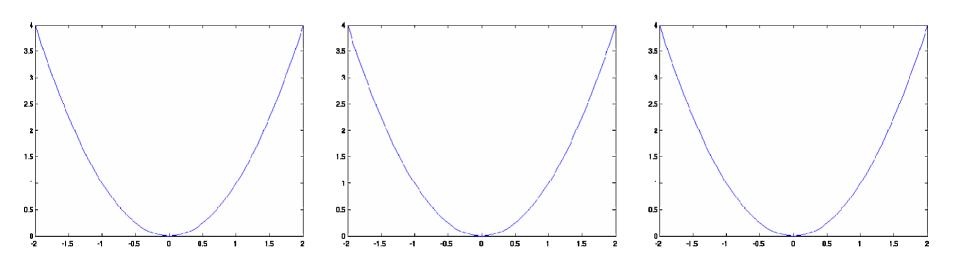
SVMs reminder



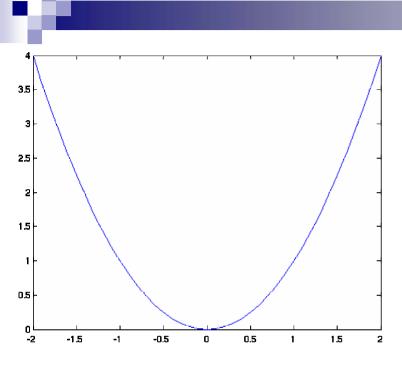
You will now...

- Learn one of the most interesting and exciting recent advancements in machine learning
 - ☐ The "kernel trick"
 - □ High dimensional feature spaces at no extra cost!
- But first, a detour
 - Constrained optimization!

Constrained optimization



Lagrange multipliers – Dual variables



Dual SVM derivation (1) – the linearly separable case

minimize_w
$$\frac{1}{2}$$
w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \ge 1, \ \forall j$

Dual SVM derivation (2) – the linearly separable case

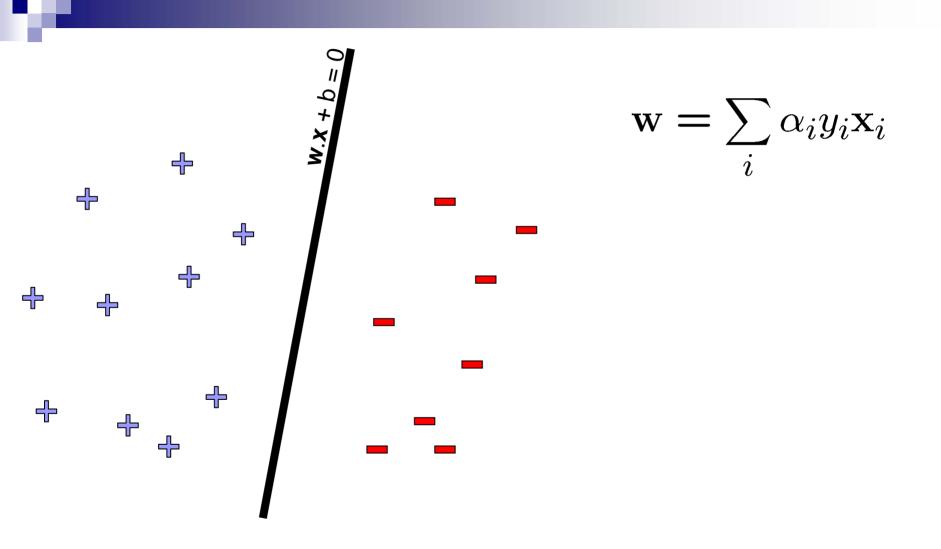
$$L(\mathbf{w}, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{i} > 0, \ \forall j$

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

minimize
$$_{\mathbf{w}}$$
 $\frac{1}{2}\mathbf{w}.\mathbf{w}$ $\left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j}\geq1,\;\forall j$ $b=y_{k}-\mathbf{w}.\mathbf{x}_{k}$ for any k where $\alpha_{k}>0$

Dual SVM interpretation



Dual SVM formulation – the linearly separable case

minimize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$
 $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $lpha_k > 0$

Dual SVM derivation – the non-separable case

$$\begin{aligned} & \text{minimize}_{\mathbf{w}} \quad \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j} \\ & \left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} \geq 1 - \xi_{j}, \ \forall j \\ & \quad \xi_{j} \geq 0, \ \forall j \end{aligned}$$

Dual SVM formulation – the non-separable case

minimize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $C \geq \alpha_{i} \geq 0$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

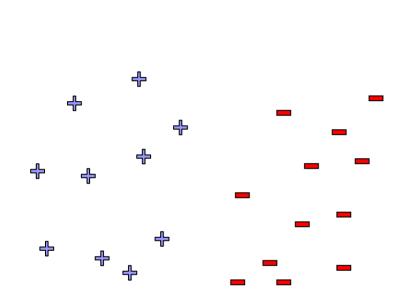
$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

 $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $C > \alpha_k > \mathbf{0}$

Why did we learn about the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal
- But, more importantly, the "kernel trick"!!!
 - □ Another little detour...

Reminder from last time: What if the data is not linearly separable?



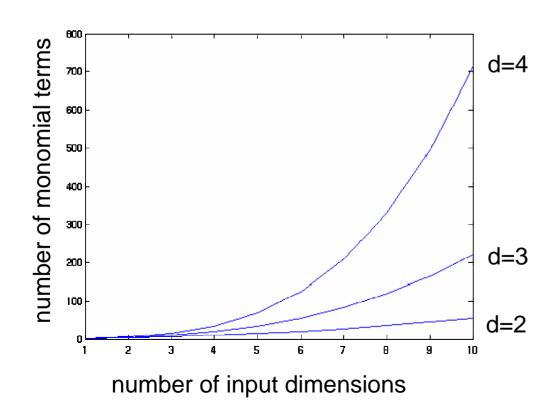
Use features of features of features of features....

$$\Phi(\mathbf{x}): R^m \mapsto F$$

Feature space can get really large really quickly!

Higher order polynomials

num. terms
$$= \begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!}$$



m – input featuresd – degree of polynomial

grows fast! d = 6, m = 100 about 1.6 billion terms

Dual formulation only depends on dot-products, not on w!

minimize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C \geq \alpha_{i} \geq 0$$

$$\begin{aligned} & \text{minimize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ & K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \\ & \text{gation Guestrin} \end{aligned}$$

Dot-product of polynomials

 $\Phi(\mathbf{u}) \cdot \Phi(\mathbf{v}) = \text{polynomials of degree d}$

Finally: the "kernel trick"!

 $C > \alpha_i > 0$

minimize_{\alpha}
$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$
$$\sum_{i} \alpha_{i} y_{i} = 0$$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- Very interesting theory Reproducing Kernel Hilbert Spaces
 - Not covered in detail in 10701/15781, more in 10702

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$
 for any k where $C > \alpha_k > 0$

Polynomial kernels

$$\Phi(\mathbf{u})\cdot\Phi(\mathbf{v})=(\mathbf{u}\cdot\mathbf{v})^d=$$
 polynomials of degree d

- How about all monomials of degree up to d?
 - □ Solution 0:
 - □ Better solution:

Common kernels

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian kernels $K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||}{2\sigma^2}\right)$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Overfitting?

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - □ Often robust to overfitting

What about at classification time

- For a new input \mathbf{x} , if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign(w.Ф(x)+b)
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

SVMs with kernels

- Choose a set of features and kernel function
- lacksquare Solve dual problem to obtain support vectors $lpha_{
 m i}$
- At classification time, compute:

$$\mathbf{w} \cdot \Phi(\mathbf{x}) = \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i)$$

$$b = y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i)$$
 for any k where $C > \alpha_k > 0$

What's the difference between SVMs and Logistic Regression?

	SVMs	Logistic Regression
Loss function		
High dimensional features with kernels		

Kernels in logistic regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of support vectors:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

lacksquare Derive simple gradient descent rule on $lpha_{
m i}$

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
	©2006 Carlos Guestrin	45

What you need to know

- Dual SVM formulation
 - ☐ How it's derived
- The kernel trick
- Derive polynomial kernel
- Common kernels
- Kernelized logistic regression
- Differences between SVMs and logistic regression

Acknowledgment

- SVM applet:
 - □ http://www.site.uottawa.ca/~gcaron/applets.htm

Acknowledgment

- SVM applet:
 - □ http://www.site.uottawa.ca/~gcaron/applets.htm