Neural Nets:

Many possible refs e.g., Mitchell Chapter 4

Neural Networks

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 15th, 2006

Announcements

- Recitations stay on Thursdays
 - □ 5-6:30pm in Wean 5409
 - This week: Cross Validation and Neural Nets

Homework 2

- □ Due next Monday, Feb. 20th
- □ Updated version online with more hints
- □ Start early

Logistic regression

 $=\frac{1}{1+e^{-(w_0+\sum_i w_i x_i)}}$ $=g(w_0+\sum_i w_i x_i)$

P(Y|X) represented by:

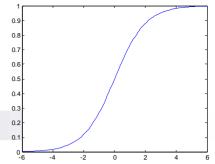
$$P(Y=1\mid x,W)$$

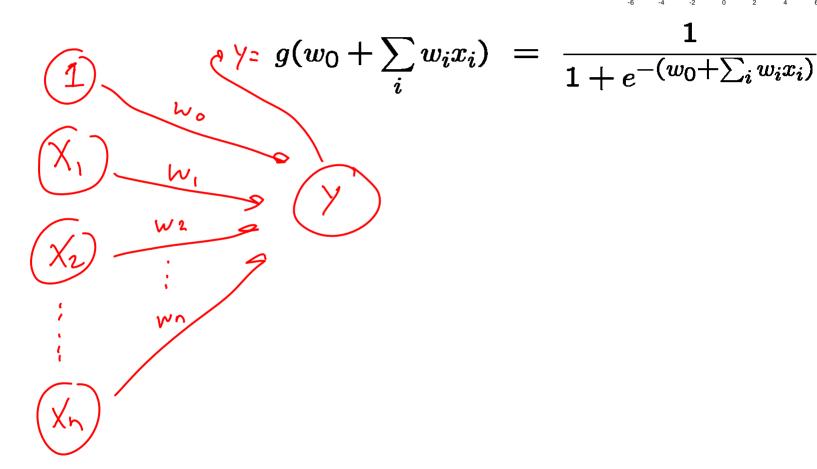
Learning rule – MLE:

$$egin{array}{lll} rac{\partial \ell(W)}{\partial w_i} &=& \sum_j x_i^j [y^j - P(Y^j = 1 \mid x^j, W)] \ &=& \sum_j x_i^j [y^j - g(w_0 + \sum_i w_i x_i^j)] \end{array}$$

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$$
Lenn $\delta^j = y^j - g(w_0 + \sum_i w_i x_i^j)$
rate (2006 Carlos Guestrin 3

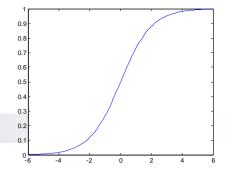
Perceptron as a graph

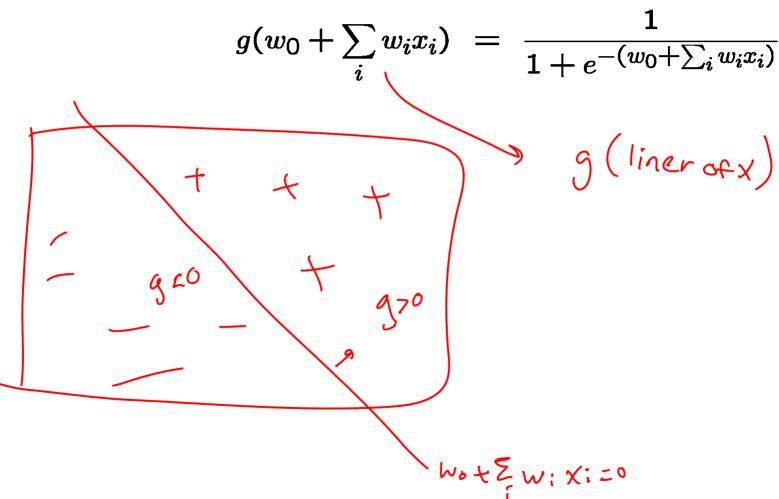




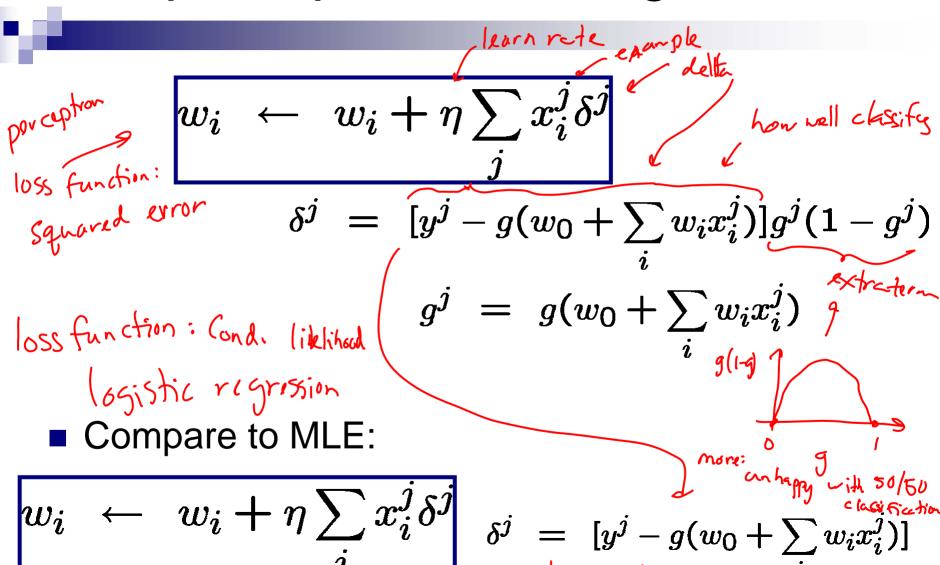
$$\frac{1}{1 \perp_e - (w_0 + \sum_i w_i x_i)}$$

Linear perceptron classification region





The perceptron learning rule

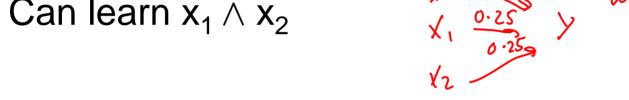


Percepton, linear classification,

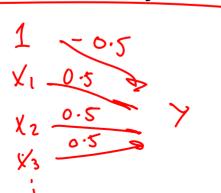
Boolean functions

■ Can learn $x_1 \lor x_2$

Can learn x₁ ∧ x₂



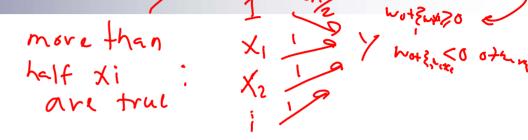
Can learn any conjunction or disjunction



ひょと

Percepton, linear classification, Boolean functions

Can learn majority

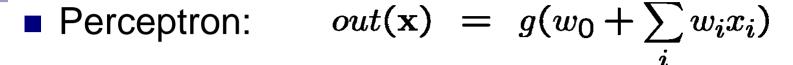


Can perceptrons do everything?

Going beyond linear classification

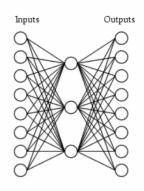
Solving the XOR problem

Hidden layer



■ 1-hidden layer: $out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$

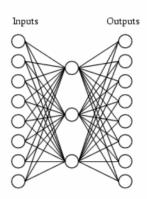
Example data for NN with hidden layer



A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

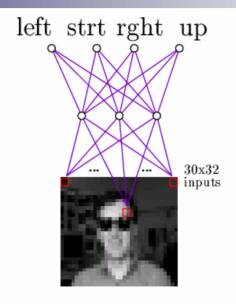
Learned weights for hidden layer



Learned hidden layer representation:

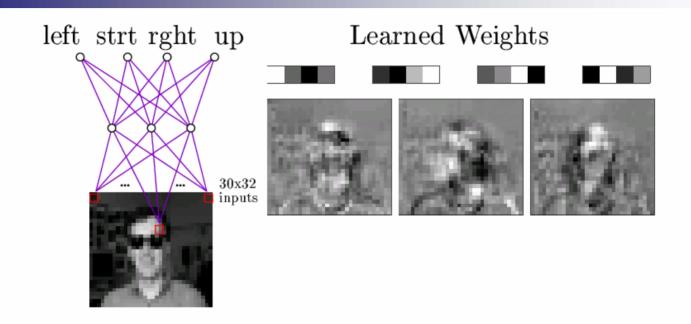
Input		Hidden				Output		
Values								
10000000 -	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000 -	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000 -	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000 -	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000 -	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100 -	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010 -	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001 -	\rightarrow	.60	.94	.01	\rightarrow	00000001		

NN for images



Typical input images

Weights in NN for images



Typical input images

©2006 Carlos Guestrin

Forward propagation for 1-hidden layer - Prediction

■ 1-hidden layer:
$$out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

Gradient descent for 1-hidden layer – Back-propagation: Computing $\frac{\partial \ell(W)}{\partial w_k}$

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$

$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'} g(\sum_{i'} w_{i'}^{k'} x_{i'})\right)$$

$$\frac{\partial \ell(W)}{\partial w_k} = -[y - out(\mathbf{x})] \frac{\partial out(\mathbf{x})}{\partial w_k}$$

Dropped w₀ to make derivation simpler

Gradient descent for 1-hidden layer – Back-propagation: Computing $\frac{\partial \ell(W)}{\partial w_i^k}$

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$
 $out(\mathbf{x}) = g\left(\sum_{k'} w_{k'}g(\sum_{i'} w_{i'}^{k'}x_{i'})\right)$

$$\frac{\partial \ell(W)}{\partial w_i^k} = -[y - out(\mathbf{x})] \frac{\partial out(\mathbf{x})}{\partial w_i^k}$$

Dropped w₀ to make derivation simpler

Multilayer neural networks

Forward propagation – prediction

- Recursive algorithm
- Start from input layer
- Output of node V_k with parents U₁,U₂,...:

$$V_k = g\left(\sum_i w_i^k U_i\right)$$

Back-propagation – learning

- 70
 - Just gradient descent!!!
 - Recursive algorithm for computing gradient
 - For each example
 - □ Perform forward propagation
 - □ Start from output layer
 - \square Compute gradient of node V_k with parents $U_1, U_2, ...$
 - □ Update weight w_i^k

Many possible response functions

- Sigmoid
- Linear

- Exponential
- Gaussian

...

Convergence of backprop

- Perceptron leads to convex optimization
 - □ Gradient descent reaches global minima

- Multilayer neural nets not convex
 - Gradient descent gets stuck in local minima
 - □ Hard to set learning rate
 - □ Selecting number of hidden units and layers = fuzzy process
 - NNs falling in disfavor in last few years
 - □ We'll see later in semester, *kernel trick* is a good alternative
 - Nonetheless, neural nets are one of the most used ML approaches

Training set error

- Neural nets represent complex functions
 - Output becomes more complex with gradient steps
- Training set error

What about test set error?

Overfitting

- Output fits training data "too well"
 - □ Poor test set accuracy
- Overfitting the training data
 - Related to bias-variance tradeoff
 - □ One of central problems of ML
- Avoiding overfitting?
 - More training data
 - Regularization
 - □ Early stopping

What you need to know about neural networks

- Perceptron:
 - Representation
 - □ Perceptron learning rule
 - Derivation
- Multilayer neural nets
 - □ Representation
 - Derivation of backprop
 - □ Learning rule
- Overfitting
 - Definition
 - □ Training set versus test set
 - Learning curve

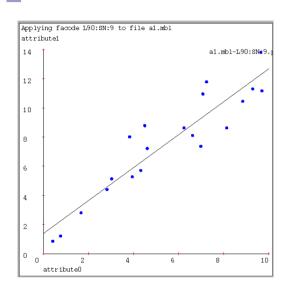
Instance-based Learning

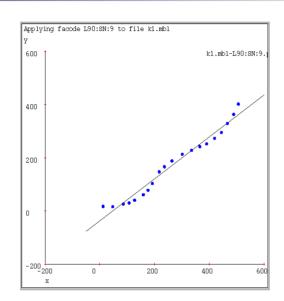
Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

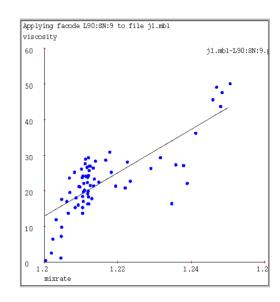
February 15th, 2006

Announcements

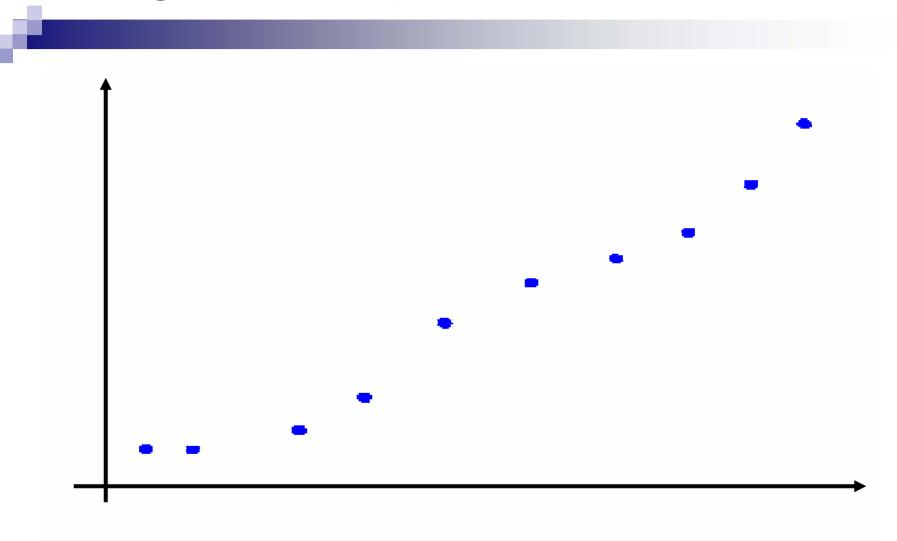
Why not just use Linear Regression?



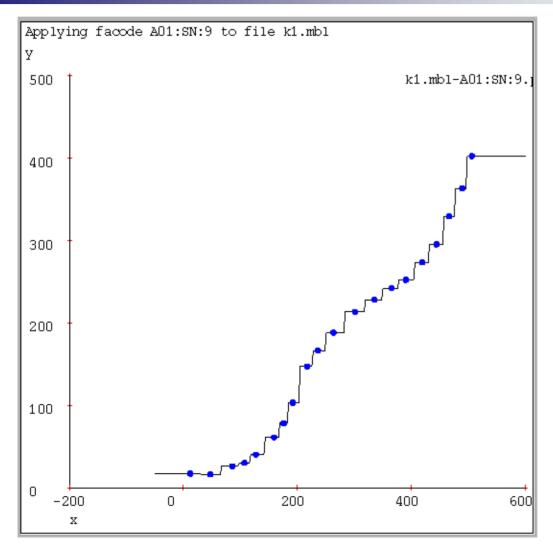




Using data to predict new data



Nearest neighbor



Univariate 1-Nearest Neighbor

Given datapoints (x_1, y_1) (x_2, y_2) .. (x_N, y_N) , where we assume $y = f(s_i)$ for some unknown function f.

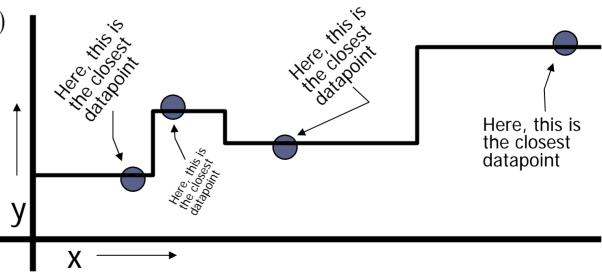
Given query point x_q , your job is to predict $\hat{y} \approx f(x_q)$ Nearest Neighbor:

1. Find the closest x_i in our set of datapoints

$$i(nn) = \underset{i}{\operatorname{argmin}} |x_i - x_q|$$

2. Predict $\hat{y} = y_{i(nn)}$

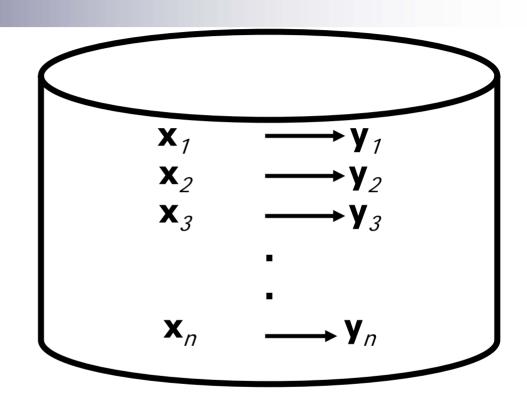
Here's a dataset with one input, one output and four datapoints.



1-Nearest Neighbor is an example of.... Instance-based learning

A function approximator that has been around since about 1910.

To make a prediction, search database for similar datapoints, and fit with the local points.



Four things make a memory based learner:

- A distance metric
- How many nearby neighbors to look at?
- A weighting function (optional)
- How to fit with the local points?

1-Nearest Neighbor

Four things make a memory based learner:

- A distance metric
 Euclidian (and many more)
- How many nearby neighbors to look at?

 One
- 3. A weighting function (optional)

 Unused
- 4. How to fit with the local points?

 Just predict the same output as the nearest neighbor.

Multivariate 1-NN examples

Regression

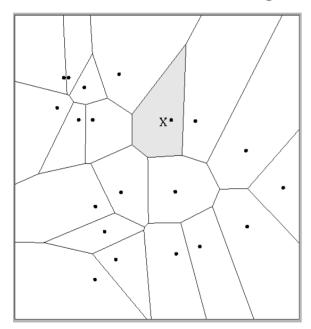
Classification

Multivariate distance metrics

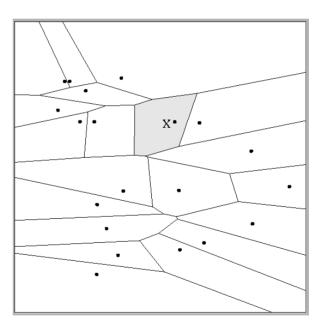
Suppose the input vectors x1, x2, ...xn are two dimensional:

$$\mathbf{x}_1 = (x_{11}, x_{12}), \mathbf{x}_2 = (x_{21}, x_{22}), \dots \mathbf{x}_N = (x_{N1}, x_{N2}).$$

One can draw the nearest-neighbor regions in input space.



$$Dist(\mathbf{x}_{i},\mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} \qquad Dist(\mathbf{x}_{i},\mathbf{x}_{i}) = (x_{i1} - x_{i1})^{2} + (3x_{i2} - 3x_{i2})^{2}$$



$$Dist(\mathbf{x}_{i},\mathbf{x}_{j}) = (x_{i1} - x_{j1})^{2} + (3x_{i2} - 3x_{j2})^{2}$$

The relative scalings in the distance metric affect region shapes.

Euclidean distance metric

Or equivalently,

$$D(\mathbf{x}, \mathbf{x'}) = \sqrt{\sum_{i} \sigma_{i}^{2} (x_{i} - x'_{i})^{2}}$$

where

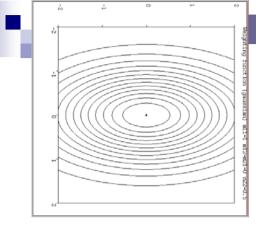
$$D(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^T \sum (\mathbf{x} - \mathbf{x}')}$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \sigma_N^2 \end{bmatrix}$$

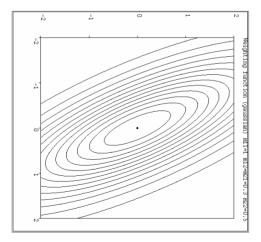
Other Metrics...

Mahalanobis, Rank-based, Correlation-based,...

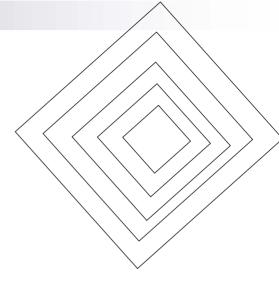
Notable distance metrics (and their level sets)



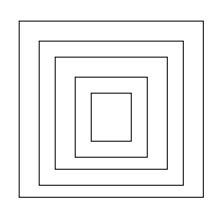
Scaled Euclidian (L₂)



Mahalanobis (here, Σ on the previous slide is not necessarily diagonal, but is symmetric



L₁ norm (absolute)



L∞ (max) norm

Consistency of 1-NN

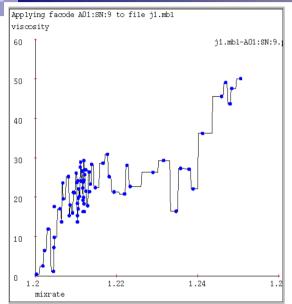
- Consider an estimator f_n trained on n examples
 - □ e.g., 1-NN, neural nets, regression,...
- Estimator is consistent if prediction error goes to zero as amount of data increases
 - □ e.g., for no noise data, consistent if:

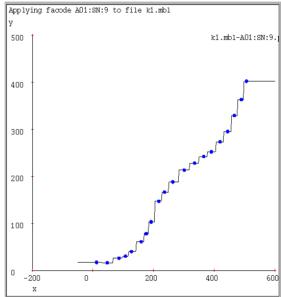
$$\lim_{n\to\infty} MSE(f_n) = 0$$

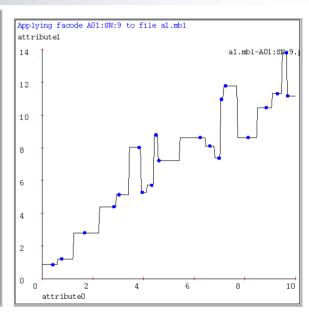
- Regression is not consistent!
 - Representation bias
- 1-NN is consistent (under some mild fineprint)

What about variance???

1-NN overfits?







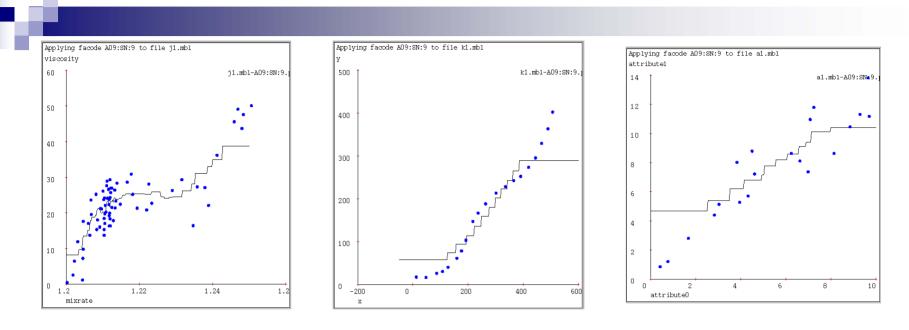
k-Nearest Neighbor

Four things make a memory based learner:

- A distance metric
 Euclidian (and many more)
- How many nearby neighbors to look at?
- A weighting function (optional)
 Unused
- 2. How to fit with the local points?

 Just predict the average output among the k nearest neighbors.

k-Nearest Neighbor (here k=9)



K-nearest neighbor for function fitting smoothes away noise, but there are clear deficiencies.

What can we do about all the discontinuities that k-NN gives us?

©2006 Carlos Guestrin

Weighted k-NNs

Neighbors are not all the same

Kernel regression

Four things make a memory based learner:

- A distance metric
 Euclidian (and many more)
- 2. How many nearby neighbors to look at?

 All of them
- 3. A weighting function (optional) $\mathbf{w}_i = \exp(-D(\mathbf{x}_i, \mathbf{query})^2 / K_w^2)$

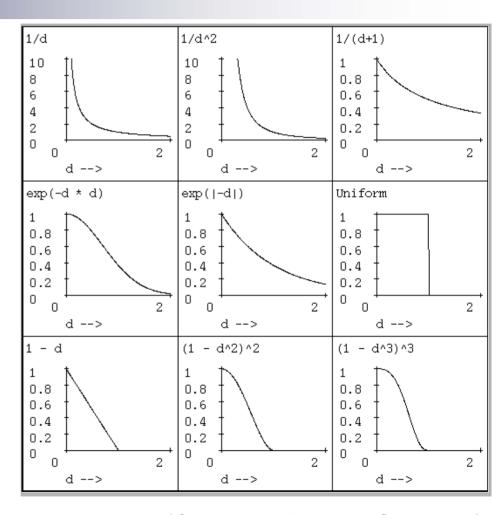
Nearby points to the query are weighted strongly, far points weakly. The K_W parameter is the **Kernel Width**. Very important.

4. How to fit with the local points?

Predict the weighted average of the outputs: $predict = \sum w_i y_i / \sum w_i$

Weighting functions

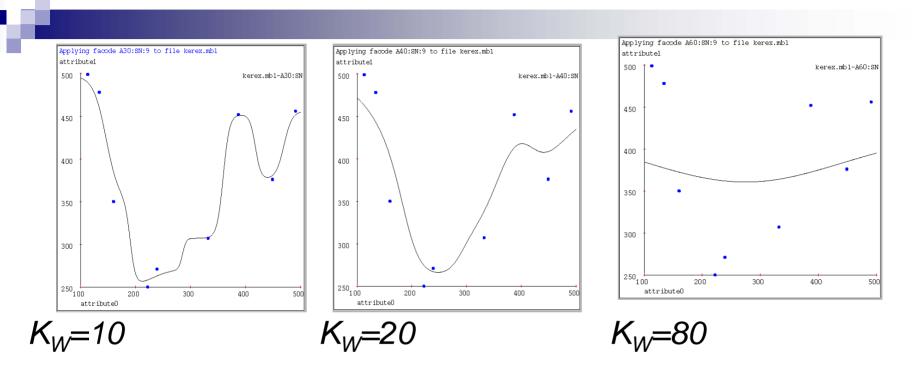
 $w_i = \exp(-D(x_i, query)^2 / K_w^2)$



Typically optimize K_w using gradient descent

(Our examples use Gaussian)

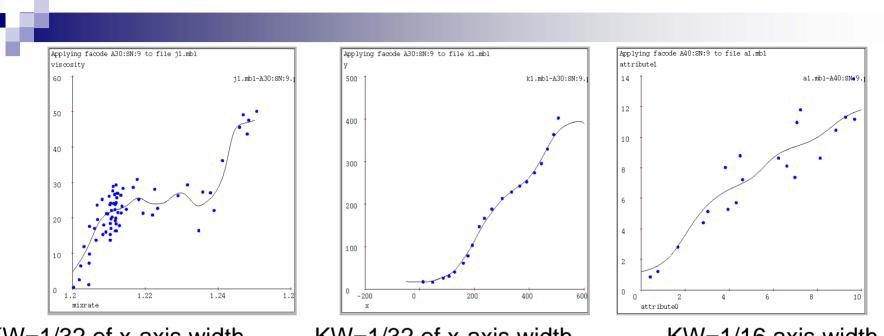
Kernel regression predictions



Increasing the kernel width K_w means further away points get an opportunity to influence you.

As $K_w \rightarrow \infty$, the prediction tends to the global average.

Kernel regression on our test cases



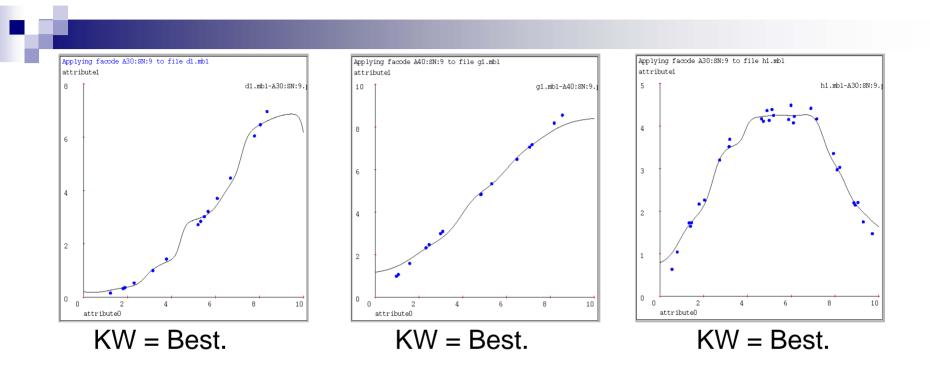
KW=1/32 of x-axis width.

KW=1/32 of x-axis width.

KW=1/16 axis width.

Choosing a good K_w is important. Not just for Kernel Regression, but for all the locally weighted learners we're about to see.

Kernel regression can look bad



Time to try something more powerful...

Locally weighted regression

Kernel regression:

Take a very very conservative function approximator called AVERAGING. Locally weight it.

Locally weighted regression:

Take a conservative function approximator called LINEAR REGRESSION. Locally weight it.

Locally weighted regression

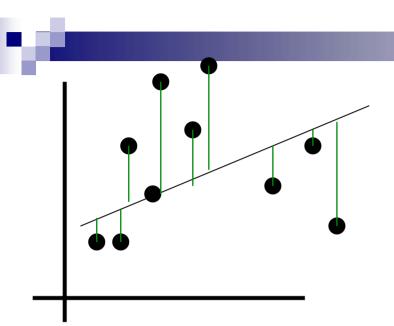
- Four things make a memory based learner:
- A distance metricAny
- How many nearby neighbors to look at?

All of them

- A weighting function (optional)
 Kernels
 - \square wi = exp(-D(xi, query)2 / Kw2)
- How to fit with the local points?
 General weighted regression:

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{k=1}^{N} w_k^2 (y_k - \beta^T x_k)^2$$

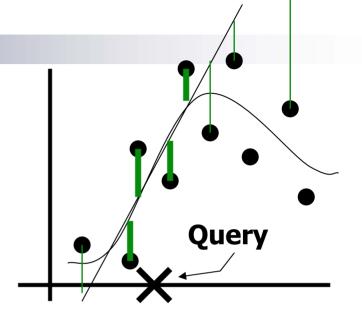
How LWR works



Linear regression

Same parameters for all queries

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y}$$



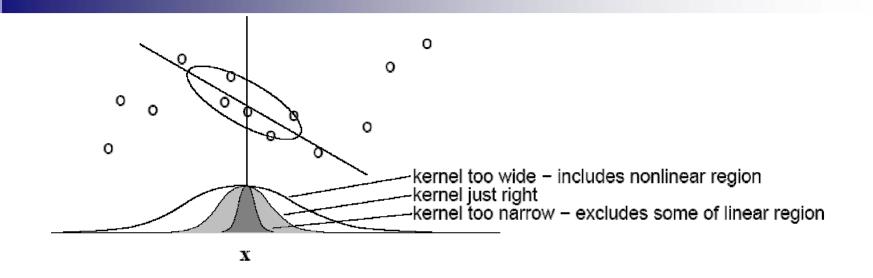
Locally weighted regression

 Solve weighted linear regression for each query

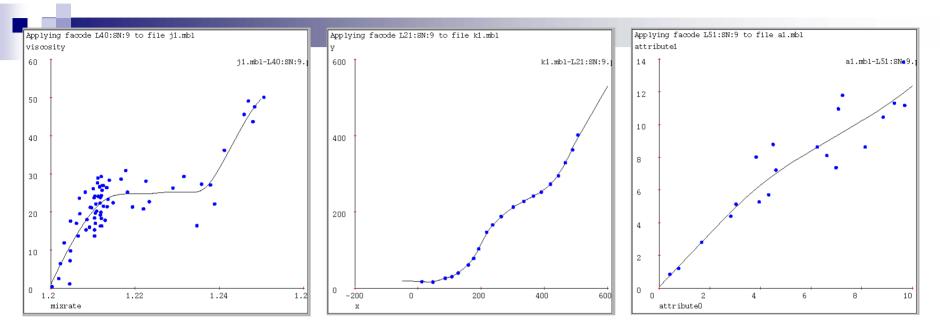
$$\hat{\boldsymbol{\beta}} = (\mathbf{W} \mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{X})^{-1} \mathbf{W} \mathbf{X}^{\mathrm{T}} \mathbf{W} \mathbf{Y}$$

$$W = \begin{pmatrix} w_1 & 0 & 0 & 0 \\ 0 & w_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & w_n \end{pmatrix}$$

Another view of LWR



LWR on our test cases

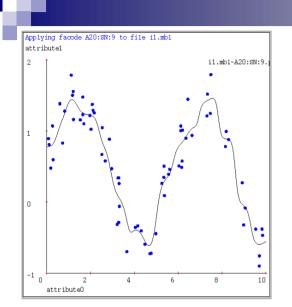


KW = 1/16 of x-axis width.

KW = 1/32 of x-axis width.

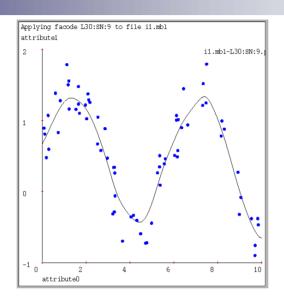
KW = 1/8 of x-axis width.

Locally weighted polynomial regression



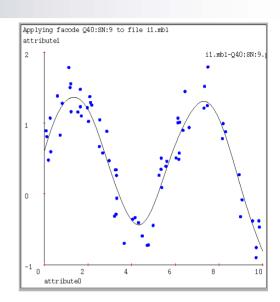
Kernel Regression Kernel width K_W at optimal level.

KW = 1/100 x-axis



LW Linear Regression Kernel width K_W at optimal level.

KW = 1/40 x-axis



LW Quadratic Regression Kernel width K_W at optimal level.

KW = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the WXTWX matrix. As the regression degree increases, the kernel width can increase without introducing bias.

Curse of dimensionality for instance-based learning

- Must store and retreve all data!
 - Most real work done during testing
 - □ For every test sample, must search through all dataset very slow!
 - □ We'll see fast methods for dealing with large datasets
- Instance-based learning often poor with noisy or irrelevant features

Curse of the irrelevant feature

What you need to know about instance-based learning

- k-NN
 - □ Simplest learning algorithm
 - □ With sufficient data, very hard to beat "strawman" approach
 - □ Picking k?
- Kernel regression
 - Set k to n (number of data points) and optimize weights by gradient descent
 - □ Smoother than k-NN
- Locally weighted regression
 - ☐ Generalizes kernel regression, not just local average
- Curse of dimensionality
 - Must remember (very large) dataset for prediction
 - □ Irrelevant features often killers for instance-based approaches

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials