Decision Trees: many possible refs., e.g., Mitchell, Chapter 3
Boosting: (Linked from class website) Schapire ’01

Decision Trees
Boosting

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 6th, 2006
Announcements

- Recitations stay on Thursdays
 - 5-6:30pm in Wean 5409
 - This week: Decision Trees and Boosting

- Pittsburgh won the Super Bowl !!
A dataset is **linearly separable** iff \(\exists \) a separating hyperplane:

- \(\exists \mathbf{w} \), such that:
 - \(w_0 + \sum_i w_i x_i > 0 \); if \(\mathbf{x} = \{x_1, \ldots, x_n\} \) is a positive example
 - \(w_0 + \sum_i w_i x_i < 0 \); if \(\mathbf{x} = \{x_1, \ldots, x_n\} \) is a negative example
Not linearly separable data

- Some datasets are **not linearly separable**!
Addressing non-linearly separable data – Option 1, non-linear features

Choose non-linear features, e.g.,

- Typical linear features: \(w_0 + \sum_i w_i x_i \)
- Example of non-linear features:
 - Degree 2 polynomials, \(w_0 + \sum_i w_i x_i + \sum_{ij} w_{ij} x_i x_j \)

Classifier \(h_w(x) \) still linear in parameters \(w \)

- Usually easy to learn (closed-form or convex/concave optimization)
- Data is linearly separable in higher dimensional spaces
- More discussion later this semester
Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier $h_w(x)$ that is non-linear in parameters w, e.g.,
 - Decision trees, neural networks, nearest neighbor,…
- More general than linear classifiers
- But, can often be harder to learn (non-convex/concave optimization required)
- But, but, often very useful
- (BTW. Later this semester, we’ll see that these options are not that different)
A small dataset: Miles Per Gallon

Suppose we want to predict MPG

<table>
<thead>
<tr>
<th>mpg</th>
<th>cylinders</th>
<th>displacement</th>
<th>horsepower</th>
<th>weight</th>
<th>acceleration</th>
<th>modelyear</th>
<th>maker</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>75to78</td>
<td>asia</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>70to74</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>medium</td>
<td>medium</td>
<td>low</td>
<td>75to78</td>
<td>europe</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>70to74</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>70to74</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>medium</td>
<td>low</td>
<td>70to74</td>
<td>asia</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>medium</td>
<td>70to74</td>
<td>asia</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>70to74</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>75to78</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>75to78</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>medium</td>
<td>high</td>
<td>79to83</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>75to78</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>79to83</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>low</td>
<td>75to78</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>medium</td>
<td>low</td>
<td>low</td>
<td>79to83</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>medium</td>
<td>high</td>
<td>79to83</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>medium</td>
<td>low</td>
<td>70to74</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>good</td>
<td>5</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>75to78</td>
<td>europe</td>
<td></td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>medium</td>
<td>75to78</td>
<td>europe</td>
<td></td>
</tr>
</tbody>
</table>

From the UCI repository (thanks to Ross Quinlan)
A Decision Stump

mpg values: bad good

root
22 18
pchance = 0.001

cylinders = 3
0 0
Predict bad

<table>
<thead>
<tr>
<th>cylinders = 4</th>
<th>cylinders = 5</th>
<th>cylinders = 6</th>
<th>cylinders = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 17</td>
<td>1 0</td>
<td>8 0</td>
<td>9 1</td>
</tr>
<tr>
<td>Predict good</td>
<td>Predict bad</td>
<td>Predict bad</td>
<td>Predict bad</td>
</tr>
</tbody>
</table>

bad gasmikje
Recursion Step

Take the Original Dataset..

And partition it according to the value of the attribute we split on.
Recursion Step

```
mpg values:   bad    good

root
22    18
p chance = 0.001

cylinders = 3   cylinders = 4   cylinders = 5   cylinders = 6   cylinders = 8
0   0   4   17   1   0   8   0   9   1
Predict bad   Predict good   Predict bad   Predict bad   Predict bad

Build tree from These records..

Records in which cylinders = 4
Records in which cylinders = 5
Records in which cylinders = 6
Records in which cylinders = 8
```
Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)
mpg values: bad good

The final tree

©2006 Carlos Guestrin
Classification of a new example

Classifying a test example – traverse tree and report leaf label

\(<C_y=4, \text{Europe}, \text{acc}= \text{low}> = \text{predict bad}\)
Are all decision trees equal?

- Many trees can represent the same concept.
- But, not all trees will have the same size!
 - e.g., $\phi = A \land B \lor \neg A \land C$ ((A and B) or (not A and C))
Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest ’76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse
Choosing a good attribute

<table>
<thead>
<tr>
<th>X₁</th>
<th>X₂</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

X₁ \(\text{t} \lor \text{f}\)

\(\frac{4\times T, 0\times F}{3\times F, 1\times T}\)

X₂ \(\text{t} \lor \text{f}\)

\(\frac{3\times T, 1\times F}{2\times T, 2\times F}\)
Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad

\[
\begin{array}{cccc}
P(Y=A) &=& 1/2 & \quad P(Y=B) = 1/4 & \quad P(Y=C) = 1/8 & \quad P(Y=D) = 1/8 \\
\end{array}
\]

- better
 - Less uncertainty

\[
\begin{array}{cccc}
P(Y=A) &=& 1/4 & \quad P(Y=B) = 1/4 & \quad P(Y=C) = 1/4 & \quad P(Y=D) = 1/4 \\
\end{array}
\]

- worse
 - More uncertainty
Entropy

Entropy $H(X)$ of a random variable Y

$$H(Y) = - \sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: $H(Y)$ is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code).
Andrew Moore’s Entropy in a nutshell

Low Entropy

High Entropy
Andrew Moore’s Entropy in a nutshell

Low Entropy

..the values (locations of soup) sampled entirely from within the soup bowl

High Entropy

..the values (locations of soup) unpredictable... almost uniformly sampled throughout our dining room

©2006 Carlos Guestrin
Information gain

- Advantage of attribute – decrease in uncertainty
 - Entropy of Y before you split: $H(Y)$
 - Entropy after split on X: $H(Y|X)$
 - Weight by probability of following each branch, i.e., normalized number of records
 \[
 H(Y \mid X) = - \sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)
 \]

- Information gain is difference
 \[
 IG(X) = H(Y) - H(Y \mid X)
 \]
 \[
 \text{BTW. } H(Y) - H(Y \mid X) \geq 0 \text{ (information never lost!)}
 \]

\[
\begin{array}{c|c|c|c}
X_1 & X_2 & Y \\
\hline
T & T & T \\
T & F & T \\
T & T & T \\
T & F & T \\
F & T & T \\
F & F & F \\
\end{array}
\]
Learning decision trees

- Start from empty decision tree
- Split on **next best attribute (feature)**
 - Use, for example, information gain to select attribute
 - Split on \(\arg \max_i IG(X_i) = \arg \max_i H(Y) - H(Y \mid X_i) \)
- Recurse
Information Gain Example

<table>
<thead>
<tr>
<th>wealth values:</th>
<th>poor</th>
<th>rich</th>
</tr>
</thead>
<tbody>
<tr>
<td>gender</td>
<td>Female</td>
<td>14423</td>
</tr>
<tr>
<td>Male</td>
<td>22732</td>
<td>9918</td>
</tr>
</tbody>
</table>

- \(H(\text{wealth} | \text{gender} = \text{Female}) = 0.497654 \)
- \(H(\text{wealth} | \text{gender} = \text{Male}) = 0.885847 \)

- \(H(\text{wealth}) = 0.793844 \)
- \(H(\text{wealth}|\text{gender}) = 0.757154 \)
- \(IG(\text{wealth}|\text{gender}) = 0.0366896 \)
Suppose we want to predict MPG

Look at all the information gains…
A Decision Stump

mpg values: bad good

root

22 18

pchance = 0.001

cylinders = 3

0 0

Predict bad

cylinders = 4

4 17

Predict good

cylinders = 5

1 0

Predict bad

cylinders = 6

8 0

Predict bad

cylinders = 8

9 1

Predict bad
Don’t split a node if all matching records have the same output value.
Base Case
Two

Don’t split a node if none of the attributes can create multiple non-empty children
Base Case Two: No attributes can distinguish

Information gains using the training set (2 records)

<table>
<thead>
<tr>
<th>Input</th>
<th>Value</th>
<th>Distribution</th>
<th>Info Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>cylinders</td>
<td>3</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>displacement</td>
<td>low</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>horsepower</td>
<td>low</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>weight</td>
<td>low</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>acceleration</td>
<td>low</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>high</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>modelyear</td>
<td>70to74</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>75to78</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>79to83</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>maker</td>
<td>america</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>asia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>europe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Base Cases

- Base Case One: If all records in current data subset have the same output then don’t recurse
- Base Case Two: If all records have exactly the same set of input attributes then don’t recurse
Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don’t recurse
- Base Case Two: If all records have exactly the same set of input attributes then don’t recurse

Proposed Base Case 3:
If all attributes have zero information gain then don’t recurse

• Is this a good idea?
The problem with Base Case 3

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(y = a \text{ XOR } b \)

The information gains:

<table>
<thead>
<tr>
<th>Input</th>
<th>Value</th>
<th>Distribution</th>
<th>Info Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The resulting decision tree:

\(y \text{ values: } 0 \quad 1 \)

root

2 2

Predict 0
If we omit Base Case 3:

\[
y = a \text{ XOR } b
\]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The resulting decision tree:
Basic Decision Tree Building
Summarized

BuildTree(DataSet, Output)

- If all output values are the same in DataSet, return a leaf node that says “predict this unique output”
- If all input values are the same, return a leaf node that says “predict the majority output”
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - Create and return a non-leaf node with n_X children.
 - The i'th child should be built by calling $\text{BuildTree}(\text{DS}_i, \text{Output})$
 Where DS_i built consists of all those records in DataSet for which $X = i$th distinct value of X.

Real-Valued inputs

What should we do if some of the inputs are real-valued?

<table>
<thead>
<tr>
<th>mpg</th>
<th>cylinders</th>
<th>displacement</th>
<th>horsepower</th>
<th>weight</th>
<th>acceleration</th>
<th>modelyear</th>
<th>maker</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>4</td>
<td>97</td>
<td>75</td>
<td>2265</td>
<td>18.2</td>
<td>77</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>199</td>
<td>90</td>
<td>2648</td>
<td>15</td>
<td>70</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>121</td>
<td>110</td>
<td>2600</td>
<td>12.8</td>
<td>77</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>350</td>
<td>175</td>
<td>4100</td>
<td>13</td>
<td>73</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>198</td>
<td>95</td>
<td>3102</td>
<td>16.5</td>
<td>74</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>108</td>
<td>94</td>
<td>2379</td>
<td>16.5</td>
<td>73</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>113</td>
<td>95</td>
<td>2228</td>
<td>14</td>
<td>71</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>302</td>
<td>139</td>
<td>3570</td>
<td>12.8</td>
<td>78</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>120</td>
<td>79</td>
<td>2625</td>
<td>18.6</td>
<td>82</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>455</td>
<td>225</td>
<td>4425</td>
<td>10</td>
<td>70</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>107</td>
<td>86</td>
<td>2464</td>
<td>15.5</td>
<td>76</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>5</td>
<td>131</td>
<td>103</td>
<td>2830</td>
<td>15.9</td>
<td>78</td>
<td>europe</td>
</tr>
</tbody>
</table>

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value
“One branch for each numeric value” idea:

Hopeless: with such high branching factor will shatter the dataset and overfit bad idea!
Threshold splits

- Binary tree, split on attribute X
 - One branch: $X < t$
 - Other branch: $X \geq t$
Choosing threshold split

- Binary tree, split on attribute X
 - One branch: $X < t$
 - Other branch: $X \geq t$

- Search through possible values of t
 - Seems hard!!!

- But only finite number of t's are important
 - Sort data according to X into $\{x_1, \ldots, x_m\}$
 - Consider split points of the form $x_i + (x_{i+1} - x_i)/2$
A better idea: thresholded splits

Suppose X is real valued

Define $IG(Y|X:t)$ as $H(Y) - H(Y|X:t)$

Define $H(Y|X:t) =$

\[H(Y|X < t) \cdot P(X < t) + H(Y|X \geq t) \cdot P(X \geq t) \]

$IG(Y|X:t)$ is the information gain for predicting Y if all you know is whether X is greater than or less than t

Then define $IG^*(Y|X) = \max_t IG(Y|X:t)$

For each real-valued attribute, use $IG^*(Y|X)$ for assessing its suitability as a split
Information gains using the training set (40 records)

<table>
<thead>
<tr>
<th>Input</th>
<th>Value</th>
<th>Distribution</th>
<th>Info Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>cylinders</td>
<td>< 5</td>
<td></td>
<td>0.48268</td>
</tr>
<tr>
<td></td>
<td>>= 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>displacement</td>
<td>< 198</td>
<td></td>
<td>0.428205</td>
</tr>
<tr>
<td></td>
<td>>= 198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>horsepower</td>
<td>< 94</td>
<td></td>
<td>0.48268</td>
</tr>
<tr>
<td></td>
<td>>= 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>weight</td>
<td>< 2789</td>
<td></td>
<td>0.379471</td>
</tr>
<tr>
<td></td>
<td>>= 2789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acceleration</td>
<td>< 18.2</td>
<td></td>
<td>0.159982</td>
</tr>
<tr>
<td></td>
<td>>= 18.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>modelyear</td>
<td>< 81</td>
<td></td>
<td>0.319193</td>
</tr>
<tr>
<td></td>
<td>>= 81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maker</td>
<td>america</td>
<td></td>
<td>0.0437265</td>
</tr>
<tr>
<td></td>
<td>asia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>europe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example with MPG
Example tree using reals
MPG Test set error

Num Errors Set Size Percent Wrong
Training Set 1 40 2.50
Test Set 74 352 21.02

why?
overfitting!

horsepower = low
0 4
Predict good
pchance = 0.894

horsepower = medium
2 1
Predict bad
pchance = 0.894

horsepower = high
0 0
Predict bad

acceleration = low
1 0
Predict bad

acceleration = medium
1 1
Predict bad
(unexpandable)

acceleration = high
0 0
Predict bad

modelyear = 70to74
0 0
Predict bad

modelyear = 75to78
1 0
Predict good

modelyear = 79to83
0 0
Predict bad
The test set error is much worse than the training set error...

...why?
Decision trees & Learning Bias

Any "separable" data

G no examples with
same attrib. values
have diff. labels
can classified exactly with
a d. tree

⇒ (almost) zero bias!
Decision trees will overfit

- Standard decision trees are have no learning biased
 - Training set error is always zero!
 - Lots of variance
 - Will definitely overfit!!!
 - Must bias towards simpler trees

- Many strategies for picking simpler trees:
 - Fixed depth
 - Fixed number of leaves
 - Or something smarter…
Consider this split
A chi-square test

Suppose that mpg was completely uncorrelated with maker.
What is the chance we’d have seen data of at least this apparent level of association anyway?

<table>
<thead>
<tr>
<th>mpg values:</th>
<th>bad</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td>maker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>america</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>asia</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>europe</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>H(mpg</td>
<td>maker = america) = 0</td>
<td></td>
</tr>
<tr>
<td>H(mpg</td>
<td>maker = asia) = 0.863121</td>
<td></td>
</tr>
<tr>
<td>H(mpg</td>
<td>maker = europe) = 1</td>
<td></td>
</tr>
<tr>
<td>H(mpg) = 0.702467</td>
<td>H(mpg</td>
<td>maker) = 0.478183</td>
</tr>
</tbody>
</table>
| \[\text{IG}(\text{mpg}|\text{maker}) = 0.224284 \]
A chi-square test

<table>
<thead>
<tr>
<th>maker</th>
<th>america</th>
<th>0</th>
<th>10</th>
<th>mpg values: bad</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td>asia</td>
<td>2</td>
<td>5</td>
<td></td>
<td>H(mpg</td>
<td>maker = america) = 0</td>
</tr>
<tr>
<td>europe</td>
<td>2</td>
<td>2</td>
<td></td>
<td>H(mpg</td>
<td>maker = asia) = 0.863121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H(mpg</td>
<td>maker = europe) = 1</td>
</tr>
</tbody>
</table>

H(mpg)	0.702467	
H(mpg	maker)	0.478183
I(G(mpg	maker)	0.224284

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we’d have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 13.5%

(Such simple hypothesis tests are very easy to compute, unfortunately, not enough time to cover in the lecture)
Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - Beginning at the bottom of the tree, delete splits in which $p_{\text{chance}} > \text{MaxPchance}$
 - Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise
Pruning example

With MaxPchance = 0.1, you will see the following MPG decision tree:

- mpg values: bad good
- root
- 22 18
- pchance = 0.001

- cylinders = 3
 - Predict bad
 - 0 0
- cylinders = 4
 - Predict good
 - 4 17
- cylinders = 5
 - Predict bad
 - 1 0
- cylinders = 6
 - Predict bad
 - 8 0
- cylinders = 8
 - Predict bad
 - 9 1

Note the improved test set accuracy compared with the unpruned tree.

<table>
<thead>
<tr>
<th></th>
<th>Num Errors</th>
<th>Set Size</th>
<th>Percent Wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Set</td>
<td>5</td>
<td>40</td>
<td>12.50 higher</td>
</tr>
<tr>
<td>Test Set</td>
<td>56</td>
<td>352</td>
<td>15.91 lower</td>
</tr>
</tbody>
</table>

©2006 Carlos Guestrin
MaxPchance

- Technical note MaxPchance is a regularization parameter that helps us bias towards simpler models.

We’ll learn to choose the value of these magic parameters soon!
What you need to know about decision trees

- Decision trees are one of the most popular data mining tools
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5, …)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - Zero bias classifier → Lots of variance
 - Must use tricks to find “simple trees”, e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing
Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don’t usually overfit

- Simple (a.k.a. weak) learners are bad
 - High bias, can’t solve hard learning problems

- Can we make weak learners always good???
 - No!!
 - But often yes…
Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (rewighted) training data, then let learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis – h_t
 - A strength for this hypothesis – α_t

- Final classifier:

- Practically useful
- Theoretically interesting
Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others

- Consider a weighted dataset
 - $D(i)$ – weight of ith training example (x^i, y^i)

- Now, in all calculations, whenever used, ith training example counts as $D(i)$ “examples”
 - e.g., MLE for Naïve Bayes, redefine $Count(Y=y)$ to be weighted count
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_1(i) = 1/m\).
For \(t = 1, \ldots, T\):

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t : X \rightarrow \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:
 \[
 D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
 \]
 where \(Z_t\) is a normalization factor
 \[
 Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
 \]
- Output the final classifier:
 \[
 H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
 \]

Figure 1: The boosting algorithm AdaBoost.
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in \{\pm 1\}\)

Initialize \(D_1(i) = 1/m\).

For \(t = 1, \ldots, T\):

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t : X \to \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

\[
\epsilon_t = P_{i \sim D_i}[x_i \neq y_i]
\]

\[
\epsilon_t = \frac{1}{\sum_{i=1}^n D_t(i)} \sum_{i=1}^m D_t(i) \delta(h(x_i) \neq y_i)
\]
What α_t to choose for hypothesis h_t?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Where $f(x) = \sum_t \alpha_t h_t(x); H(x) = \text{sign}(f(x))$
What α_t to choose for hypothesis h_t?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

Where $f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x))$
What α_t to choose for hypothesis h_t?

Training error of final classifier is bounded by:

$$
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_i \exp(-y_if(x_i)) = \prod_t Z_t
$$

Where $f(x) = \sum_t \alpha_th_t(x); H(x) = \text{sign}(f(x))$

If we minimize $\prod_t Z_t$, we minimize our training error.

We can tighten this bound by choosing α_t and h_t on each iteration to minimize Z_t.

$$
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha ty_ih_t(x_i))
$$
What α_t to choose for hypothesis h_t?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire ’97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$
Strong, weak classifiers

- If each classifier is (at least slightly) better than random
 \[\varepsilon_t < 0.5 \]

- AdaBoost will achieve zero *training error* (exponentially fast):

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} (1/2 - \varepsilon_t)^2 \right)
\]

- Is it hard to achieve better than random training error?
Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets
AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(data|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i))) \]
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

Boosting minimizes similar loss function!!

\[\frac{1}{m} \sum_i \exp(-y_if(x_i)) = \prod_t Z_t \]

Both smooth approximations of 0/1 loss!
Logistic regression and Boosting

Logistic regression:
- Minimize loss fn
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
- Define
 \[f(x) = \sum_{j} w_j x_j \]
 where \(x_j \) predefined

Boosting:
- Minimize loss fn
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]
- Define
 \[f(x) = \sum_{t} \alpha_t h_t(x) \]
 where \(h(x_i) \) defined dynamically to fit data
- Weights \(\alpha_j \) learned incrementally
What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error

- AdaBoost algorithm

- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)

- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier
Acknowledgements

- Much of the decision trees material in the presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials

- Much of the boosting material in the presentation is courtesy of Tom Mitchell