Gaussians
Linear Regression
Bias-Variance Tradeoff

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

January 23rd, 2006
Announcements

- Recitations stay on Thursdays
 - 5-6:30pm in Wean 5409

- Special Matlab recitation:
 - Jan. 25 Wed. 5:00-7:00pm in NSH 3305

- First homework:
 - Programming part and Analytic part
 - Remember collaboration policy: can discuss questions, but need to write your own solutions and code
 - Out later today
 - Due Mon. Feb 6th **beginning of class**
 - Start early!
Maximum Likelihood Estimation

- **Data:** Observed set D of α_H Heads and α_T Tails
- **Hypothesis:** Binomial distribution
- Learning θ is an optimization problem
 - What’s the objective function?

- MLE: Choose θ that maximizes the probability of observed data:

\[
\hat{\theta} = \arg\max_{\theta} P(D \mid \theta) \quad \text{or} \quad \arg\max_{\theta} \ln P(D \mid \theta)
\]
Bayesian Learning for Thumbtack

\[P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta) \]

- Likelihood function is simply Binomial:
 \[P(\mathcal{D} \mid \theta) = \theta^\alpha_H (1 - \theta)^\alpha_T \]

- What about prior?
 - Represent expert knowledge
 - Simple posterior form

- Conjugate priors:
 - Closed-form representation of posterior
 - For Binomial, conjugate prior is Beta distribution
Posterior distribution

- Prior: $Beta(\beta_H, \beta_T)$
- Data: α_H heads and α_T tails
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$
MAP: Maximum a posteriori approximation

\[P(\theta \mid \mathcal{D}) \sim \text{Beta}(\beta_H + \alpha_H, \beta_T + \alpha_T) \]

\[E[f(\theta)] = \int_0^1 f(\theta)P(\theta \mid \mathcal{D})d\theta \]

- As more data is observed, Beta is more certain

- MAP: use most likely parameter:

\[\hat{\theta} = \arg \max_\theta P(\theta \mid \mathcal{D}) \quad E[f(\theta)] \approx f(\hat{\theta}) \]
What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

\[P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
Some properties of Gaussians

- **affine transformation (multiplying by scalar and adding a constant)**
 - $X \sim N(\mu, \sigma^2)$
 - $Y = aX + b \rightarrow Y \sim N(a\mu+b, a^2\sigma^2)$

- **Sum of Gaussians**
 - $X \sim N(\mu_X, \sigma^2_X)$
 - $Y \sim N(\mu_Y, \sigma^2_Y)$
 - $Z = X+Y \rightarrow Z \sim N(\mu_X+\mu_Y, \sigma^2_X+\sigma^2_Y)$
Learning a Gaussian

- Collect a bunch of data
 - Hopefully, i.i.d. samples
 - e.g., exam scores

- Learn parameters
 - Mean
 - Variance

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
MLE for Gaussian

- Prob. of i.i.d. samples x_1, \ldots, x_N:

$$P(D \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

- Log-likelihood of data:

$$\ln P(D \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right]$$

$$= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$
Your second learning algorithm: MLE for mean of a Gaussian

- What’s MLE for mean?

\[
\frac{d}{d\mu} \ln P(\mathcal{D} | \mu, \sigma) = \frac{d}{d\mu} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]
\]
MLE for variance

Again, set derivative to zero:

\[
\frac{d}{d\sigma} \ln P(\mathcal{D} | \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right] \\
= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]
\]
Learning Gaussian parameters

- **MLE:**
 \[
 \hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i
 \]

 \[
 \hat{\sigma}^2_{MLE} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2
 \]

- **BTW.** MLE for the variance of a Gaussian is **biased**
 - Expected result of estimation is **not** true parameter!
 - Unbiased variance estimator:
 \[
 \hat{\sigma}^2_{unbiased} = \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2
 \]
Bayesian learning of Gaussian parameters

- Conjugate priors
 - Mean: Gaussian prior
 - Variance: Wishart Distribution

- Prior for mean:

\[
P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu-\eta)^2}{2\lambda^2}}
\]
MAP for mean of Gaussian

\[
P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{-\frac{(\mu - \eta)^2}{2\lambda^2}} \]

\[
P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^{N} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}
\]

\[
\frac{d}{d\mu} \left[\ln P(\mathcal{D} \mid \mu) P(\mu) \right] = \frac{d}{d\mu} \left[\ln P(\mathcal{D} \mid \mu) + \ln P(\mu) \right]
\]
Prediction of continuous variables

- Billionaire says: Wait, that’s not what I meant!
- You says: Chill out, dude.
- He says: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- You say: I can regress that…
The regression problem

- **Instances:** \(<x_j, t_j> \)
- **Learn:** Mapping from \(x \) to \(t(x) \)

Hypothesis space:
- Given, basis functions \(H = \{h_1, \ldots, h_K\} \)
- Find coeffs \(w = \{w_1, \ldots, w_k\} \)
 \[t(x) \approx \hat{f}(x) = \sum_i w_i h_i(x) \]

- Why is this called linear regression???
 - model is linear in the parameters

Precisely, minimize the residual error:

\[
\mathbf{w}^* = \arg \min_{\mathbf{w}} \sum_j \left(t(x_j) - \sum_i w_i h_i(x_j) \right)^2
\]
The regression problem in matrix notation

\[\mathbf{w}^* = \arg \min_{\mathbf{w}} \sum_j \left(t(x_j) - \sum_i w_i h_i(x_j) \right)^2 \]

\[\mathbf{w}^* = \arg \min_{\mathbf{w}} (\mathbf{Hw} - \mathbf{t})^T (\mathbf{Hw} - \mathbf{t}) \quad \text{residual error} \]

\[
\mathbf{H} = \begin{bmatrix} h_1 & \ldots & h_K \end{bmatrix}^{N \times K} \quad \mathbf{w} = \begin{bmatrix} \vdots \end{bmatrix}^{K \times 1} \quad \mathbf{t} = \begin{bmatrix} t \end{bmatrix}^{N \times 1}
\]

- \(N \) sensors
- \(K \) basis functions
- weights
- measurements
Regression solution = simple matrix operations

\[w^* = \arg \min_w (Hw - t)^T(Hw - t) \]

residual error

solution: \[w^* = (H^TH)^{-1}H^Tt = A^{-1}b \]

where \(A = H^TH \) is a \(k \times k \) matrix for \(k \) basis functions

\[b = H^Tt \] is a \(k \times 1 \) vector
But, why?

- Billionaire (again) says: Why sum squared error???
- You say: Gaussians, Dr. Gateson, Gaussians…

- Model: prediction is linear function plus Gaussian noise
 \[t = \sum_i w_i h_i(x) + \varepsilon \]

- Learn \(w \) using MLE
 \[
P(t \mid x, w, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{[t-\sum_i w_i h_i(x)]^2}{2\sigma^2}}\]
Maximizing log-likelihood

Maximize:

\[
\ln P(D \mid w, \sigma) = \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{j=1}^{N} e^{-\frac{\left[t_j - \sum_i w_i h_i(x_j) \right]^2}{2\sigma^2}}
\]

Least-squares Linear Regression is MLE for Gaussians!!!
Bias-Variance tradeoff – Intuition

- Model too “simple” → does not fit the data well
 - A biased solution

- Model too complex → small changes to the data, solution changes a lot
 - A high-variance solution
(Squared) Bias of learner

- Suppose you are given a dataset D with m samples from some distribution
- You learn function $h(x)$ from data D
- If you sample a different datasets, you will learn different $h(x)$
- Expected hypothesis: $E_D[h(x)]$

Bias: difference between what you expect to learn and truth
- Measures how well you expect to represent true solution
- Decreases with more complex model

\[
bias^2 = \int_x (E_D[h(x)] - t(x))^2 p(x) dx
\]
Variance of learner

- Suppose you are given a dataset D with m samples from some distribution
- You learn function $h(x)$ from data D
- If you sample a different datasets, you will learn different $h(x)$
- **Variance**: difference between what you expect to learn and what you learn from a particular dataset
 - Measures how sensitive learner is to specific dataset
 - Decreases with simpler model

$$
\bar{h}(x) = E_D[h(x)]
$$

$$
\text{variance} = \int E_D[(h(x) - \bar{h}(x))^2]p(x)dx
$$
Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class \rightarrow less bias
 - More complex class \rightarrow more variance
Bias–Variance decomposition of error

Consider simple regression problem \(f: X \rightarrow T \)

\[
t = f(x) = g(x) + \varepsilon
\]

- Noise \(\sim N(0, \sigma) \)
- Deterministic

Collect some data, and learn a function \(h(x) \)

What are sources of prediction error?
Sources of error 1 – noise

What if we have perfect learner, infinite data?
- Our learning solution $h(x)$ satisfies $h(x) = g(x)$
- Still have remaining, *unavoidable error* of σ^2 due to noise ε

$$error(h) = \int_x \int_t (h(x) - t)^2 p(f(x) = t|x)p(x)dtdx$$
Sources of error 2 – Finite data

- What if we have imperfect learner, or only m training examples?
- What is our expected squared error per example
 - Expectation taken over random training sets D of size m, drawn from distribution $P(X,T)$

\[
E_D \left[\int_x \int_t (h(x) - t)^2 p(f(x) = t|x)p(x) dtdx \right]
\]
Bias-Variance Decomposition of Error

Bishop chapter 9.1, 9.2

Assume target function: \(t = f(x) = g(x) + \varepsilon \)

Then expected sq error over fixed size training sets \(D \) drawn from \(P(X,T) \) can be expressed as sum of three components:

\[
E_D \left[\int_x \int_t (h(x) - t)^2 p(t|x)p(x)dt\,dx \right]
\]

\[= \text{unavoidable Error} + \text{bias}^2 + \text{variance} \]

Where:

\[\text{unavoidable Error} = \sigma^2\]

\[\text{bias}^2 = \int (E_D[h(x)] - g(x))^2 p(x)dx\]

\[\bar{h}(x) = E_D[h(x)]\]

\[\text{variance} = \int E_D[(h(x) - \bar{h}(x))^2]p(x)dx\]
What you need to know

- Gaussian estimation
 - MLE
 - Bayesian learning
 - MAP

- Regression
 - Basis function = features
 - Optimizing sum squared error
 - Relationship between regression and Gaussians

- Bias-Variance trade-off