Reading:

Kaelbling et al. 1996 (see class website)

Markov Decision Processes (MDPs)

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

May 1st, 2006

Announcements

Project:

- □ Poster session: Friday May 5th 2-5pm, NSH Atrium
 - please arrive a little early to set up

■ FCEs!!!!

- ☐ Please, please, please, please, please, please give us your feedback, it helps us improve the class! ☺
 - http://www.cmu.edu/fce

Discount Factors

People in economics and probabilistic decision-making do this all the time.

The "Discounted sum of future rewards" using discount

factor γ " is $\gamma \in (0, 1)$

(reward now) +

 γ (reward in 1 time step) +

 γ^2 (reward in 2 time steps) +

 γ^3 (reward in 3 time steps) +

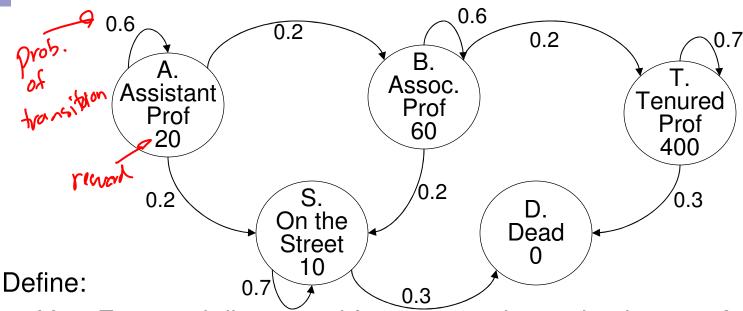
(infinite sum)

for example: X2,20+ Y3 20+

The Academic Life

Simple Assume Discount

Markov Chain Factor Y = 0.9

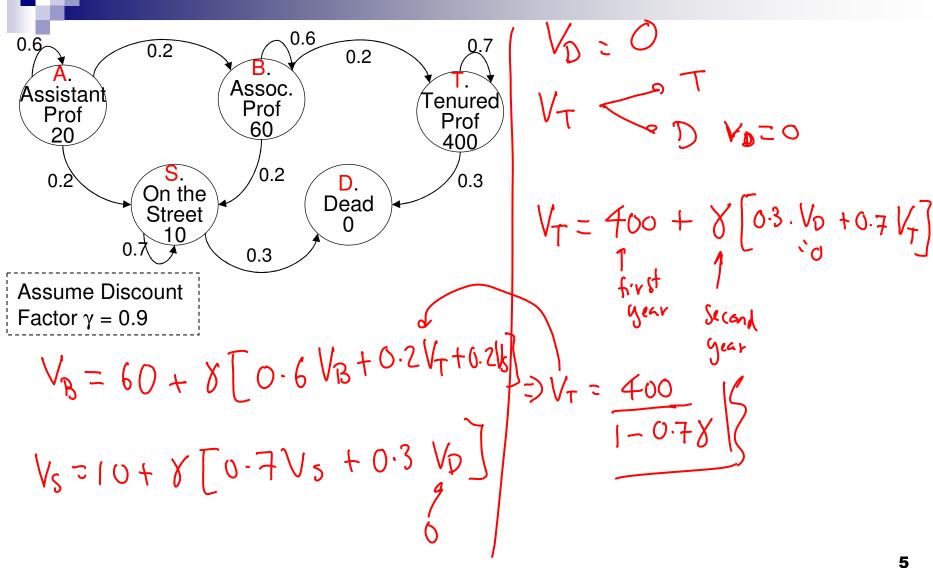


V_A = Expected discounted future rewards starting in state A

V_B = Expected discounted future rewards starting in state B

How do we compute V_A , V_B , V_T , V_S , V_D ?

Computing the Future Rewards of an Academic



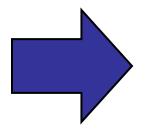
Joint Decision Space

Markov Decision Process (MDP) Representation:

- State space:
 - ☐ Joint state **x** of entire system
- Action space:
 - □ Joint action $\mathbf{a} = \{a_1, ..., a_n\}$ for all agents
- Reward function:
 - \square Total reward R(\mathbf{x} , \mathbf{a})
 - sometimes reward can depend on action
- Transition model:
 - \square Dynamics of the entire system $P(\mathbf{x}'|\mathbf{x},\mathbf{a})$

Policy

Policy: $\pi(\mathbf{x}) = \mathbf{a}$



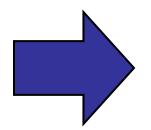
At state **x**, action **a** for all agents

 $\pi(\mathbf{x}_1)$ = one peasant builds barrack, other gets gold

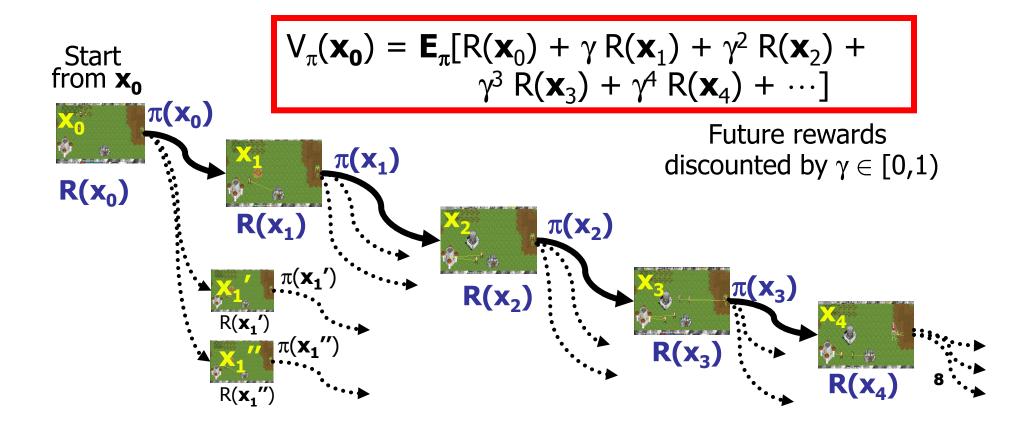
$$\pi(\mathbf{x}_2)$$
 = peasants get gold, footmen attack

Value of Policy

Value: $V_{\pi}(\mathbf{x})$



Expected longterm reward starting from **x**



Computing the value of a policy

$$V_{\pi}(\mathbf{x_0}) = \mathbf{E}_{\pi}[R(\mathbf{x_0}) + \gamma R(\mathbf{x_1}) + \gamma^2 R(\mathbf{x_2}) + \gamma^3 R(\mathbf{x_3}) + \gamma^4 R(\mathbf{x_4}) + \cdots]$$

- Discounted value of a state:
 - \square value of starting from x_0 and continuing with policy π from then on

$$V_{\pi}(x_0) = E_{\pi}[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) + \gamma^3 R(x_3) + \cdots]$$

= $E_{\pi}[\sum_{t=0}^{\infty} \gamma^t R(x_t)]$

A recursion!

Computing the value of a policy 1 – the matrix inversion approach

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

Solve by simple matrix inversion:

Computing the value of a policy 2 – iteratively

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

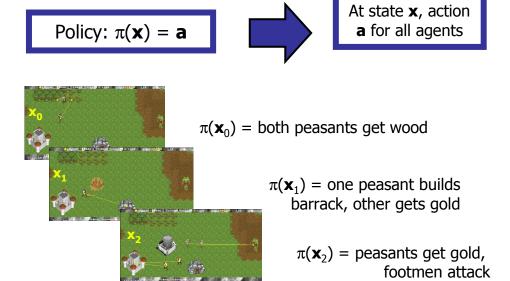
- If you have 1000,000 states, inverting a 1000,000x1000,000 matrix is hard!
- Can solve using a simple convergent iterative approach: (a.k.a. dynamic programming)
 - Start with some guess V₀
 - □ Iteratively say:

$$V_{t+1} = R + \gamma P_{\pi} V_t$$

- □ Stop when $||V_{t+1}-V_t||_{\infty} \le \varepsilon$
 - means that $||V_{\pi}-V_{t+1}||_{\infty} \leq \epsilon/(1-\gamma)$

But we want to learn a Policy

- So far, told you how good a policy is...
- But how can we choose the best policy???
- Suppose there was only one time step:
 - □ world is about to end!!!
 - select action that maximizes reward!



Another recursion!

- Two time steps: address tradeoff
 - □ good reward now
 - better reward in the future

Unrolling the recursion

- Choose actions that lead to best value in the long run
 - □ Optimal value policy achieves optimal value V*

$$V^*(x_0) = \max_{a_0} R(x_0, a_0) + \gamma E_{a_0} [\max_{a_1} R(x_1) + \gamma^2 E_{a_1} [\max_{a_2} R(x_2) + \cdots]]$$

Bellman equation

• Evaluating policy π :

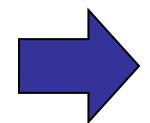
$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

Computing the optimal value V* - Bellman equation

$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Optimal Long-term Plan

Optimal value function V*(x)



Optimal Policy: $\pi^*(\mathbf{x})$

$$Q^*(\mathbf{x}, \mathbf{a}) = R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Optimal policy:

$$\pi^*(\mathbf{x}) = \underset{\mathbf{a}}{\operatorname{arg max}} Q^*(\mathbf{x}, \mathbf{a})$$

Interesting fact — Unique value

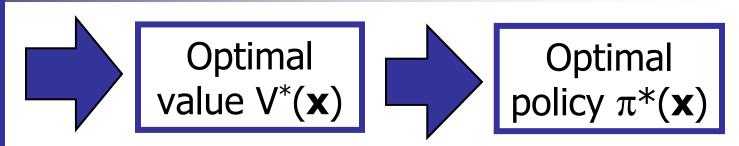
$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Slightly surprising fact: There is only one V* that solves Bellman equation!
 - □ there may be many optimal policies that achieve V*
- Surprising fact: optimal policies are good everywhere!!!

$$V_{\pi^*}(x) \geq V_{\pi}(x), \ \forall x, \ \forall \pi$$

Solving an MDP

Solve Bellman equation



$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

Bellman equation is non-linear!!!

Many algorithms solve the Bellman equations:

- Policy iteration [Howard '60, Bellman '57]
- Value iteration [Bellman '57]
- Linear programming [Manne '60]

■ ... 18

Value iteration (a.k.a. dynamic programming) — the simplest of all

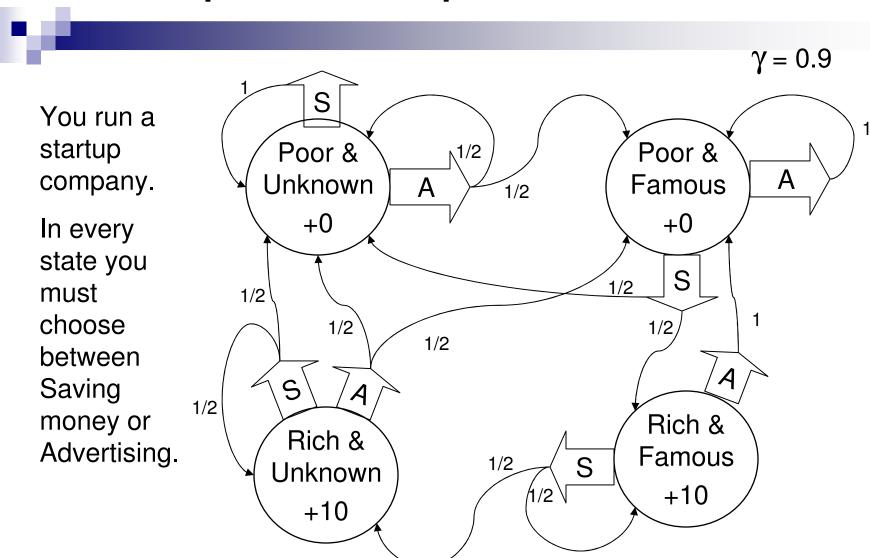
$$V^*(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V^*(\mathbf{x}')$$

- Start with some guess V₀
- Iteratively say:

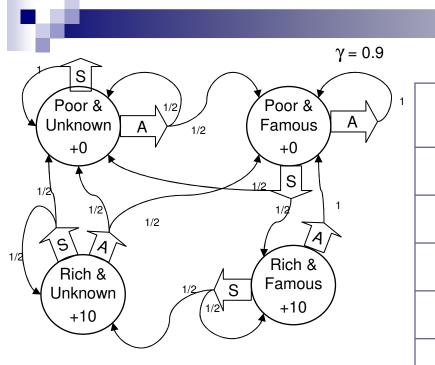
$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

- Stop when $||V_{t+1}-V_t||_{\infty} \le \varepsilon$
 - \square means that $||V^*-V_{t+1}||_{\infty} \leq \varepsilon/(1-\gamma)$

A simple example



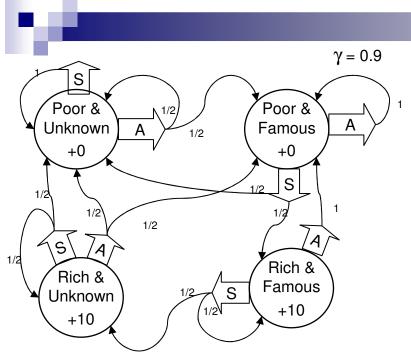
Let's compute $V_t(x)$ for our example



t	V _t (PU)	V _t (PF)	V _t (RU)	V _t (RF)
1				
2				
3				
4				
5				
6				

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

Let's compute $V_t(x)$ for our example



t	V _t (PU)	V _t (PF)	V _t (RU)	V _t (RF)
1	0	0	10	10
2	0	4.5	14.5	19
3	2.03	6.53	25.08	18.55
4	3.852	12.20	29.63	19.26
5	7.22	15.07	32.00	20.40
6	10.03	17.65	33.58	22.43

$$V_{t+1}(\mathbf{x}) = \max_{\mathbf{a}} R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V_t(\mathbf{x}')$$

Policy iteration – Another approach for computing π^*

Iteratively say:

• evaluate policy:
$$V_t(\mathbf{x}) = R(\mathbf{x}, \mathbf{a} = \pi_t(\mathbf{x})) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a} = \pi_t(\mathbf{x})) V_t(\mathbf{x}')$$

Stop when

- policy stops changing
 - usually happens in about 10 iterations
- \square or $\|V_{t+1}-V_t\|_{\infty} \leq \varepsilon$
 - means that $||V^*-V_{t+1}||_{\infty} \le \varepsilon/(1-\gamma)$

Policy Iteration & Value Iteration: Which is best ???

It depends.

Lots of actions? Choose Policy Iteration Already got a fair policy? Policy Iteration Few actions, acyclic? Value Iteration

Best of Both Worlds:

Modified Policy Iteration [Puterman] ...a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

LP Solution to MDP

[Manne '60]

Value computed by linear programming:

minimize:
$$\sum_{\mathbf{x}} V(\mathbf{x})$$
subject to:
$$\begin{cases} V(\mathbf{x}) \ge R(\mathbf{x}, \mathbf{a}) + \gamma \sum_{\mathbf{x}'} P(\mathbf{x}' | \mathbf{x}, \mathbf{a}) V(\mathbf{x}') \\ \forall \mathbf{x}, \mathbf{a} \end{cases}$$

- lacktriangle One variable $V(\mathbf{x})$ for each state
- One constraint for each state x and action a
- Polynomial time solution

What you need to know

- What's a Markov decision process
 - □ state, actions, transitions, rewards
 - □ a policy
 - □ value function for a policy
 - computing V_π
- Optimal value function and optimal policy
 - □ Bellman equation
- Solving Bellman equation
 - with value iteration, policy iteration and linear programming

Acknowledgment

- This lecture contains some material from Andrew Moore's excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials

Reading:

Kaelbling et al. 1996 (see class website)

Reinforcement Learning

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

May 1st, 2006

The Reinforcement Learning task

World: You are in state 34.

Your immediate reward is 3. You have possible 3 actions.

Robot: I'll take action 2.

World: You are in state 77.

Your immediate reward is -7. You have possible 2 actions.

Robot: I'll take action 1.

Formalizing the (online) reinforcement learning problem

- Given a set of states X and actions A
 - □ in some versions of the problem size of **X** and **A** unknown
- Interact with world at each time step *t*:
 - \square world gives state \mathbf{x}_{t} and reward \mathbf{r}_{t}
 - □ you give next action a_t
- Goal: (quickly) learn policy that (approximately) maximizes long-term expected discounted reward

The "Credit Assignment" Problem


```
I'm in state 43,
             reward = 0, action = 2
       " 39,
                        = 0, \quad \text{``} = 4
     " 22,
                      = 0, \quad \text{``} = 1
    " " 21,
                    " = 0, " = 1
     " 21,
                    " = 0, " = 1
                 " = 0, " = 2
    " " 13,
     " 54,
                    = 0, = 2
     " 26,
                      = 100,
```

Yippee! I got to a state with a big reward! But which of my actions along the way actually helped me get there??

This is the Credit Assignment problem.

Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100
 - □ is this the best I can hope for???
- Exploitation: should I stick with what I know and find a good policy w.r.t. this knowledge?
 - □ at the risk of missing out on some large reward somewhere
- **Exploration**: should I look for a region with more reward?
 - at the risk of wasting my time or collecting a lot of negative reward

Two main reinforcement learning approaches

- Model-based approaches:
 - □ explore environment \rightarrow learn model (P(\mathbf{x} '| \mathbf{x} , \mathbf{a}) and R(\mathbf{x} , \mathbf{a})) (almost) everywhere
 - □ use model to plan policy, MDP-style
 - approach leads to strongest theoretical results
 - □ works quite well in practice when state space is manageable
- Model-free approach:
 - \square don't learn a model o learn value function or policy directly
 - □ leads to weaker theoretical results
 - □ often works well when state space is large

Brafman & Tennenholtz 2002 (see class website)

Rmax – A modelbased approach

Given a dataset – learn model

Given data, learn (MDP) Representation:

- Dataset:
- Learn reward function:
 - \square R(**x**,**a**)

- Learn transition model:
 - \square P(x'|x,a)

Some challenges in model-based RL 1: Planning with insufficient information

- Model-based approach:
 - \square estimate R(\mathbf{x} , \mathbf{a}) & P(\mathbf{x} '| \mathbf{x} , \mathbf{a})
 - obtain policy by value or policy iteration, or linear programming
 - \square No credit assignment problem \rightarrow learning model, planning algorithm takes care of "assigning" credit
- What do you plug in when you don't have enough information about a state?
 - □ don't reward at a particular state
 - plug in smallest reward (R_{min})?
 - plug in largest reward (R_{max})?
 - don't know a particular transition probability?

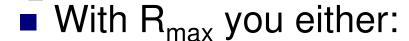
Some challenges in model-based RL 2: Exploration-Exploitation tradeoff

- A state may be very hard to reach
 - waste a lot of time trying to learn rewards and transitions for this state
 - □ after a much effort, state may be useless
- A strong advantage of a model-based approach:
 - you know which states estimate for rewards and transitions are bad
 - □ can (try) to plan to reach these states
 - □ have a good estimate of how long it takes to get there

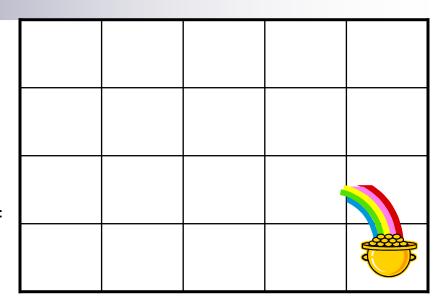
A surprisingly simple approach for model based RL – The Rmax algorithm [Brafman & Tennenholtz]

- Optimism in the face of uncertainty!!!!
 - heuristic shown to be useful long before theory was done (e.g., Kaelbling '90)
- If you don't know reward for a particular state-action pair, set it to R_{max}!!!
- If you don't know the transition probabilities P(x'|x,a) from some some state action pair x,a assume you go to a magic, fairytale new state x₀!!!
 - $\square R(\mathbf{x}_0, \mathbf{a}) = R_{\text{max}}$
 - $\square P(\mathbf{x}_0|\mathbf{x}_0,\mathbf{a}) = 1$

Understanding R_{max}



- explore visit a state-action pair you don't know much about
 - because it seems to have lots of potential
- exploit spend all your time on known states
 - even if unknown states were amazingly good, it's not worth it
- Note: you never know if you are exploring or exploiting!!!



Implicit Exploration-Exploitation Lemma

- ŊΑ
 - **Lemma**: every T time steps, either:
 - □ Exploits: achieves near-optimal reward for these T-steps, or
 - Explores: with high probability, the agent visits an unknown state-action pair
 - learns a little about an unknown state
 - □ T is related to mixing time of Markov chain defined by MDP
 - time it takes to (approximately) forget where you started

The Rmax algorithm

Initialization:

- □ Add state x₀ to MDP
- \square R(**x**,**a**) = R_{max}, \forall **x**,**a**
- $P(\mathbf{x_0}|\mathbf{x},\mathbf{a}) = 1, \forall \mathbf{x},\mathbf{a}$
- \square all states (except for \mathbf{x}_0) are **unknown**

Repeat

- obtain policy for current MDP and Execute policy
- for any visited state-action pair, set reward function to appropriate value
- \Box if visited some state-action pair \mathbf{x} , a enough times to estimate $P(\mathbf{x}'|\mathbf{x}$, a)
 - update transition probs. P(x'|x,a) for x,a using MLE
 - recompute policy

Visit enough times to estimate P(x'|x,a)?

- How many times are enough?
 - □ use Chernoff Bound!

Chernoff Bound:

- $\square X_1,...,X_n$ are i.i.d. Bernoulli trials with prob. θ

Putting it all together

- **Theorem**: With prob. at least 1- δ , Rmax will reach a ϵ -optimal policy in time polynomial in: num. states, num. actions, T, 1/ ϵ , 1/ δ
 - □ Every T steps:
 - achieve near optimal reward (great!), or
 - visit an unknown state-action pair \rightarrow num. states and actions is finite, so can't take too long before all states are known

Problems with model-based approach

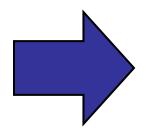
- If state space is large
 - □ transition matrix is very large!
 - □ requires many visits to declare a state as know

- Hard to do "approximate" learning with large state spaces
 - □ some options exist, though

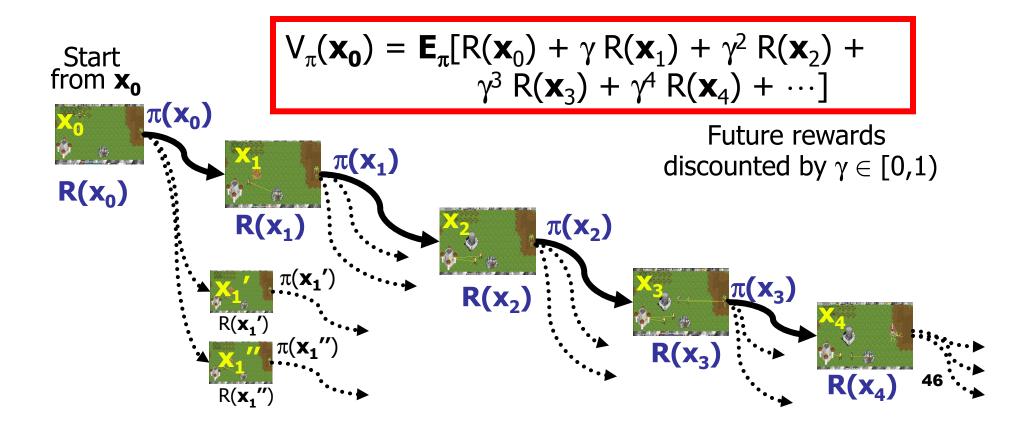
TD-Learning and Q-learning – Model-free approaches

Value of Policy

Value: $V_{\pi}(\mathbf{x})$



Expected longterm reward starting from **x**



A simple monte-carlo policy evaluation

- Estimate $V(\mathbf{x})$, start several trajectories from $\mathbf{x} \rightarrow V(\mathbf{x})$ is average reward from these trajectories
 - Hoeffding's inequality tells you how many you need
 - □ discounted reward → don't have to run each trajectory forever to get reward estimate

Problems with monte-carlo approach

- Resets: assumes you can restart process from same state many times
- Wasteful: same trajectory can be used to estimate many states

Reusing trajectories

Value determination:

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

Expressed as an expectation over next states:

$$V_{\pi}(x) = R(x) + \gamma E \left[V_{\pi}(x') \mid x, a = \pi(x) \right]$$

- Initialize value function (zeros, at random,...)
- Idea 1: Observe a transition: $\mathbf{x_t} \rightarrow \mathbf{x_{t+1}}, \mathbf{r_{t+1}}$, approximate expec. with single sample:

- unbiased!!
- but a very bad estimate!!!

Simple fix: Temporal Difference (TD) Learning

■ Idea 2: Observe a transition: $\mathbf{x_t} \rightarrow \mathbf{x_{t+1}}, \mathbf{r_{t+1}}$, approximate expec. by mixture of new sample with old estimate:

 \square α >0 is learning rate

TD converges (can take a long time!!!)

$$V_{\pi}(x) = R(x) + \gamma \sum_{x'} P(x' \mid x, a = \pi(x)) V_{\pi}(x')$$

- **Theorem**: TD converges in the limit (with prob. 1), if:
 - □ every state is visited infinitely often
 - □ Learning rate decays just so: