Boosting
Simple Model Selection
Cross Validation
Regularization

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 8th, 2006
Announcements

- Recitations stay on Thursdays
 - 5-6:30pm in Wean 5409
 - This week: Decision Trees and Boosting

- Homework due…
 - Tomorrow by 10:30am (class time) to Monica Hopes, Wean Hall 4616
Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don’t usually overfit

- Simple (a.k.a. weak) learners are bad
 - High bias, can’t solve hard learning problems

- Can we make weak learners always good???
 - No!!!
 - But often yes...
Voting

Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space

Output class: (Weighted) vote of each classifier

- Classifiers that are most “sure” will vote with more conviction
- Classifiers will be most “sure” about a particular part of the space
- On average, do better than single classifier!

But how do you ???

- force classifiers to learn about different parts of the input space?
- weigh the votes of different classifiers?

©2006 Carlos Guestrin
Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (rewighted) training data, then let learned classifiers vote

- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis – h_t
 - A strength for this hypothesis – α_t

- Final classifier:

- Practically useful
- Theoretically interesting
Learning from weighted data

Sometimes not all data points are equal
- Some data points are more equal than others

Consider a weighted dataset
- $D(i)$ – weight of ith training example (x^i, y^i)
- Interpretations:
 - ith training example counts as $D(i)$ examples
 - If I were to “resample” data, I would get more samples of “heavier” data points

Now, in all calculations, whenever used, ith training example counts as $D(i)$ “examples”
- e.g., MLE for Naïve Bayes, redefine $\text{Count}(Y=y)$ to be weighted count
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_1(i) = 1/m\).
For \(t = 1, \ldots, T\):

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t : X \to \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

where \(Z_t\) is a normalization factor

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

Output the final classifier:

\[
H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right).
\]

Figure 1: The boosting algorithm AdaBoost.
Given: \((x_1, y_1), \ldots, (x_m, y_m)\) where \(x_i \in X, y_i \in Y = \{-1, +1\}\)
Initialize \(D_1(i) = 1/m\).
For \(t = 1, \ldots, T\):

- Train base learner using distribution \(D_t\).
- Get base classifier \(h_t : X \rightarrow \mathbb{R}\).
- Choose \(\alpha_t \in \mathbb{R}\).
- Update:

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)
\]

\[
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
\]

\[
\epsilon_t = P_{i \sim D_t} [x^i \neq y^i]
\]

\[
\epsilon_t = \frac{1}{\sum_{i=1}^n D_t(i)} \sum_{i=1}^m D_t(i) \delta(h_t(x_i) \neq y_i)
\]
What α_t to choose for hypothesis h_t?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Where $f(x) = \sum_{t} \alpha_t h_t(x); H(x) = \text{sign}(f(x))$
What α_t to choose for hypothesis h_t?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_t Z_t$$

Where $f(x) = \sum_t \alpha_t h_t(x)$; $H(x) = \text{sign}(f(x))$

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$
What α_t to choose for hypothesis h_t?

[Schapire, 1989]

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_if(x_i)) = \prod_{t} Z_t$$

Where $f(x) = \sum_{t} \alpha_t h_t(x)$; $H(x) = \text{sign}(f(x))$

If we minimize $\prod_{t} Z_t$, we minimize our training error

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$
What α_t to choose for hypothesis h_t? [Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t.

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire ’97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

You’ll prove this in your homework! 😊
Strong, weak classifiers

- If each classifier is (at least slightly) better than random
 - $\varepsilon_t < 0.5$

- AdaBoost will achieve zero training error (exponentially fast):

\[
\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} \left(\frac{1}{2} - \varepsilon_t \right)^2 \right)
\]

- Is it hard to achieve better than random training error?
Boosting results – Digit recognition

[Schapire, 1989]

- Boosting often
 - Robust to overfitting
 - Test set error decreases even after training error is zero
Boosting generalization error bound

\[\text{error}_{test}(H) \leq \text{error}_{train}(H) + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right) \]

- \(T \) – number of boosting rounds
- \(d \) – VC dimension of weak learner, measures complexity of classifier
- \(m \) – number of training examples

[Freund & Schapire, 1996]
Boosting generalization error bound

\[
error_{test}(H) \leq error_{train}(H) + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right)
\]

- **Contradicts**: Boosting often
 - Robust to overfitting
 - Test set error decreases even after training error is zero
- **Need better analysis tools**
 - we’ll come back to this later in the semester

- \(T\) – number of boosting rounds
- \(d\) – VC dimension of weak learner, measures complexity of classifier
- \(m\) – number of training examples

©2006 Carlos Guestrin
Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets
AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
Boosting and Logistic Regression

Logistic regression assumes:

\[P(Y = 1|X) = \frac{1}{1 + \exp(f(x))} \]

And tries to maximize data likelihood:

\[P(\text{data}|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_if(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]

Boosting minimizes similar loss function!!

\[\frac{1}{m} \sum_{i} \exp(-y_if(x_i)) = \prod_{t} Z_t \]

Both smooth approximations of 0/1 loss!
Logistic regression:
- Minimize loss fn
 \[\sum_{i=1}^{m} \ln(1 + \exp(-y_if(x_i))) \]
- Define
 \[f(x) = \sum_{j} w_j x_j \]
 where \(x_j \) predefined

Boosting:
- Minimize loss fn
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]
- Define
 \[f(x) = \sum_{t} \alpha_t h_t(x) \]
 where \(h(x_i) \) defined dynamically to fit data
- Weights \(\alpha_j \) learned incrementally
What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error

- AdaBoost algorithm

- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)

- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier
OK... now we’ll learn to pick those darned parameters...

- **Selecting features (or basis functions)**
 - Linear regression
 - Naïve Bayes
 - Logistic regression

- **Selecting parameter value**
 - Prior strength
 - Naïve Bayes, linear and logistic regression
 - Regularization strength
 - Naïve Bayes, linear and logistic regression
 - Decision trees
 - MaxpChance, depth, number of leaves
 - Boosting
 - Number of rounds

- More generally, these are called **Model Selection Problems**

- Today:
 - Describe basic idea
 - Introduce very important concept for tuning learning approaches: **Cross-Validation**
Test set error as a function of model complexity
Simple greedy model selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression

- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select next best feature X_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse
Greedy model selection

- Applicable in many settings:
 - Linear regression: Selecting basis functions
 - Naïve Bayes: Selecting (independent) features $P(X_i|Y)$
 - Logistic regression: Selecting features (basis functions)
 - Decision trees: Selecting leaves to expand

- Only a heuristic!
 - But, sometimes you can prove something cool about it
 - e.g., [Krause & Guestrin ’05]: Near-optimal in some settings that include Naïve Bayes

- There are many more elaborate methods out there
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - **Recurse**

When do you stop???
- When training error is low enough?
Simple greedy model selection algorithm

- Greedy heuristic:
 - ...
 - Select **next best feature** X_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} = F_t \cup \{X_i\}$
 - Recurse

When do you stop???
- When training error is low enough?
- When test set error is low enough?
Validation set

- Thus far: Given a dataset, **randomly** split it into two parts:
 - Training data – \{x_1, \ldots, x_{N_{\text{train}}}\}
 - Test data – \{x_1, \ldots, x_{N_{\text{test}}}\}

- But **Test data must always remain independent**!
 - Never ever ever ever learn on test data, including for model selection

- Given a dataset, **randomly** split it into three parts:
 - Training data – \{x_1, \ldots, x_{N_{\text{train}}}\}
 - Validation data – \{x_1, \ldots, x_{N_{\text{valid}}}\}
 - Test data – \{x_1, \ldots, x_{N_{\text{test}}}\}

- Use validation data for tuning learning algorithm, e.g., model selection
 - Save test data for very final evaluation
Simple greedy model selection algorithm

Greedy heuristic:

- Select next best feature X_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$

- $F_{t+1} = F_t \cup \{X_i\}$

- Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
Simple greedy model selection algorithm

Greedy heuristic:

- Select **next best feature** X_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
- $F_{t+1} = F_t \cup \{X_i\}$
- **Recurse**

When do you stop??

- **When training error is low enough?**
- **When test set error is low enough?**
- **When validation set error is low enough?**
- **Man!!! OK, should I just repeat until I get tired????**
 - I am tired now…
 - **No, “There is a better way!”**
(LOO) Leave-one-out cross validation

- Consider a validation set with 1 example:
 - \(D \) – training data
 - \(D\setminus i \) – training data with \(i \)th data point moved to validation set

- Learn classifier \(h_{D\setminus i} \) with \(D\setminus i \) dataset

- Estimate true error as:
 - 0 if \(h_{D\setminus i} \) classifies \(i \)th data point correctly
 - 1 if \(h_{D\setminus i} \) is wrong about \(i \)th data point
 - Seems really bad estimator, but wait!

- LOO cross validation: Average over all data points \(i \):
 - For each data point you leave out, learn a new classifier \(h_{D\setminus i} \)
 - Estimate error as:

\[
error_{LOO} = \frac{1}{m} \sum_{i=1}^{m} 1 \left(h_{D\setminus i}(x^i) \neq y^i \right)
\]
LOO cross validation is (almost) unbiased estimate of true error!

- When computing LOOCV error, we only use $m-1$ data points
 - So it’s not estimate of true error of learning with m data points!
 - Usually pessimistic, though – learning with less data typically gives worse answer

- LOO is almost unbiased!
 - Let $\text{error}_{true,m-1}$ be true error of learner when you only get $m-1$ data points
 - In homework, you’ll prove that LOO is unbiased estimate of $\text{error}_{true,m-1}$:

\[
E_D[\text{error}_{LOO}] = \text{error}_{true,m-1}
\]

- Great news!
 - Use LOO error for model selection!!!
Simple greedy model selection algorithm

- Greedy heuristic:
 - Select next best feature X_i
 - e.g., X_j that results in lowest training error learner when learning with $F_t \cup \{X_j\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse

When do you stop???

- When training error is low enough?
- When test set error is low enough?
- When validation set error is low enough?
- **STOP WHEN error_{LOO} IS LOW!!!**
Using LOO error for model selection
Computational cost of LOO

- Suppose you have 100,000 data points
- You implemented a great version of your learning algorithm
 - Learns in only 1 second
- Computing LOO will take about 1 day!!!
 - If you have to do for each choice of basis functions, it will take fooooooreeeeve’!!!
- Solution 1: Preferred, but not usually possible
 - Find a cool trick to compute LOO (e.g., see homework)
Solution 2 to complexity of computing LOO:

(More typical) **Use k-fold cross validation**

- Randomly **divide training data into k equal parts**
 - D_1,\ldots,D_k
- For each i
 - Learn classifier $h_{D \setminus D_i}$ using data point not in D_i
 - Estimate error of $h_{D \setminus D_i}$ on validation set D_i:
 $$
 error_{D_i} = \frac{k}{m} \sum_{(x^j,y^j) \in D_i} 1 \left(h_{D \setminus D_i}(x^j) \neq y^j \right)
 $$
- **k-fold cross validation error is average** over data splits:
 $$
 error_{k\text{-fold}} = \frac{1}{k} \sum_{i=1}^{k} error_{D_i}
 $$
- **k-fold cross validation properties**:
 - **Much faster to compute** than LOO
 - **More (pessimistically) biased** – using much less data, only $m(k-1)/k$
 - Usually, $k = 10$ 😊
Regularization – Revisited

- Model selection 1: **Greedy**
 - Pick subset of features that have yield low LOO error

- Model selection 2: **Regularization**
 - Include **all possible features**!
 - Penalize “complicated” hypothesis
Regularization in linear regression

Overfitting usually leads to very large parameter choices, e.g.:

\[-2.2 + 3.1 X - 0.30 X^2\] \[-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + \ldots\]

Regularized least-squares (a.k.a. ridge regression), for \(\lambda \geq 0\):

\[w^* = \arg \min_w \sum_j \left(t(x_j) - \sum_i w_i h_i(x_j) \right)^2 + \lambda \sum_{i=1}^k w_i^2\]
Other regularization examples

- **Logistic regression** regularization
 - Maximize data likelihood minus **penalty for large parameters**
 \[
 \arg\max_w \sum_j \ln P(y^j|x^j, w) - \lambda \sum_i w_i^2
 \]
 - Biases towards small parameter values

- **Naïve Bayes** regularization
 - **Prior** over likelihood of features
 - **Biases away from zero probability** outcomes

- **Decision tree** regularization
 - Many possibilities, e.g., **Chi-Square test and MaxPvalue** parameter
 - **Biases towards smaller trees**
How do we pick magic parameter?

Cross Validation!!!!

\(\lambda \) in Linear/Logistic Regression
(analogously for # virtual examples in Naïve Bayes, MaxPvalue in Decision Trees)
Regularization and Bayesian learning

\[p(w \mid Y, X) \propto P(Y \mid X, w)p(w) \]

- We already saw that regularization for logistic regression corresponds to MAP for zero mean, Gaussian prior for \(w \)

- Similar interpretation for other learning approaches:
 - Linear regression: Also zero mean, Gaussian prior for \(w \)
 - Naïve Bayes: Directly defined as prior over parameters
 - Decision trees: Trickier to define… but we’ll get back to this
Occam’s Razor

- William of Ockham (1285-1349) *Principle of Parsimony*: “One should not increase, beyond what is necessary, the number of entities required to explain anything.”

- Regularization penalizes for “complex explanations”

- Alternatively (but pretty much the same), use *Minimum Description Length (MDL) Principle*: minimize $\text{length}(\text{misclassifications}) + \text{length}(\text{hypothesis})$

- $\text{length}(\text{misclassifications})$ – e.g., #wrong training examples
- $\text{length}(\text{hypothesis})$ – e.g., size of decision tree
Minimum Description Length Principle

MDL prefers small hypothesis that fit data well:

\[h_{MDL} = \arg \min_h L_{C_1}(D \mid h) + L_{C_2}(h) \]

- \(L_{C_1}(D|h) \) – description length of data under code \(C_1 \) given \(h \)
 - Only need to describe points that \(h \) doesn’t explain (classify correctly)
- \(L_{C_2}(h) \) – description length of hypothesis \(h \)

Decision tree example

- \(L_{C_1}(D|h) \) – #bits required to describe data given \(h \)
 - If all points correctly classified, \(L_{C_1}(D|h) = 0 \)
- \(L_{C_2}(h) \) – #bits necessary to encode tree
- Trade off quality of classification with tree size
Bayesian interpretation of MDL Principle

- **MAP estimate**
 \[
 h_{MAP} = \arg\max_h [P(D \mid h) P(h)] \\
 = \arg\max_h [\log_2 P(D \mid h) + \log_2 P(h)] \\
 = \arg\min_h [-\log_2 P(D \mid h) - \log_2 P(h)]
 \]

- **Information theory fact:**
 - Smallest code for event of probability \(p \) requires \(-\log_2 p\) bits

- **MDL interpretation of MAP:**
 - \(-\log_2 P(D|h)\) – length of \(D \) under hypothesis \(h \)
 - \(-\log_2 P(h)\) – length of hypothesis \(h \) (there is hidden parameter here)
 - MAP prefers simpler hypothesis:
 - minimize \(length(\text{misclassifications}) + length(\text{hypothesis}) \)

- **In general, Bayesian approach usually looks for simpler hypothesis** – Acts as a regularizer
What you need to know about Model Selection, Regularization and Cross Validation

- Cross validation
 - (Mostly) Unbiased estimate of true error
 - LOOCV is great, but hard to compute
 - k-fold much more practical
 - Use for selecting parameter values!

- Model selection
 - Search for a model with low cross validation error

- Regularization
 - Penalizes for complex models
 - Select parameter with cross validation
 - Really a Bayesian approach

- Minimum description length
 - Information theoretic interpretation of regularization
 - Relationship to MAP
Acknowledgements

- Part of the boosting material in the presentation is courtesy of Tom Mitchell