More details:

General: http://www.learning-with-kernels.org/

Example of more complex bounds:

http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz

PAC-learning, VC Dimension and Margin-based Bounds

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 6th, 2006

Announcements 1

- Midterm on Wednesday
 - □ open book, texts, notes,...
 - □ no laptops
 - □ bring a calculator

Review Session today at Jpm X NSH 3305

Announcements 2

- Final project details are out!!!
 - □ http://www.cs.cmu.edu/~guestrin/Class/10701/projects.html
 - Great opportunity to apply ideas from class and learn more
 - Example project:
 - Take a dataset
 - Define learning task
 - Apply learning algorithms
 - Design your own extension
 - Evaluate your ideas
 - many of suggestions on the webpage, but you can also do your own
- Boring stuff:
 - Individually or groups of two students
 - □ It's worth 20% of your final grade
 - □ You need to submit a one page proposal on Wed. 3/22 (just after the break)
 - □ A 5-page initial write-up (milestone) is due on 4/12 (20% of project grade)
 - □ An 8-page final write-up due 5/8 (60% of the grade)
 - A poster session for all students will be held on Friday 5/5 2-5pm in NSH atrium (20% of the grade)
 - □ You can use late days on write-ups, each student in team will be charged a late day per day.
- MOST IMPORTANT:

I talk to w first.

page limit

©2006 Carlos Guestrin

What now...

- We have explored many ways of learning from data
- But...
 - □ How good is our classifier, really?
 - □ How much data do I need to make it "good enough"?

Learning Theory

How likely is learner to pick a bad hypothesis

- Prob. h with error_{true}(h) $\geq \varepsilon$ gets m data points right
- There are k hypothesis consistent with data
 - □ How likely is learner to pick a bad one?

Union bound

P(A or B or C or D or ...) = P(A)+P(B)+P(c)+...

How likely is learner to pick a bad hypothesis

- Prob. h with error_{true}(h) $\geq \varepsilon$ gets m data points right
- There are *k* hypothesis consistent with data

□ How likely is learner to pick a bad one? P(h, bad & got lucky or habad & got lucky.or ham) how big is K K & IHI (loose Sound!) ©2006 Carlos Guestrin

Review: Generalization error in finite hypothesis spaces [Haussler '88]

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

Using a PAC bound

- Typically, 2 use cases:
 - □ 1: Pick ε and δ , give you m
 - \square 2: Pick m and δ , give you ϵ

 $P(\operatorname{error}_{H_{\operatorname{max}}}(h) > \epsilon) \le |H|e^{-m\epsilon}$

INS = In IHI - mE (|n | + |n | -)

Review: Generalization error in finite hypothesis spaces [Haussler '88]

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\operatorname{error}_{\mathcal{X}}(h) > \epsilon) \leq |H| e^{-m\epsilon}$$

if I can always learn a classific then

10

Limitations of Haussler '88 bound

Size of hypothesis space

bound depends on 1H)

large?

Infinite?

Simpler question: What's the expected error of a hypothesis?

The error of a hypothesis is like estimating the parameter of a coin!

The error of a hypothesis is like estimating the parameter of a coin!

The error of a hypothesis is like estimating the parameter of a coin!

The error of a hypothesis is like estimating the parameter of a coin!

The error of a hypothesis is like estimating the parameter of a coin!

The error of a hypothesis is like estimating the parameter of a coin!

The error of a hypothesis is like estimating the parameter of a coin!

■ Chernoff bound: for m i.d.d. coin flips, $x_1,...,x_m$, where $x_i \in \{0,1\}$. For $0 < \varepsilon < 1$:

$$P\left(\theta - \frac{1}{m}\sum_{i}x_{i} > \epsilon\right) \leq e^{-2m\epsilon^{2}}$$

$$\text{We fruth} \qquad \text{Sample} \qquad \text{overage}$$

But we are comparing many hypothesis: **Union bound**

For each hypothesis h_i:

$$P\left(\text{error}_{true}(h_i) - \text{error}_{train}(h_i) > \epsilon\right) \le e^{-2m\epsilon^2}$$

What if I am comparing two hypothesis, h₁ and h₂?

Generalization bound for |H| hypothesis

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$P\left(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon\right) \leq |H|e^{-2m\epsilon^2}$$

$$2 m\epsilon^2 = 20 \quad \text{not as good !!}$$
Side note: Haussler's bound for consistent h:
$$P \leq |H|e^{-m\epsilon}$$

$$\epsilon = 0.1 \qquad \Rightarrow m\epsilon = 1000$$

PAC bound and Bias-Variance tradeoff

$$P(\text{error}_{true}(h) - \text{error}_{train}(h) > \epsilon) \le |H|e^{-2m\epsilon^2}$$

or, after moving some terms around, with probability at least 1- δ : $\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$ $\operatorname{want to}_{\text{minimize}}$ $\operatorname{want to}_{\text{minimize}}$

■ Important: PAC bound holds for all *h*, but doesn't guarantee that algorithm finds best *h*!!!

What about the size of the hypothesis space?

$$m \geq \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$
and this amount

■ How large is the hypothesis space? | ₩

Boolean formulas with *n* binary features

what's In 1417

binary features

Number of decision trees of depth k

$$m \geq \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

Recursive solution

Given *n* attributes

 H_k = Number of decision trees of depth k

$$H_0 = 2$$

H = (#choices of root attribute

 $H_{k+1} = (\# choices of root attribute) *$

(# possible right subtrees)

$$= n * H_k * H_k$$

Write $L_k = \log_2 H_k$

$$L_0 = 1$$

$$L_{k+1} = \log_2 n + 2L_k$$

So
$$L_k = (2^k - 1)(1 + \log_2 n) + 1$$

PAC bound for decision trees of depth k

$$m \ge \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \ln \frac{1}{\delta} \right)$$

- Bad!!!
 - □ Number of points is exponential in depth!

■ But, for *m* data points, decision tree can't get too big...

Number of leaves never more than number data points

Number of decision trees with k leaves

$$H_{\rm k}= \text{ Number of decision trees with k leaves} \\ H_0=2 \qquad \qquad \begin{array}{c} h_{\rm c} = h_{\rm c} \\ h_0=2 \end{array} \qquad \begin{array}{c} h_{\rm c} = h_{\rm c} \\ h_0=2 \end{array} \qquad \begin{array}{c} h_{\rm c} = h_{\rm c} \\ h_0=2 \end{array} \qquad \begin{array}{c} h_{\rm c} = h_{\rm c} \\ h_0=2 \end{array} \qquad \begin{array}{c} h_{\rm c} = h_{\rm c} \\ h_0=2 \end{array} \qquad \begin{array}{c} h_{\rm c} = h_{\rm c} \\ h_0=2 \end{array} \qquad \begin{array}{c} h_{\rm c} = h_{\rm c} \\ h_0=2 \end{array} \qquad \begin{array}{c} h_0 = h_0 \\ h_0=2 \end{array} \qquad \begin{array}{c} h_$$

Loose bound:

$$H_k \le n^{k-1}(k+1)^{2k-1}$$

Reminder:

$$|DTs depth k| = 2 * (2n)^{2^k-1}$$

PAC bound for decision trees with k leaves – Bias-Variance revisited

$$H_k = n^{k-1}(k+1)^{2k-1}$$
 $\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln \frac{1}{\delta}}{2m}}$

What did we learn from decision trees?

Bias-Variance tradeoff formalized

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln(k+1) + \ln\frac{1}{\delta}}{2m}}$$

- Moral of the story:
 - Complexity of learning not measured in terms of size hypothesis space, but in maximum *number of points* that allows consistent classification
 - □ Complexity m no bias, lots of variance
 - \square Lower than m some bias, less variance

What about continuous hypothesis spaces?

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

- Continuous hypothesis space: linear classifiers.
 - \Box $|H| = \infty$
 - □ Infinite variance???
- As with decision trees, only care about the maximum number of points that can be classified exactly!

How many points can a linear boundary classify exactly? (1-D)

How many points can a linear boundary classify exactly? (2-D)

How many points can a linear boundary classify exactly? (d-D)

Shattering a set of points

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

H dichotomies

31 - 7 +

52 - 7

5x1x2 - 7 (hoose h 7

5x2 - 7 (hoose h 7

5x2 - 7 (hoose h 7

5x3 - 7 (hoose h 52

4 splits 3 h - Shattered !!

©2006 Carlos Guestrin

2

dichotomy: set Of lobole

S=S1US2 S1 n S2 = \$

VC dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

hyperplane in 2d · a can't shaller buf I don't The get to pick locations J pick:

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves
 - Bound for infinite dimension hypothesis spaces:

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)}+1\right) + \ln\frac{4}{\delta}}{m}}$$
 high VC dim.

Examples of VC dimension

$$\mathsf{error}_{true}(h) \leq \mathsf{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

- Linear classifiers:
 - \square VC(H) = d+1, for *d* features plus constant term *b*
- Neural networks
 - □ VC(H) = #parameters
 - Local minima means NNs will probably not find best parameters

Another VC dim. example

PAC bound for SVMs

- SVMs use a linear classifier
 - \square For *d* features, VC(H) = d+1:

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(d+1)\left(\ln\frac{2m}{d+1}+1\right) + \ln\frac{4}{\delta}}{m}}$$

VC dimension and SVMs: Problems!!!

Doesn't take margin into account

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(d+1)\left(\ln\frac{2m}{d+1}+1\right) + \ln\frac{4}{\delta}}{m}}$$

- What about kernels?
 - □ Polynomials: num. features grows really fast = Bad bound

num. terms
$$= \binom{p+n-1}{p} = \frac{(p+n-1)!}{p!(n-1)!}$$

- n input features
- p degree of polynomial
- Gaussian kernels can classify any set of points exactly

bound bad! "VC=a

Margin-based VC dimension

- H: Class of linear classifiers: $\mathbf{w}.\Phi(\mathbf{x})$ (b=0)
 - \square Canonical form: min_i | w. $\Phi(\mathbf{x}_i)$ | = 1
- $VC(H) = R^2 W.W = R^2$
 - Doesn't depend on number of features!!!
 - \square $\mathbb{R}^2 = \max_j \Phi(\mathbf{x}_j).\Phi(\mathbf{x}_j) \text{magnitude of data}$
 - □ R² is bounded even for Gaussian kernels → bounded VC dimension
- Large margin, low w.w, low VC dimension Very cool!

Applying margin VC to SVMs?

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

- $VC(H) = R^2 \mathbf{w.w}$
 - \square R² = max_i $\Phi(\mathbf{x}_i)$. $\Phi(\mathbf{x}_i)$ magnitude of data, doesn't depend on choice of \mathbf{w}
- SVMs minimize w.w

- **Not quite right:** ⊗
 - Bound assumes VC dimension chosen before looking at data
 - Would require union bound over infinite number of possible VC dimensions...
 - But, it can be fixed!

Structural risk minimization theorem

error
$$true(h) \leq error_{train}^{\gamma}(h) + C\sqrt{\frac{R^2}{\gamma^2}\ln m + \ln\frac{1}{\delta}}$$
 Shown with margin $<\gamma$ error $train(h) = num$. points with margin $<\gamma$ for a family of hyperplanes with margin $\gamma>0$

- - \square w.w < 1
- SVMs maximize margin γ + hinge loss
 - \square Optimize tradeoff training error (bias) versus margin γ (variance)

Reality check – Bounds are loose

- Bound can be very loose, why should you care?
 - □ There are tighter, albeit more complicated, bounds
 - □ Bounds gives us formal guarantees that empirical studies can't provide
 - □ Bounds give us intuition about complexity of problems and convergence rate of algorithms

What you need to know

- Finite hypothesis space
 - □ Derive results
 - Counting number of hypothesis
 - Mistakes on Training data
- Complexity of the classifier depends on number of points that can be classified exactly
 - □ Finite case decision trees
 - □ Infinite case VC dimension
- Bias-Variance tradeoff in learning theory
- Margin-based bound for SVM
- Remember: will your algorithm find best classifier?

Big Picture

Machine Learning – 10701/15781 Carlos Guestrin Carnegie Mellon University

March 6th, 2006

What you have learned thus far

- Learning is function approximation
- Point estimation
- Regression
- Naïve Bayes
- Logistic regression
- Bias-Variance tradeoff
- Neural nets
- Decision trees
- Cross validation
- Boosting
- Instance-based learning
- SVMs
- Kernel trick
- PAC learning
- VC dimension
- Margin bounds
- Mistake bounds

Review material in terms of...

- Types of learning problems
- Hypothesis spaces
- Loss functions

Optimization algorithms

Text Classification

Company home page
vs
Personal home page
vs
Univeristy home page

. . .

VS

Function fitting

Temperature data

Monitoring a complex system

- Reverse water gas shift system (RWGS)
- Learn model of system from data
- Use model to predict behavior and detect faults

Types of learning problems

Regression

Density estimation

Input – Features

Output?

The learning problem

Comparing learning algorithms

Hypothesis space

Loss function

Optimization algorithm

Naïve Bayes versus Logistic regression

Naïve Bayes

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(X|Y) = \prod_{i} P(X_{i}|Y)$$

Logistic regression

$$P(Y = 1|x) = \frac{1}{1 + exp(w_0 + \sum_{i} w_i x_i)}$$

Naïve Bayes versus Logistic regression – Classification as density estimation

Choose class with highest probability

■ In addition to class, we get certainty measure

Logistic regression versus Boosting

Logistic regression

$$P(Y = y_i | \mathbf{x}) = \frac{1}{1 + exp(-y_i(\mathbf{w}.\mathbf{x} + b))}$$

$$\sum_{j=1}^{m} \log \left[1 + exp(-y_i(\mathbf{w}.\mathbf{x}_j + b)) \right]$$

Boosting

Classifier

$$sign\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

Exponential-loss

$$\frac{1}{m} \sum_{j=1}^{m} \exp \left(-y_j \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x_j})\right)$$

Linear classifiers – Logistic regression versus SVMs

What's the difference between SVMs and Logistic Regression? (Revisited again)

	SVMs	Logistic
		Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Type of learning	©2006 Carlos Guestrin	

©2006 Carlos Guestrin

SVMs and instance-based learning

Instance based learning

$$P(y \mid \mathbf{x}) = \frac{\sum_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})}{\sum_{i} K(\mathbf{x}, \mathbf{x}_{i})} > 0.5?$$

$$sign\left(\sum_{i} y_{i}K(\mathbf{x},\mathbf{x}_{i}) - 0.5\sum_{i} K(\mathbf{x},\mathbf{x}_{i})\right)$$

©2006 Carlos Guestrin

Instance-based learning versus Decision trees

1-Nearest neighbor

Decision trees

Logistic regression versus Neural nets

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{-(w_0 + \sum_i w_i x_i)}}$$

Logistic regression

Neural Nets

Linear regression versus Kernel regression

Linear Regression Kernel regression

Kernel-weighted linear regression

Kernel-weighted linear regression

Local basis functions for each region

Kernels average between regions

SVM regression

BIG PICTURE DE density estimation learning CI Classification task (a few points of comparison) Reg Regression LL Log-loss/MLE loss Mrg Margin-based Boosting function Naïve CI, exp-loss **RMS** Squared error Bayes DĚ, LL SVM regression Logistic **SVMs** Reg, Mrg CI, Mrg regression DE, LL kernel regression Instance-based Reg, RMS Learning DE,CI,Req Neural

This is a very incomplete view!!!

Nets

DE,CI,Reg,RMS

©2006 Carlos Guestrin

Decision

trees

DE,CI,Reg

linear

regression

Rea, RMS