Two SVM tutorials linked in class website (please, read both):

- High-level presentation with applications (Hearst 1998)
- Detailed tutorial (Burges 1998)

SVMs, Duality and the Kernel Trick (cont.)

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 1st, 2006

SVMs reminder

Today's lecture

- Learn one of the most interesting and exciting recent advancements in machine learning
 - ☐ The "kernel trick"
 - □ High dimensional feature spaces at no extra cost!
- But first, a detour
 - Constrained optimization!

Dual SVM interpretation

Dual SVM formulation – the linearly separable case

minimize
$$\alpha$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j}$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \geq 0$$

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$b = y_{k} - \mathbf{w} \cdot \mathbf{x}_{k}$$
for any k where $\alpha_{k} > 0$
objains the definition dual α graduatic α dual guardic α and α

Reminder from last time: What if the data is not linearly separable?

Use features of features of features

$$\Phi(\mathbf{x}): R^m \mapsto F$$

$$f(\mathbf{x}) = \begin{pmatrix} 1 \\ \mathbf{x} \\ \mathbf{x}^2 \\ \mathbf{x}^3 \end{pmatrix}$$

$$g^{m} P$$

$$g^$$

Feature space can get really large really quickly!

Higher order polynomials segue of poly

num. terms
$$= \begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!}$$

m – input features

d – degree of polynomial

grows fast! d = 6, m = 100about 1.6 billion terms

©2006 Carlos Guestrin

Dual formulation only depends on dot-products, not on w!

$$\begin{aligned} & \text{minimize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \mathbf{x}_{j} & \mathbf{x}_{i} \mathbf{x}_{j} = \mathbf{x}_{i} \cdot \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = 0 & \text{no W} \\ & C \geq \alpha_{i} \geq 0 & \text{ns. } f_{is} \text{ hers.} & \phi(\mathbf{x}) \\ & \text{all } I \text{ need. } \text{is } \phi(\mathbf{x}_{j}) \cdot \phi(\mathbf{x}_{i}) \\ & \text{K}(\mathbf{x}_{j}, \mathbf{x}_{i}) = \phi(\mathbf{x}_{j}) \cdot \phi(\mathbf{x}_{i}) \end{aligned}$$

$$& \text{minimize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ & K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}_{j}) \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \geq \alpha_{i} \geq 0 \end{aligned}$$

Finally: the "kernel trick"! of data points including datape

$$C \ge \alpha_i g_i = 0$$

$$C \ge \alpha_i \ge 0$$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- Very interesting theory Reproducing Kernel Hilbert Spaces
 - Not covered in detail in 10701/15781, more in 10702

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

for any k where $C > \alpha_k > 0$

Common kernels

■ Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

■ Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian kernels $K(\mathbf{u},\mathbf{v}) = \exp\left(-\frac{||\mathbf{u}-\mathbf{v}||}{2\sigma^2}\right)$ fratile spece $\dim(K(\mathbf{u},\mathbf{v})) = \exp\left(-\frac{||\mathbf{u}-\mathbf{v}||}{2\sigma^2}\right)$ Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Overfitting?

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about at classification time

- For a new input \mathbf{x} , if we need to represent $\Phi(\mathbf{x})$, we are in trouble! if have write W_0 , to large
- Recall classifier: sign(w.Φ(x)+b)
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$
 $\omega \cdot \phi(\mathbf{x}) = \sum_{i} \chi_{i} \mu_{i} \Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}_{i})$

easy to

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$
for any k where $C > lpha_k > 0$

SVMs with kernels

- Choose a set of features and kernel function
- lacksquare Solve dual problem to obtain support vectors $lpha_{
 m i}$
- At classification time, compute:

Remember kernel regression

Remember kernel regression???

- 1. $W_i = \exp(-D(x_i, query)^2 / K_w^2)$
- 2. How to fit with the local points?

Predict the weighted average of the outputs: $predict = \sum w_i y_i / \sum w_i$

SVMs v. Kernel Regression

SVMs

$$sign\left(\mathbf{w}\cdot\Phi(\mathbf{x})+b\right)$$

or

$$sign\left(\sum_{i}\alpha_{i}y_{i}K(\mathbf{x},\mathbf{x}_{i})+b\right)$$

Kernel Regression

$$sign\left(\frac{\sum_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})}{\sum_{j} K(\mathbf{x}, \mathbf{x}_{j})}\right)$$

SVMs v. Kernel Regression

SVMs

$$sign\left(\mathbf{w}\cdot\Phi(\mathbf{x})+b\right)$$

Kernel Regression

$$sign\left(\frac{\sum_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})}{\sum_{i} K(\mathbf{x}, \mathbf{x}_{i})}\right)$$

sign

Differences:

- SVMs:
 - □ Learn weights \alpha_i (and bandwidth)
 - □ Often sparse solution
- KR:
 - ☐ Fixed "weights", learn bandwidth
 - Solution may not be sparse
 - Much simpler to implement

What's the difference between SVMs and Logistic Regression?

	SVMs	Logistic Regression
Loss function		
High dimensional features with kernels		

Kernels in logistic regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of support vectors:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

lacksquare Derive simple gradient descent rule on α_i

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

What you need to know

- Ŋ.
 - Dual SVM formulation
 - ☐ How it's derived
 - The kernel trick
 - Derive polynomial kernel
 - Common kernels
 - Kernelized logistic regression
 - Differences between SVMs and logistic regression

Acknowledgment

- SVM applet:
 - □ http://www.site.uottawa.ca/~gcaron/applets.htm

More details:

General: http://www.learning-with-kernels.org/

Example of more complex bounds:

http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz

PAC-learning, VC Dimension and Margin-based Bounds

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

March 1st, 2005

What now...

- We have explored many ways of learning from data
- But...
 - □ How good is our classifier, really?
 - □ How much data do I need to make it "good enough"?

A simple setting...

- Classification
 - □ m data points
 - ☐ **Finite** number of possible hypothesis (e.g., dec. trees of depth d)
- A learner finds a hypothesis h that is consistent with training data
 - \square Gets zero error in training error_{train}(h) = 0
- What is the probability that h has more than ε true error?
 - \square error_{true} $(h) \geq \varepsilon$

How likely is a bad hypothesis to get *m* data points right?

- Hypothesis h that is consistent with training data → got m i.i.d. points right
- Prob. h with error_{true}(h) $\geq \varepsilon$ gets one data point right

■ Prob. h with error_{true}(h) $\geq \varepsilon$ gets m data points right

But there are many possible hypothesis that are consistent with training data

How likely is learner to pick a bad hypothesis

- Prob. h with error_{true}(h) $\geq \varepsilon$ gets m data points right
- There are k hypothesis consistent with data
 - □ How likely is learner to pick a bad one?

Union bound

■ P(A or B or C or D or ...)

How likely is learner to pick a bad hypothesis

- Prob. h with error_{true}(h) $\geq \varepsilon$ gets m data points right
- There are k hypothesis consistent with data
 - □ How likely is learner to pick a bad one?

Review: Generalization error in finite hypothesis spaces [Haussler '88]

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\operatorname{error}_{\mathcal{X}}(h) > \epsilon) \leq |H|e^{-m\epsilon}$$

Using a PAC bound

- Typically, 2 use cases:
- $P(\operatorname{error}_{\mathcal{X}}(h) > \epsilon) \le |H|e^{-m\epsilon}$
- \square 1: Pick ε and δ, give you m
- \square 2: Pick m and δ , give you ϵ

Review: Generalization error in finite hypothesis spaces [Haussler '88]

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\operatorname{error}_{\mathcal{X}}(h) > \epsilon) \leq |H|e^{-m\epsilon}$$

Limitations of Haussler '88 bound

Consistent classifier

$$P(\operatorname{error}_{\mathcal{X}}(h) > \epsilon) \le |H|e^{-m\epsilon}$$

Size of hypothesis space

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with error_{train}(h) in training set?

Simpler question: What's the expected error of a hypothesis?

The error of a hypothesis is like estimating the parameter of a coin!

■ Chernoff bound: for m i.d.d. coin flips, $x_1,...,x_m$, where $x_i \in \{0,1\}$. For $0 < \varepsilon < 1$:

$$P\left(\theta - \frac{1}{m}\sum_{i} x_{i} > \epsilon\right) \le e^{-2m\epsilon^{2}}$$

35

Using Chernoff bound to estimate error of a single hypothesis

$$P\left(\theta - \frac{1}{m}\sum_{i} x_{i} > \epsilon\right) \leq e^{-2m\epsilon^{2}}$$

But we are comparing many hypothesis: **Union bound**

For each hypothesis h_i:

$$P\left(\text{error}_{true}(h_i) - \text{error}_{train}(h_i) > \epsilon\right) \le e^{-2m\epsilon^2}$$

What if I am comparing two hypothesis, h₁ and h₂?

Generalization bound for |H| hypothesis

■ **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h:

$$P\left(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon\right) \le |H|e^{-2m\epsilon^2}$$

38

PAC bound and Bias-Variance tradeoff

$$P\left(\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h) > \epsilon\right) \le |H|e^{-2m\epsilon^2}$$

or, after moving some terms around,

with probability at least 1-
$$\delta$$
:
$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

Important: PAC bound holds for all h, but doesn't guarantee that algorithm finds best hall!!!

What about the size of the hypothesis space?

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

How large is the hypothesis space?

Boolean formulas with *n* binary features

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

Number of decision trees of depth k

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{1}{\delta} \right)$$

Recursive solution

Given *n* attributes

So $L_k = (2^{k}-1)(1+\log_2 n) +1$

```
H_k = Number of decision trees of depth k
H_0 = 2
H_{k+1} = (\text{\#choices of root attribute})^*
                   (# possible left subtrees) *
                   (# possible right subtrees)
      = n * H_k * H_k
Write L_k = log_2 H_k
L_0 = 1
L_{k+1} = \log_2 n + 2L_k
```

PAC bound for decision trees of depth k

$$m \ge \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \ln \frac{1}{\delta} \right)$$

- Bad!!!
 - □ Number of points is exponential in depth!

■ But, for *m* data points, decision tree can't get too big...

Number of leaves never more than number data points

Number of decision trees with k leaves

 H_k = Number of decision trees with k leaves

$$H_0 = 2$$

$$H_{k+1} = n \sum_{i=1}^{k} H_i H_{k+1-i}$$

Loose bound:

$$H_k = n^{k-1}(k+1)^{2k-1}$$

Reminder:

|DTs depth
$$k| = 2 * (2n)^{2^k - 1}$$

PAC bound for decision trees with k leaves – Bias-Variance revisited

$$H_k = n^{k-1}(k+1)^{2k-1}$$
 $\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln \frac{1}{\delta}}{2m}}$

$$\mathsf{error}_{true}(h) \leq \mathsf{error}_{train}(h) + \sqrt{rac{(k-1) \ln n + (2k-1) \ln (k+1) + \ln rac{1}{\delta}}{2m}}$$

What did we learn from decision trees?

Bias-Variance tradeoff formalized

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln(k+1) + \ln\frac{1}{\delta}}{2m}}$$

Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum *number of points* that allows consistent classification

- \square Complexity m no bias, lots of variance
- \square Lower than m some bias, less variance

What about continuous hypothesis spaces?

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

- Continuous hypothesis space:
 - $\Box |H| = \infty$
 - □ Infinite variance???
- As with decision trees, only care about the maximum number of points that can be classified exactly!

How many points can a linear boundary classify exactly? (1-D)

How many points can a linear boundary classify exactly? (2-D)

How many points can a linear boundary classify exactly? (d-D)

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

Shattering a set of points

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

VC dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

Examples of VC dimension

- Linear classifiers:
 - \square VC(H) = d+1, for *d* features plus constant term *b*
- Neural networks
 - □ VC(H) = #parameters
 - Local minima means NNs will probably not find best parameters
- 1-Nearest neighbor?

PAC bound for SVMs

- SVMs use a linear classifier
 - □ For *d* features, VC(H) = d+1:

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(d+1)\left(\ln\frac{2m}{d+1}+1\right) + \ln\frac{4}{\delta}}{m}}$$

VC dimension and SVMs: Problems!!!

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(d+1)\left(\ln\frac{2m}{d+1}+1\right) + \ln\frac{4}{\delta}}{m}}$$

- What about kernels?
 - □ Polynomials: num. features grows really fast = Bad bound

Gaussian kernels can classify any set of points exactly

Margin-based VC dimension

- - H: Class of linear classifiers: $\mathbf{w}.\Phi(\mathbf{x})$ (b=0)
 - \square Canonical form: min_j |**w**. Φ (**x**_j)| = 1
 - $Arr VC(H) = R^2 w.w$
 - □ Doesn't depend on number of features!!!
 - \square R² = max_i $\Phi(\mathbf{x}_i)$. $\Phi(\mathbf{x}_i)$ magnitude of data
 - □ R² is bounded even for Gaussian kernels → bounded VC dimension
 - Large margin, low w.w, low VC dimension Very cool!

Applying margin VC to SVMs?

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{VC(H)\left(\ln\frac{2m}{VC(H)} + 1\right) + \ln\frac{4}{\delta}}{m}}$$

- $VC(H) = R^2 w.w$
 - \square R² = max_j $\Phi(\mathbf{x}_j)$. $\Phi(\mathbf{x}_j)$ magnitude of data, doesn't depend on choice of \mathbf{w}
- SVMs minimize w.w
- SVMs minimize VC dimension to get best bound?
- Not quite right: ⊗
 - Bound assumes VC dimension chosen before looking at data
 - Would require union bound over infinite number of possible VC dimensions...
 - □ But, it can be fixed!

Structural risk minimization theorem

$$\operatorname{error}_{true}^{\gamma}(h) \leq \operatorname{error}_{train}^{\gamma}(h) + C\sqrt{\frac{\frac{R^2}{\gamma^2} \ln m + \ln \frac{1}{\delta}}{m}}$$

 $\operatorname{error}_{train}^{\gamma}(h) = \operatorname{num.} \text{ points with margin } < \gamma$

- For a family of hyperplanes with margin $\gamma>0$
 - □ w.w < 1</p>
- SVMs maximize margin γ + hinge loss
 - Optimize tradeoff training error (bias) versus margin γ (variance)

Reality check – Bounds are loose

- Bound can be very loose, why should you care?
 - □ There are tighter, albeit more complicated, bounds
 - □ Bounds gives us formal guarantees that empirical studies can't provide
 - Bounds give us intuition about complexity of problems and convergence rate of algorithms

What you need to know

- be.
 - Finite hypothesis space
 - □ Derive results
 - Counting number of hypothesis
 - Mistakes on Training data
 - Complexity of the classifier depends on number of points that can be classified exactly
 - □ Finite case decision trees
 - □ Infinite case VC dimension
 - Bias-Variance tradeoff in learning theory
 - Margin-based bound for SVM
 - Remember: will your algorithm find best classifier?