Basics, Gaussians: Koller&Friedman 1.1, 1.2 – handed out in class Bias-Variance tradeoff: Bishop chapter 9.1, 9.2

Gaussians Linear Regression Bias-Variance Tradeoff

Machine Learning – 10701/15781 Carlos Guestrin

Carnegie Mellon University

January 23rd, 2006

Announcements

- Recitations stay on Thursdays
 - □ 5-6:30pm in Wean 5409
- Special Matlab recitation:
 - □ Jan. 25 Wed. 5:00-7:00pm in NSH 3305
- First homework:
 - □ Programming part and Analytic part
 - Remember collaboration policy: can discuss questions, but need to write your own solutions and code
 - Out later today
 - □ Due Mon. Feb 6th beginning of class
 - □ Start early!

Maximum Likelihood Estimation

- **Data:** Observed set D of α_H Heads and α_T Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
 - What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

Bayesian Learning for Thumbtack

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Likelihood function is simply Binomial:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What about prior?
 - □ Represent expert knowledge
 - □ Simple posterior form
- Conjugate priors:
 - □ Closed-form representation of posterior
 - □ For Binomial, conjugate prior is Beta distribution

Posterior distribution

- Prior: $Beta(\beta_H, \beta_T)$
- Data: α_H heads and α_T tails
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: Maximum a posteriori approximation

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter:

$$\hat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D}) \quad E[f(\theta)] \approx f(\hat{\theta})$$

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Some properties of Gaussians

 affine transformation (multiplying by scalar and adding a constant)

- $\square X \sim N(\mu, \sigma^2)$
- \square Y = aX + b \rightarrow Y ~ $N(a\mu+b,a^2\sigma^2)$

Sum of Gaussians

- $\square X \sim N(\mu_X, \sigma^2_X)$
- \square Y ~ $N(\mu_Y, \sigma^2_Y)$
- \square Z = X+Y \rightarrow Z ~ $N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$

Learning a Gaussian

- Collect a bunch of data
 - □ Hopefully, i.i.d. samples
 - □ e.g., exam scores
- Learn parameters
 - Mean
 - □ Variance

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

MLE for Gaussian

Prob. of i.i.d. samples x₁,...,x_N:

$$P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

Log-likelihood of data:

$$\ln P(\mathcal{D} \mid \mu, \sigma) = \ln \left[\left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}} \right]$$
$$= -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^N \frac{(x_i - \mu)^2}{2\sigma^2}$$

Your second learning algorithm: MLE for mean of a Gaussian

What's MLE for mean?

$$\frac{d}{d\mu} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\mu} \left| -N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right|$$

MLE for variance

Again, set derivative to zero:

$$\frac{d}{d\sigma} \ln P(\mathcal{D} \mid \mu, \sigma) = \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$
$$= \frac{d}{d\sigma} \left[-N \ln \sigma \sqrt{2\pi} \right] - \sum_{i=1}^{N} \frac{d}{d\sigma} \left[\frac{(x_i - \mu)^2}{2\sigma^2} \right]$$

Learning Gaussian parameters

MLE:

$$\widehat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

- BTW. MLE for the variance of a Gaussian is biased
 - □ Expected result of estimation is **not** true parameter!
 - □ Unbiased variance estimator:

$$\hat{\sigma}_{unbiased}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Bayesian learning of Gaussian parameters

- Conjugate priors
 - Mean: Gaussian prior
 - □ Variance: Wishart Distribution

Prior for mean:

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

MAP for mean of Gaussian

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}} \qquad P(\mathcal{D} \mid \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{i=1}^N e^{\frac{-(x_i - \mu)^2}{2\sigma^2}}$$

$$rac{d}{d\mu}\left[\ln P(\mathcal{D}\mid\mu)P(\mu)
ight] \;=\; rac{d}{d\mu}\left[\ln P(\mathcal{D}\mid\mu)+\ln P(\mu)
ight]$$

Prediction of continuous variables

- Billionaire says: Wait, that's not what I meant!
- You says: Chill out, dude.
- He says: I want to predict a continuous variable for continuous inputs: I want to predict salaries from GPA.
- You say: I can regress that...

The regression problem

- Instances: <x_i, t_i>
- Learn: Mapping from x to t(x)
- Hypothesis space:
 - \square Given, basis functions $H = \{h_1, \dots, h_K\}$
 - \square Find coeffs $\mathbf{w} = \{\mathbf{w_1}, \dots, \mathbf{w_k}\}$ $\underbrace{t(\mathbf{x})}_{l} \approx \widehat{f}(\mathbf{x}) = \sum_i w_i h_i(\mathbf{x})$
 - □ Why is this called linear regression???
 - model is linear in the parameters

Precisely, minimize the residual error:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2$$

The regression problem in matrix notation

$$\mathbf{w}^* = rg \min_{\mathbf{w}} \sum_j \left(t(\mathbf{x}_j) - \sum_i w_i h_i(\mathbf{x}_j)
ight)^2$$

$$\mathbf{w^*} = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{Hw} - \mathbf{t})^T (\mathbf{Hw} - \mathbf{t})}_{ ext{residual error}}$$

Regression solution = simple matrix operations

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \underbrace{(\mathbf{H}\mathbf{w} - \mathbf{t})^T (\mathbf{H}\mathbf{w} - \mathbf{t})}_{\text{residual error}}$$

solution:
$$\mathbf{w}^* = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{t} = \mathbf{A}^{-1} \mathbf{b}$$

where
$$\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{H} = \begin{bmatrix} \mathbf{b} \\ \mathbf{k} \end{bmatrix}$$
 $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{b} \\ \mathbf{k} \end{bmatrix}$ where $\mathbf{A} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{b} \\ \mathbf{k} \end{bmatrix}$ $\mathbf{b} = \mathbf{H}^{\mathrm{T}}\mathbf{t} = \begin{bmatrix} \mathbf{b} \\ \mathbf{k} \end{bmatrix}$

But, why?

- Billionaire (again) says: Why sum squared error???
- You say: Gaussians, Dr. Gateson, Gaussians...
- Model: prediction is linear function plus Gaussian noise

$$\Box$$
 t = \sum_{i} w_i h_i(\mathbf{x}) + ε

Learn w using MLE
$$P(t \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-[t - \sum_{i} w_{i} h_{i}(\mathbf{x})]^{2}}{2\sigma^{2}}}$$

Maximizing log-likelihood

Maximize:
$$\ln P(\mathcal{D} \mid \mathbf{w}, \sigma) = \ln \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^N \prod_{j=1}^N e^{\frac{-\left[t_j - \sum_i w_i h_i(\mathbf{x}_j)\right]^2}{2\sigma^2}}$$

Least-squares Linear Regression is MLE for Gaussians!!!

Bias-Variance tradeoff — Intuition

- Model too "simple" → does not fit the data well
 - ☐ A biased solution

- Model too complex → small changes to the data, solution changes a lot
 - ☐ A high-variance solution

(Squared) Bias of learner

- Suppose you are given a dataset D with m samples from some distribution
- You learn function h(x) from data D
- If you sample a different datasets, you will learn different h(x)
- Expected hypothesis: E_D[h(x)]
- Bias: difference between what you expect to learn and truth
 - Measures how well you expect to represent true solution
 - Decreases with more complex model

$$bias^2 = \int_x (E_D[h(x)] - t(x))^2 p(x) dx$$

Variance of learner

- Suppose you are given a dataset D with m samples from some distribution
- You learn function h(x) from data D
- If you sample a different datasets, you will learn different h(x)
- Variance: difference between what you expect to learn and what you learn from a from a particular dataset
 - Measures how sensitive learner is to specific dataset
 - Decreases with simpler model

$$\bar{h}(x) = E_D[h(x)]$$

$$variance = \int E_D[(h(x) - \bar{h}(x))^2]p(x)dx$$

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - More complex class → less bias
 - More complex class → more variance

Bias-Variance decomposition of error

■ Consider simple regression problem f:X→T

$$t = f(x) = g(x) + \varepsilon$$
noise ~ N(0,\sigma)

deterministic

Collect some data, and learn a function h(x) What are sources of prediction error?

Sources of error 1 – noise

- What if we have perfect learner, infinite data?
 - \square Our learning solution h(x) satisfies h(x)=g(x)
 - □ Still have remaining, <u>unavoidable error</u> of $σ^2$ due to noise ε

$$error(h) = \int_{\mathcal{X}} \int_{t} (h(x) - t)^{2} p(f(x) = t|x) p(x) dt dx$$

Sources of error 2 – Finite data

- What if we have imperfect learner, or only m training examples?
- What is our expected squared error per example
 - □ Expectation taken over random training sets D of size m, drawn from distribution P(X,T)

$$E_D\left[\int_x \int_t (h(x) - t)^2 p(f(x) = t|x) p(x) dt dx\right]$$

Bias-Variance Decomposition of Error

Bishop chapter 9.1, 9.2

Assume target function: $t = f(x) = g(x) + \varepsilon$

Then expected sq error over fixed size training sets D drawn from P(X,T) can be expressed as sum of three components:

$$E_D\left[\int_x\int_t(h(x)-t)^2p(t|x)p(x)dtdx\right]$$

$$= unavoidableError + bias^2 + variance$$

Where:

$$unavoidableError = \sigma^{2}$$

$$bias^{2} = \int (E_{D}[h(x)] - g(x))^{2} p(x) dx$$

$$\bar{h}(x) = E_{D}[h(x)]$$

$$variance = \int E_{D}[(h(x) - \bar{h}(x))^{2}] p(x) dx$$

What you need to know

- Gaussian estimation
 - MLE
 - Bayesian learning
 - □ MAP
- Regression
 - □ Basis function = features
 - Optimizing sum squared error
 - □ Relationship between regression and Gaussians
- Bias-Variance trade-off